Highly Efficient and Stable FAPbI3 Perovskite Solar Cells and Modules Based on Exposure of the (011) Facet
Corresponding Author: Yong Ding
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 138
Abstract
Perovskite crystal facets greatly impact the performance and stability of their corresponding photovoltaic devices. Compared to the (001) facet, the (011) facet yields better photoelectric properties, including higher conductivity and enhanced charge carrier mobility. Thus, achieving (011) facet-exposed films is a promising way to improve device performance. However, the growth of (011) facets is energetically unfavorable in FAPbI3 perovskites due to the influence of methylammonium chloride additive. Here, 1-butyl-4-methylpyridinium chloride ([4MBP]Cl) was used to expose (011) facets. The [4MBP]+ cation selectively decreases the surface energy of the (011) facet enabling the growth of the (011) plane. The [4MBP]+ cation causes the perovskite nuclei to rotate by 45° such that (011) crystal facets stack along the out-of-plane direction. The (011) facet has excellent charge transport properties and can achieve better-matched energy level alignment. In addition, [4MBP]Cl increases the activation energy barrier for ion migration, suppressing decomposition of the perovskite. As a result, a small-size device (0.06 cm2) and a module (29.0 cm2) based on exposure of the (011) facet achieved power conversion efficiencies of 25.24% and 21.12%, respectively.
Highlights:
1 The (011) facet has excellent charge transport properties achieving closer alignment of energy levels.
2 By exploiting the (011) facet a device (0.06 cm2) and a module (29 cm2) achieved power conversion efficiencies of 25.24% and 21.12%, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Park, J. Kim, H.S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature (2023). https://doi.org/10.1038/s41586-023-05825-y
- J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, N.G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120(15), 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107
- L. Zhang, X. Pan, L. Liu, L. Ding, Star perovskite materials. J. Semicond. 43(3), 030203 (2022). https://doi.org/10.1088/1674-4926/43/3/030203
- X. Luo, X. Lin, F. Gao, Y. Zhao, X. Li et al., Recent progress in perovskite solar cells: From device to commercialization. Sci. China Chem. 65(12), 2369–2416 (2022). https://doi.org/10.1007/s11426-022-1426-x
- H. Wang, Z. Qin, Y. Miao, Y. Zhao, Recent progress in large-area perovskite photovoltaic modules. Trans. Tianjin Univ. 28(5), 323–340 (2022). https://doi.org/10.1007/s12209-022-00341-y
- A. Capitaine, B. Sciacca, Monocrystalline methylammonium lead halide perovskite materials for photovoltaics. Adv. Mater. 33(52), e2102588 (2021). https://doi.org/10.1002/adma.202102588
- Z. Fang, N. Yan, S. Liu, Modulating preferred crystal orientation for efficient and stable perovskite solar cells-from progress to perspectives. InfoMat 4(10), e12369 (2022). https://doi.org/10.1002/inf2.12369
- C. Ma, M. Grätzel, N.-G. Park, Facet engineering for stable, efficient perovskite solar cells. ACS Energy Lett. 7(9), 3120–3128 (2022). https://doi.org/10.1021/acsenergylett.2c01623
- C. Ma, M.-C. Kang, S.-H. Lee, S.J. Kwon, H.-W. Cha et al., Photovoltaically top-performing perovskite crystal facets. Joule 6(11), 2626–2643 (2022). https://doi.org/10.1016/j.joule.2022.09.012
- C. Ma, F.T. Eickemeyer, S.H. Lee, D.H. Kang, S.J. Kwon, M. Grätzel, N.G. Park, Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science 379(6628), 173–178 (2023). https://doi.org/10.1126/science.adf3349
- W. Zhu, Q. Wang, W. Chai, D. Chen, D. Chen et al., Tailored interfacial crystal facets for efficient CH3NH3PbI3 perovskite solar cells. Org. Electron. 78, 105598 (2020). https://doi.org/10.1016/j.orgel.2019.105598
- H. Dong, L. Zhang, W. Zhang, J. Wang, X. Zhang et al., Single crystals of perovskites. J. Semicond. 43(12), 120201 (2022). https://doi.org/10.1088/1674-4926/43/12/120201
