Insights into Enhanced Capacitive Behavior of Carbon Cathode for Lithium Ion Capacitors: The Coupling of Pore Size and Graphitization Engineering
Corresponding Author: Guoqiang Zou
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 121
Abstract
The lack of methods to modulate intrinsic textures of carbon cathode has seriously hindered the revelation of in-depth relationship between inherent natures and capacitive behaviors, limiting the advancement of lithium ion capacitors (LICs). Here, an orientated-designed pore size distribution (range from 0.5 to 200 nm) and graphitization engineering strategy of carbon materials through regulating molar ratios of Zn/Co ions has been proposed, which provides an effective platform to deeply evaluate the capacitive behaviors of carbon cathode. Significantly, after the systematical analysis cooperating with experimental result and density functional theory calculation, it is uncovered that the size of solvated PF6− ion is about 1.5 nm. Moreover, the capacitive behaviors of carbon cathode could be enhanced attributed to the controlled pore size of 1.5–3 nm. Triggered with synergistic effect of graphitization and appropriate pore size distribution, optimized carbon cathode (Zn90Co10-APC) displays excellent capacitive performances with a reversible specific capacity of ~ 50 mAh g−1 at a current density of 5 A g−1. Furthermore, the assembly pre-lithiated graphite (PLG)//Zn90Co10-APC LIC could deliver a large energy density of 108 Wh kg−1 and a high power density of 150,000 W kg−1 as well as excellent long-term ability with 10,000 cycles. This elaborate work might shed light on the intensive understanding of the improved capacitive behavior in LiPF6 electrolyte and provide a feasible principle for elaborate fabrication of carbon cathodes for LIC systems.
Highlights:
1 Pore size and graphitization engineering of carbon cathode were orientated-designed by regulating the molar ratios of Zn/Co ions.
2 Zn90Co10-APC and its assembled PLG//Zn90Co10-APC LIC both deliver the excellent electrochemical performances.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 118, 6457–6498 (2018). https://doi.org/10.1021/acs.chemrev.8b00116
- H. Wang, C. Zhu, D. Chao, Q. Yan, H.J. Fan, Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 29, 1702093 (2017). https://doi.org/10.1002/adma.201702093
- P. Cai, K. Zou, G. Zou, H. Hou, X. Ji, Quinone/ester-based oxygen functional group-incorporated full carbon Li-ion capacitor for enhanced performance. Nanoscale 12, 3677–3685 (2020). https://doi.org/10.1039/c9nr10339b
- L. Zhao, S. Wang, F. Pan, Z. Tang, Z. Zhang, S. Zhong, J. Zhang, Thermal convection induced TiO2 microclews as superior electrode materials for lithium-ion batteries. J. Mater. Chem. A 6, 11688–11693 (2018). https://doi.org/10.1039/C8TA03616K
- B. Li, J. Zheng, H. Zhang, L. Jin, D. Yang et al., Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv. Mater. 30, 1705670 (2018). https://doi.org/10.1002/adma.201705670
- D. Cao, C. Yin, D. Shi, Z. Fu, J. Zhang, C. Li, Cubic perovskite fluoride as open framework cathode for Na-ion batteries. Adv. Funct. Mater. 27, 1701130 (2017). https://doi.org/10.1002/adfm.201701130
- Y. Han, J. Hu, C. Yin, Y. Zhang, J. Xie, D. Yin, C. Li, Iron-based fluorides of tetragonal tungsten bronze structure as potential cathodes for Na-ion batteries. J. Mater. Chem. A 4, 7382–7389 (2016). https://doi.org/10.1039/C6TA02061E
- Y. Luan, R. Hu, Y. Fang, K. Zhu, K. Cheng et al., Nitrogen and phosphorus dual-doped multilayer graphene as universal anode for full carbon-based lithium and potassium ion capacitors. Nano-Micro Lett. 11, 30 (2019). https://doi.org/10.1007/s40820-019-0260-6
- X. Wang, L. Liu, Z. Niu, Carbon-based materials for lithium-ion capacitors. Mater. Chem. Front. 3, 1265–1279 (2019). https://doi.org/10.1039/C9QM00062C
- J. Huang, B. Zhao, T. Liu, J. Mou, Z. Jiang, J. Liu, H. Li, M. Liu, Wood-derived materials for advanced electrochemical energy storage devices. Adv. Funct. Mater. 29, 1902255 (2019). https://doi.org/10.1002/adfm.201902255
- C. Li, X. Zhang, K. Wang, X. Sun, Y. Ma, High-power and long-life lithium-ion capacitors constructed from N-doped hierarchical carbon nanolayer cathode and mesoporous graphene anode. Carbon 140, 237–248 (2018). https://doi.org/10.1016/j.carbon.2018.08.044
- Y. Ma, H. Chang, M. Zhang, Y. Chen, Graphene-based materials for lithium-ion hybrid supercapacitors. Adv. Mater. 27, 5296–5308 (2015). https://doi.org/10.1002/adma.201501622
- P. Han, G. Xu, X. Han, J. Zhao, X. Zhou, G. Cui, Lithium ion capacitors in organic electrolyte system: scientific problems, material development, and key technologies. Adv. Energy Mater. 8, 1801243 (2018). https://doi.org/10.1002/aenm.201801243
- D. Han, Z. Weng, P. Li, Y. Tao, C. Cui et al., Electrode thickness matching for achieving high-volumetric-performance lithium-ion capacitors. Energy Storage Mater. 18, 133–138 (2019). https://doi.org/10.1016/j.ensm.2019.01.020
- C. Liu, B.B. Koyyalamudi, L. Li, S. Emani, C. Wang, L.L. Shaw, Improved capacitive energy storage via surface functionalization of activated carbon as cathodes for lithium ion capacitors. Carbon 109, 163–172 (2016). https://doi.org/10.1016/j.carbon.2016.07.071
- K. Zou, P. Cai, C. Liu, J. Li, X. Gao et al., A kinetically well-matched full-carbon sodium-ion capacitor. J. Mater. Chem. A 7, 13540–13549 (2019). https://doi.org/10.1039/C9TA03797G
- J. Zhang, W. Lv, D. Zheng, Q. Liang, D.W. Wang, F. Kang, Q.H. Yang, The interplay of oxygen functional groups and folded texture in densified graphene electrodes for compact sodium-ion capacitors. Adv. Energy Mater. 8, 1702395 (2018). https://doi.org/10.1002/aenm.201702395
- Q. Xia, H. Yang, M. Wang, M. Yang, Q. Guo, L. Wan, H. Xia, Y. Yu, High energy and high power lithium-ion capacitors based on boron and nitrogen dual-doped 3D carbon nanofibers as both cathode and anode. Adv. Energy Mater. 7, 1701336 (2017). https://doi.org/10.1002/aenm.201701336
- P. Simon, Y. Gogotsi, Capacitive energy storage in nanostructured carbon electrolyte systems. Acc. Chem. Res. 46, 1094–1103 (2013). https://doi.org/10.1021/ar200306b
- Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925–5950 (2016). https://doi.org/10.1039/C5CS00580A
- J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006). https://doi.org/10.1126/science.1132195
- C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi, P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130, 2730–2731 (2008). https://doi.org/10.1021/ja7106178