- Y. Li, L. Ding, Single-crystal perovskite devices. Sci. Bull. 66(3), 214–218 (2021). https://doi.org/10.1016/j.scib.2020.09.026
- Z. Zuo, J. Ding, Y. Zhao, S. Du, Y. Li et al., Enhanced optoelectronic performance on the (110) lattice plane of an MAPbBr3 single crystal. J. Phys. Chem. Lett. 8(3), 684–689 (2017). https://doi.org/10.1021/acs.jpclett.6b02812
- J. Ding, L. Jing, Y. Yuan, J. Zhang, Q. Yao et al., Low defect density and anisotropic charge transport enhanced photo response in pseudo-cubic morphology of MAPbI3 single crystals. ACS Appl. Energy Mater. 3(11), 10525–10532 (2020). https://doi.org/10.1021/acsaem.0c01565
- Z. Xu, Z. Liu, N. Li, G. Tang, G. Zheng et al., A thermodynamically favored crystal orientation in mixed formamidinium/methylammonium perovskite for efficient solar cells. Adv. Mater. 31(24), e1900390 (2019). https://doi.org/10.1002/adma.201900390
- M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi et al., Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3(9), 2179–2192 (2019). https://doi.org/10.1016/j.joule.2019.06.014
- F. Ye, J. Ma, C. Chen, H. Wang, Y. Xu et al., Roles of MACl in sequentially deposited Bromine-free perovskite absorbers for efficient solar cells. Adv. Mater. 33(3), e2007126 (2021). https://doi.org/10.1002/adma.202007126
- X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan et al., Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5(2), 131–140 (2020). https://doi.org/10.1038/s41560-019-0538-4
- Y. Liu, X. Zheng, Y. Fang, Y. Zhou, Z. Ni et al., Ligand assisted growth of perovskite single crystals with low defect density. Nat. Commun. 12(1), 1686 (2021). https://doi.org/10.1038/s41467-021-21934-6
- W. Wang, M. Cai, G. Wu, L. Zhu, X. Liu et al., Facet control of the lead-free methylammonium bismuth iodide perovskite single crystals via ligand-mediated strategy. Cryst. Growth Des. 21(10), 5840–5847 (2021). https://doi.org/10.1021/acs.cgd.1c00721
- B. Ding, S.-Y. Huang, Q.-Q. Chu, Y. Li, C.-X. Li et al., Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules. J. Mater. Chem. A 6(22), 10233–10242 (2018). https://doi.org/10.1039/c8ta01192c
- C. Liu, Y. Yang, K. Rakstys, A. Mahata, M. Franckevicius et al., Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules. Nat. Commun. 12(1), 6394 (2021). https://doi.org/10.1038/s41467-021-26754-2
- J. Yang, W. Sheng, R. Li, L. Gong, Y. Li et al., Uncovering the mechanism of poly(ionic-liquid)s multiple inhibition of ion migration for efficient and stable perovskite solar cells. Adv. Energy Mater. 12(15), 2103652 (2022). https://doi.org/10.1002/aenm.202103652
- G. Zheng, C. Zhu, J. Ma, X. Zhang, G. Tang et al., Manipulation of facet orientation in hybrid perovskite polycrystalline films by cation cascade. Nat. Commun. 9(1), 2793 (2018). https://doi.org/10.1038/s41467-018-05076-w
- Z. Wang, Q. Lin, F.P. Chmiel, N. Sakai, L.M. Herz et al., Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2(9), 17135 (2017). https://doi.org/10.1038/nenergy.2017.135
- M.I. Saidaminov, J. Kim, A. Jain, R. Quintero-Bermudez, H. Tan et al., Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3(8), 648–654 (2018). https://doi.org/10.1038/s41560-018-0192-2
- M. Qin, P.F. Chan, X. Lu, A systematic review of metal halide perovskite crystallization and film formation mechanism unveiled by in situ GIWAXS. Adv. Mater. 33(51), e2105290 (2021). https://doi.org/10.1002/adma.202105290
- D. Seol, A. Jeong, M.H. Han, S. Seo, T.S. Yoo et al., Origin of hysteresis in CH3NH3PbI3 perovskite thin films. Adv. Funct. Mater. 27(37), 1701924 (2017). https://doi.org/10.1002/adfm.201701924
- Y. Zhao, P. Zhu, S. Huang, S. Tan, M. Wang et al., Molecular interaction regulates the performance and longevity of defect passivation for metal halide perovskite solar cells. J. Am. Chem. Soc. 142(47), 20071–20079 (2020). https://doi.org/10.1021/jacs.0c09560