- J. Huang, B.G. Sumpter, V. Meunier, A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chem. Eur. J. 14, 6614–6626 (2008). https://doi.org/10.1002/chem.200800639
- S. Kondrat, C.R. Pérez, V. Presser, Y. Gogotsi, A.A. Kornyshev, Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy Environ. Sci. 5, 6474–6479 (2012). https://doi.org/10.1039/c2ee03092f
- D. Weingarth, M. Zeiger, N. Jäckel, M. Aslan, G. Feng, V. Presser, Graphitization as a universal tool to tailor the potential-dependent capacitance of carbon supercapacitors. Adv. Energy Mater. 4, 1400316 (2014). https://doi.org/10.1002/aenm.201400316
- R.R. Salunkhe, C. Young, J. Tang, T. Takei, Y. Ide, N. Kobayashi, Y. Yamauchi, A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chem. Commun. 52, 4764–4767 (2016). https://doi.org/10.1039/C6CC00413J
- Y. Gong, D. Li, C. Luo, Q. Fu, C. Pan, Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 19, 4132–4140 (2017). https://doi.org/10.1039/C7GC01681F
- H. Wang, Q.L. Zhu, R. Zou, Q. Xu, Metal-organic frameworks for energy applications. Chem 2, 52–80 (2017). https://doi.org/10.1016/j.chempr.2016.12.002
- R.R. Salunkhe, Y.V. Kaneti, J. Kim, J.H. Kim, Y. Yamauchi, Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc. Chem. Res. 49, 2796–2806 (2016). https://doi.org/10.1021/acs.accounts.6b00460
- D.M. Chen, J.Y. Tian, Z.W. Wang, C.S. Liu, M. Chen, M. Du, An anionic Na(I)-organic framework platform: separation of organic dyes and post-modification for highly sensitive detection of picric acid. Chem. Commun. 53, 10668–10671 (2017). https://doi.org/10.1039/C7CC06073D
- D. Shi, R. Zheng, M.J. Sun, X. Cao, C.X. Sun et al., Semiconductive copper(I)-organic frameworks for efficient light-driven hydrogen generation without additional photosensitizers and cocatalysts. Angew. Chem. Int. Ed. 56, 14637–14641 (2017). https://doi.org/10.1002/anie.201709869
- K.Y. Zou, Z.X. Li, Controllable syntheses of MOF-derived materials. Chem. Eur. J. 24, 6506–6518 (2018). https://doi.org/10.1002/chem.201705415
- S. Dang, Q.L. Zhu, Q. Xu, Nanomaterials derived from metal-organic frameworks. Nat. Rev. Mater. 3, 17075 (2017). https://doi.org/10.1038/natrevmats.2017.75
- Y.V. Kaneti, J. Tang, R.R. Salunkhe, X. Jiang, A. Yu, K.C. Wu, Y. Yamauchi, Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 29, 1604898 (2017). https://doi.org/10.1002/adma.201604898
- D. Shi, R. Zheng, C.S. Liu, D.M. Chen, J. Zhao, M. Du, Dual-functionalized mixed keggin- and lindqvist-type Cu24-based POM@MOF for visible-light-driven H2 and O2 Evolution. Inorg. Chem. 58, 7229–7235 (2019). https://doi.org/10.1021/acs.inorgchem.9b00206
- J. Tang, R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, S. Furukawa, Y. Yamauchi, Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 137, 1572–1580 (2015). https://doi.org/10.1021/ja511539a
- W. Guo, W. Xia, K. Cai, Y. Wu, B. Qiu, Z. Liang, C. Qu, R. Zou, Kinetic-controlled formation of bimetallic metal-organic framework hybrid structures. Small 13, 1702049 (2017). https://doi.org/10.1002/smll.201702049
- C.S. Liu, Z.H. Zhang, M. Chen, H. Zhao, F.H. Duan et al., Pore modulation of zirconium-organic frameworks for high-efficiency detection of trace proteins. Chem. Commun. 53, 3941–3944 (2017). https://doi.org/10.1039/C7CC00029D