- Z. Wenyu, L. Xiaojie, H. Benlin, G. Zekun, Z. Jingwei et al., Interface engineering of imidazolium ionic liquids toward efficient and stable CsPbBr3 perovskite solar cells. ACS Appl. Mater. Interfaces 12(4), 4540–4548 (2020). https://doi.org/10.1021/acsami.9b20831
- Y. Ding, B. Ding, H. Kanda, O.J. Usiobo, T. Gallet et al., Single-crystalline TiO2 nanops for stable and efficient perovskite modules. Nat. Nanotechnol. 17(6), 598–605 (2022). https://doi.org/10.1038/s41565-022-01108-1
- J. Haruyama, K. Sodeyama, L. Han, Y. Tateyama, First-principles study of ion diffusion in perovskite solar cell sensitizers. J. Am. Chem. Soc. 137(32), 10048–10051 (2015). https://doi.org/10.1021/jacs.5b03615
- R. Xia, Z. Fei, N. Drigo, F.D. Bobbink, Z. Huang et al., Retarding thermal degradation in hybrid perovskites by ionic liquid additives. Adv. Funct. Mater. 29(22), 1902021 (2019). https://doi.org/10.1002/adfm.201902021
References
J. Park, J. Kim, H.S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature (2023). https://doi.org/10.1038/s41586-023-05825-y
J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, N.G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120(15), 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107
L. Zhang, X. Pan, L. Liu, L. Ding, Star perovskite materials. J. Semicond. 43(3), 030203 (2022). https://doi.org/10.1088/1674-4926/43/3/030203
X. Luo, X. Lin, F. Gao, Y. Zhao, X. Li et al., Recent progress in perovskite solar cells: From device to commercialization. Sci. China Chem. 65(12), 2369–2416 (2022). https://doi.org/10.1007/s11426-022-1426-x
H. Wang, Z. Qin, Y. Miao, Y. Zhao, Recent progress in large-area perovskite photovoltaic modules. Trans. Tianjin Univ. 28(5), 323–340 (2022). https://doi.org/10.1007/s12209-022-00341-y
A. Capitaine, B. Sciacca, Monocrystalline methylammonium lead halide perovskite materials for photovoltaics. Adv. Mater. 33(52), e2102588 (2021). https://doi.org/10.1002/adma.202102588
Z. Fang, N. Yan, S. Liu, Modulating preferred crystal orientation for efficient and stable perovskite solar cells-from progress to perspectives. InfoMat 4(10), e12369 (2022). https://doi.org/10.1002/inf2.12369
C. Ma, M. Grätzel, N.-G. Park, Facet engineering for stable, efficient perovskite solar cells. ACS Energy Lett. 7(9), 3120–3128 (2022). https://doi.org/10.1021/acsenergylett.2c01623
C. Ma, M.-C. Kang, S.-H. Lee, S.J. Kwon, H.-W. Cha et al., Photovoltaically top-performing perovskite crystal facets. Joule 6(11), 2626–2643 (2022). https://doi.org/10.1016/j.joule.2022.09.012
C. Ma, F.T. Eickemeyer, S.H. Lee, D.H. Kang, S.J. Kwon, M. Grätzel, N.G. Park, Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science 379(6628), 173–178 (2023). https://doi.org/10.1126/science.adf3349
W. Zhu, Q. Wang, W. Chai, D. Chen, D. Chen et al., Tailored interfacial crystal facets for efficient CH3NH3PbI3 perovskite solar cells. Org. Electron. 78, 105598 (2020). https://doi.org/10.1016/j.orgel.2019.105598
H. Dong, L. Zhang, W. Zhang, J. Wang, X. Zhang et al., Single crystals of perovskites. J. Semicond. 43(12), 120201 (2022). https://doi.org/10.1088/1674-4926/43/12/120201
Y. Li, L. Ding, Single-crystal perovskite devices. Sci. Bull. 66(3), 214–218 (2021). https://doi.org/10.1016/j.scib.2020.09.026
Z. Zuo, J. Ding, Y. Zhao, S. Du, Y. Li et al., Enhanced optoelectronic performance on the (110) lattice plane of an MAPbBr3 single crystal. J. Phys. Chem. Lett. 8(3), 684–689 (2017). https://doi.org/10.1021/acs.jpclett.6b02812
J. Ding, L. Jing, Y. Yuan, J. Zhang, Q. Yao et al., Low defect density and anisotropic charge transport enhanced photo response in pseudo-cubic morphology of MAPbI3 single crystals. ACS Appl. Energy Mater. 3(11), 10525–10532 (2020). https://doi.org/10.1021/acsaem.0c01565
Z. Xu, Z. Liu, N. Li, G. Tang, G. Zheng et al., A thermodynamically favored crystal orientation in mixed formamidinium/methylammonium perovskite for efficient solar cells. Adv. Mater. 31(24), e1900390 (2019). https://doi.org/10.1002/adma.201900390