- D.M. Chen, J.Y. Tian, C.S. Liu, M. Du, A bracket approach to improve the stability and gas sorption performance of a metal-organic framework via in situ incorporating the size-matching molecular building blocks. Chem. Commun. 52, 8413–8416 (2016). https://doi.org/10.1039/C6CC02359B
- G. Zou, H. Hou, C.W. Foster, C.E. Banks, T. Guo, Y. Jiang, Y. Zhang, X. Ji, Advanced hierarchical vesicular carbon Co-doped with S, P, N for high-rate sodium storage. Adv. Sci. 5, 1800241 (2018). https://doi.org/10.1002/advs.201800241
- H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 27, 7861–7866 (2015). https://doi.org/10.1002/adma.201503816
- T. Wu, C. Zhang, G. Zou, J. Hu, L. Zhu, X. Cao, H. Hou, X. Ji, The bond evolution mechanism of covalent sulfurized carbon during electrochemical sodium storage process. Sci. China Mater. 62, 1127–1138 (2019). https://doi.org/10.1007/s40843-019-9418-8
- Y. Han, P. Qi, S. Li, X. Feng, J. Zhou, H. Li, S. Su, X. Li, B. Wang, A novel anode material derived from organic-coated ZIF-8 nanocomposites with high performance in lithium ion batteries. Chem. Commun. 50, 8057–8060 (2014). https://doi.org/10.1039/C4CC02691H
- Z.X. Li, K.Y. Zou, X. Zhang, T. Han, Y. Yang, Hierarchically flower-like N-doped porous carbon materials derived from an explosive 3-fold interpenetrating diamondoid copper metal-organic framework for a supercapacitor. Inorg. Chem. 55, 6552–6562 (2016). https://doi.org/10.1021/acs.inorgchem.6b00746
- Z. Wu, Y. Wang, X. Liu, C. Lv, Y. Li, D. Wei, Z. Liu, Carbon-nanomaterial-based flexible batteries for wearable electronics. Adv. Mater. 31, 1800716 (2019). https://doi.org/10.1002/adma.201800716
- R. Wang, G. Lu, W. Qiao, J. Yu, Catalytic graphitization of coal-based carbon materials with light rare earth elements. Langmuir 32, 8583–8592 (2016). https://doi.org/10.1021/acs.langmuir.6b02000
- D. Ayillath Kutteri, I.W. Wang, A. Samanta, L. Li, J. Hu, Methane decomposition to tip and base grown carbon nanotubes and COx-free H2 over mono-and bimetallic 3d transition metal catalysts. Catal. Sci. Technol. 8, 858-869 (2018). https://doi.org/10.1039/C7CY01927K
- W. Zhang, X. Jiang, X. Wang, Y.V. Kaneti, Y. Chen et al., Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals. Angew. Chem. Int. Ed. 56, 8435–8440 (2017). https://doi.org/10.1002/anie.201701252
- P. Ge, H. Hou, X. Cao, S. Li, G. Zhao, T. Guo, C. Wang, X. Ji, Multidimensional evolution of carbon structures underpinned by temperature-induced intermediate of chloride for sodium-ion batteries. Adv. Sci. 5, 1800080 (2018). https://doi.org/10.1002/advs.201800080
- H. Hou, L. Shao, Y. Zhang, G. Zou, J. Chen, X. Ji, Large-area carbon nanosheets doped with phosphorus: a high-performance anode material for sodium-ion batteries. Adv. Sci. 4, 1600243 (2017). https://doi.org/10.1002/advs.201600243
- Z. Wu, K. Liu, C. Lv, S. Zhong, Q. Wang et al., Ultrahigh-energy density lithium-ion cable battery based on the carbon-nanotube woven macrofilm. Small 14, 1800414 (2018). https://doi.org/10.1002/smll.201800414
- H.J. Peng, G.X. Hao, Z.H. Chu, Y.L. Cui, X.M. Lin, Y.P. Cai, From metal-organic framework to porous carbon polyhedron: toward highly reversible lithium storage. Inorg. Chem. 56, 10007–10012 (2017). https://doi.org/10.1021/acs.inorgchem.7b01539
- Q. Wang, W. Xia, W. Guo, L. An, D. Xia, R. Zou, Functional zeolitic-imidazolate-framework-templated porous carbon materials for CO2 capture and enhanced capacitors. Chem. Asian J. 8, 1879–1885 (2013). https://doi.org/10.1002/asia.201300147
- M. Ding, W. Shi, L. Guo, Z.Y. Leong, A. Baji, H.Y. Yang, Bimetallic metal-organic framework derived porous carbon nanostructures for high performance membrane capacitive desalination. J. Mater. Chem. A 5, 6113–6121 (2017). https://doi.org/10.1039/C7TA00339K
- H. Peng, B. Yao, X. Wei, T. Liu, T. Kou, P. Xiao, Y. Zhang, Y. Li, Pore and heteroatom engineered carbon foams for supercapacitors. Adv. Energy Mater. 9, 1803665 (2019). https://doi.org/10.1002/aenm.201803665
- M. Wang, B. Liu, H. Chen, D. Yang, H. Li, N/O codoped porous carbons with layered structure for high-rate performance supercapacitors. ACS Sustain. Chem. Eng. 7, 11219–11227 (2019). https://doi.org/10.1021/acssuschemeng.9b00541
- J. Li, H. Wei, Y. Peng, L. Geng, L. Zhu et al., A multifunctional self-healing G-PyB/KCl hydrogel: smart conductive, rapid room-temperature phase-selective gelation, and ultrasensitive detection of alpha-fetoprotein. Chem. Commun. 55, 7922–7925 (2019). https://doi.org/10.1039/C9CC02770J
- N. Jäckel, P. Simon, Y. Gogotsi, V. Presser, Increase in capacitance by subnanometer pores in carbon. ACS Energy Lett. 1, 1262–1265 (2016). https://doi.org/10.1021/acsenergylett.6b00516
- K.Y. Zou, Y.C. Liu, Y.F. Jiang, C.Y. Yu, M.L. Yue, Z.X. Li, Benzoate acid-dependent lattice dimension of Co-MOFs and MOF-derived CoS2@CNTs with tunable pore diameters for supercapacitors. Inorg. Chem. 56, 6184–6196 (2017). https://doi.org/10.1021/acs.inorgchem.7b00200
- R. Wang, D. Jin, Y. Zhang, S. Wang, J. Lang, X. Yan, L. Zhang, Engineering metal organic framework derived 3D nanostructures for high performance hybrid supercapacitors. J. Mater. Chem. A 5, 292–302 (2017). https://doi.org/10.1039/C6TA09143A
- H. Ma, H. Geng, B. Yao, M. Wu, C. Li, M. Zhang, F. Chi, L. Qu, Highly ordered graphene solid: an efficient platform for capacitive sodium-ion storage with ultrahigh volumetric capacity and superior rate capability. ACS Nano 13, 9161–9170 (2019). https://doi.org/10.1021/acsnano.9b03492
- S. Yang, S. Wang, X. Liu, L. Li, Biomass derived interconnected hierarchical micro-meso-macro-porous carbon with ultrahigh capacitance for supercapacitors. Carbon 147, 540–549 (2019). https://doi.org/10.1016/j.carbon.2019.03.023
- C. Chang, M. Li, H. Wang, S. Wang, X. Liu, H. Liu, L. Li, A novel fabrication strategy for doped hierarchical porous biomass-derived carbon with high microporosity for ultrahigh-capacitance supercapacitors. J. Mater. Chem. A 7, 19939–19949 (2019). https://doi.org/10.1039/C9TA06210F
- J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007). https://doi.org/10.1021/jp074464w
- S. Li, J. Chen, X. Gong, J. Wang, P.S. Lee, Holey graphene-wrapped porous TiNb24O62 microparticles as high-performance intercalation pseudocapacitive anode materials for lithium-ion capacitors. NPG Asia Mater. 10, 406–416 (2018). https://doi.org/10.1038/s41427-018-0042-5