M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi et al., Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3(9), 2179–2192 (2019). https://doi.org/10.1016/j.joule.2019.06.014
F. Ye, J. Ma, C. Chen, H. Wang, Y. Xu et al., Roles of MACl in sequentially deposited Bromine-free perovskite absorbers for efficient solar cells. Adv. Mater. 33(3), e2007126 (2021). https://doi.org/10.1002/adma.202007126
X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan et al., Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5(2), 131–140 (2020). https://doi.org/10.1038/s41560-019-0538-4
Y. Liu, X. Zheng, Y. Fang, Y. Zhou, Z. Ni et al., Ligand assisted growth of perovskite single crystals with low defect density. Nat. Commun. 12(1), 1686 (2021). https://doi.org/10.1038/s41467-021-21934-6
W. Wang, M. Cai, G. Wu, L. Zhu, X. Liu et al., Facet control of the lead-free methylammonium bismuth iodide perovskite single crystals via ligand-mediated strategy. Cryst. Growth Des. 21(10), 5840–5847 (2021). https://doi.org/10.1021/acs.cgd.1c00721
B. Ding, S.-Y. Huang, Q.-Q. Chu, Y. Li, C.-X. Li et al., Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules. J. Mater. Chem. A 6(22), 10233–10242 (2018). https://doi.org/10.1039/c8ta01192c
C. Liu, Y. Yang, K. Rakstys, A. Mahata, M. Franckevicius et al., Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules. Nat. Commun. 12(1), 6394 (2021). https://doi.org/10.1038/s41467-021-26754-2
J. Yang, W. Sheng, R. Li, L. Gong, Y. Li et al., Uncovering the mechanism of poly(ionic-liquid)s multiple inhibition of ion migration for efficient and stable perovskite solar cells. Adv. Energy Mater. 12(15), 2103652 (2022). https://doi.org/10.1002/aenm.202103652
G. Zheng, C. Zhu, J. Ma, X. Zhang, G. Tang et al., Manipulation of facet orientation in hybrid perovskite polycrystalline films by cation cascade. Nat. Commun. 9(1), 2793 (2018). https://doi.org/10.1038/s41467-018-05076-w
Z. Wang, Q. Lin, F.P. Chmiel, N. Sakai, L.M. Herz et al., Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2(9), 17135 (2017). https://doi.org/10.1038/nenergy.2017.135
M.I. Saidaminov, J. Kim, A. Jain, R. Quintero-Bermudez, H. Tan et al., Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3(8), 648–654 (2018). https://doi.org/10.1038/s41560-018-0192-2
M. Qin, P.F. Chan, X. Lu, A systematic review of metal halide perovskite crystallization and film formation mechanism unveiled by in situ GIWAXS. Adv. Mater. 33(51), e2105290 (2021). https://doi.org/10.1002/adma.202105290
D. Seol, A. Jeong, M.H. Han, S. Seo, T.S. Yoo et al., Origin of hysteresis in CH3NH3PbI3 perovskite thin films. Adv. Funct. Mater. 27(37), 1701924 (2017). https://doi.org/10.1002/adfm.201701924
Y. Zhao, P. Zhu, S. Huang, S. Tan, M. Wang et al., Molecular interaction regulates the performance and longevity of defect passivation for metal halide perovskite solar cells. J. Am. Chem. Soc. 142(47), 20071–20079 (2020). https://doi.org/10.1021/jacs.0c09560
Z. Wenyu, L. Xiaojie, H. Benlin, G. Zekun, Z. Jingwei et al., Interface engineering of imidazolium ionic liquids toward efficient and stable CsPbBr3 perovskite solar cells. ACS Appl. Mater. Interfaces 12(4), 4540–4548 (2020). https://doi.org/10.1021/acsami.9b20831
Y. Ding, B. Ding, H. Kanda, O.J. Usiobo, T. Gallet et al., Single-crystalline TiO2 nanops for stable and efficient perovskite modules. Nat. Nanotechnol. 17(6), 598–605 (2022). https://doi.org/10.1038/s41565-022-01108-1
J. Haruyama, K. Sodeyama, L. Han, Y. Tateyama, First-principles study of ion diffusion in perovskite solar cell sensitizers. J. Am. Chem. Soc. 137(32), 10048–10051 (2015). https://doi.org/10.1021/jacs.5b03615
R. Xia, Z. Fei, N. Drigo, F.D. Bobbink, Z. Huang et al., Retarding thermal degradation in hybrid perovskites by ionic liquid additives. Adv. Funct. Mater. 29(22), 1902021 (2019). https://doi.org/10.1002/adfm.201902021