- P. Zhang, X. Zhao, Z. Liu, F. Wang, Y. Huang et al., Exposed high-energy facets in ultradispersed sub-10 nm SnO2 nanocrystals anchored on graphene for pseudocapacitive sodium storage and high-performance quasi-solid-state sodium-ion capacitors. NPG Asia Mater. 10, 429–440 (2018). https://doi.org/10.1038/s41427-018-0049-y
- S. Miyoshi, T. Akbay, T. Kurihara, T. Fukuda, A.T. Staykov, S. Ida, T. Ishihara, Fast diffusivity of PF6− anions in graphitic carbon for a dual-carbon rechargeable battery with superior rate property. J. Phys. Chem. C 120, 22887–22894 (2016). https://doi.org/10.1021/acs.jpcc.6b07957
- P. Ge, S. Li, L. Xu, K. Zou, X. Gao et al., Hierarchical hollow-microsphere metal-selenide@carbon composites with rational surface engineering for advanced sodium storage. Adv. Energy Mater. 9, 1803035 (2019). https://doi.org/10.1002/aenm.201803035
- T. Thomberg, R. Väli, J. Eskusson, T. Romann, A. Jänes, Potassium salts based non-aqueous electrolytes for electrical double layer capacitors: a comparison with LiPF6 and NaPF6 cased electrolytes. J. Electrochem. Soc. 165, A3862–A3870 (2018). https://doi.org/10.1149/2.0661816jes
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- K. Tasaki, A. Goldberg, J.J. Liang, M. Winter, New insight into differences in cycling behaviors of a lithium-ion battery cell between the ethylene carbonate- and propylene carbonate-based electrolytes. ECS Trans. 33, 9–69 (2011). https://doi.org/10.1149/1.3563090
- B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990). https://doi.org/10.1063/1.458452
- A. Karatrantos, Q. Cai, Effects of pore size and surface charge on Na ion storage in carbon nanopores. Phys. Chem. Chem. Phys. 18, 30761–30769 (2016). https://doi.org/10.1039/C6CP04611H
- B. Yang, J. Chen, S. Lei, R. Guo, H. Li, S. Shi, X. Yan, Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors. Adv. Energy Mater. 8, 1702409 (2018). https://doi.org/10.1002/aenm.201702409
- J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov, X. Tan, A. Kohandehghan, D. Mitlin, Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy Environ. Sci. 8, 941–955 (2015). https://doi.org/10.1039/C4EE02986K
- S. Li, J. Chen, X. Gong, J. Wang, P.S. Lee, A nonpresodiate sodium-ion capacitor with high performance. Small 14, 1804035 (2018). https://doi.org/10.1002/smll.201804035
- X. Zhang, C. Lu, H. Peng, X. Wang, Y. Zhang, Z. Wang, Y. Zhong, G. Wang, Influence of sintering temperature and graphene additives on the electrochemical performance of porous Li4Ti5O12 anode for lithium ion capacitor. Electrochim. Acta 246, 1237–1247 (2017). https://doi.org/10.1016/j.electacta.2017.07.014
- L.F. Que, F.D. Yu, Z.B. Wang, D.M. Gu, Pseudocapacitance of TiO2-x/CNT anodes for high-performance quasi-solid-state Li-Ion and Na-Ion capacitors. Small 14, 1704508 (2018). https://doi.org/10.1002/smll.201704508
- E. Lim, C. Jo, H. Kim, M.H. Kim, Y. Mun et al., Facile synthesis of Nb2O5@carbon core-shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors. ACS Nano 9, 7497–7505 (2015). https://doi.org/10.1021/acsnano.5b02601
- Y.K. Wang, W.B. Zhang, Y. Zhao, K. Li, L.B. Kong, Coprecipitation reaction system synthesis and lithium-ion capacitor energy storage application of the porous structural bimetallic sulfide CoMoS4 nanoparticles. ACS Omega 3, 8803–8812 (2018). https://doi.org/10.1021/acsomega.8b01408
- H.J. Zhang, Y.K. Wang, L.B. Kong, A facile strategy for the synthesis of three-dimensional heterostructure self-assembled MoSe2 nanosheets and their application as an anode for high-energy lithium-ion hybrid capacitors. Nanoscale 11, 7263–7276 (2019). https://doi.org/10.1039/C9NR00164F
- R. Shi, C. Han, H. Li, L. Xu, T. Zhang et al., NaCl-templated synthesis of hierarchical porous carbon with extremely large specific surface area and improved graphitization degree for high energy density lithium ion capacitors. J. Mater. Chem. A 6, 17057–17066 (2018). https://doi.org/10.1039/C8TA05853A
- C. Han, J. Tong, X. Tang, D. Zhou, H. Duan, B. Li, G. Wang, Boost anion storage capacity using conductive polymer as a pseudocapacitive cathode for high-energy and flexible lithium ion capacitors. ACS Appl. Mater. Interfaces. 12, 10479–10489 (2020). https://doi.org/10.1021/acsami.9b22081
References
J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 118, 6457–6498 (2018). https://doi.org/10.1021/acs.chemrev.8b00116
H. Wang, C. Zhu, D. Chao, Q. Yan, H.J. Fan, Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 29, 1702093 (2017). https://doi.org/10.1002/adma.201702093
P. Cai, K. Zou, G. Zou, H. Hou, X. Ji, Quinone/ester-based oxygen functional group-incorporated full carbon Li-ion capacitor for enhanced performance. Nanoscale 12, 3677–3685 (2020). https://doi.org/10.1039/c9nr10339b
L. Zhao, S. Wang, F. Pan, Z. Tang, Z. Zhang, S. Zhong, J. Zhang, Thermal convection induced TiO2 microclews as superior electrode materials for lithium-ion batteries. J. Mater. Chem. A 6, 11688–11693 (2018). https://doi.org/10.1039/C8TA03616K
B. Li, J. Zheng, H. Zhang, L. Jin, D. Yang et al., Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv. Mater. 30, 1705670 (2018). https://doi.org/10.1002/adma.201705670
D. Cao, C. Yin, D. Shi, Z. Fu, J. Zhang, C. Li, Cubic perovskite fluoride as open framework cathode for Na-ion batteries. Adv. Funct. Mater. 27, 1701130 (2017). https://doi.org/10.1002/adfm.201701130
Y. Han, J. Hu, C. Yin, Y. Zhang, J. Xie, D. Yin, C. Li, Iron-based fluorides of tetragonal tungsten bronze structure as potential cathodes for Na-ion batteries. J. Mater. Chem. A 4, 7382–7389 (2016). https://doi.org/10.1039/C6TA02061E
Y. Luan, R. Hu, Y. Fang, K. Zhu, K. Cheng et al., Nitrogen and phosphorus dual-doped multilayer graphene as universal anode for full carbon-based lithium and potassium ion capacitors. Nano-Micro Lett. 11, 30 (2019). https://doi.org/10.1007/s40820-019-0260-6
X. Wang, L. Liu, Z. Niu, Carbon-based materials for lithium-ion capacitors. Mater. Chem. Front. 3, 1265–1279 (2019). https://doi.org/10.1039/C9QM00062C
J. Huang, B. Zhao, T. Liu, J. Mou, Z. Jiang, J. Liu, H. Li, M. Liu, Wood-derived materials for advanced electrochemical energy storage devices. Adv. Funct. Mater. 29, 1902255 (2019). https://doi.org/10.1002/adfm.201902255
C. Li, X. Zhang, K. Wang, X. Sun, Y. Ma, High-power and long-life lithium-ion capacitors constructed from N-doped hierarchical carbon nanolayer cathode and mesoporous graphene anode. Carbon 140, 237–248 (2018). https://doi.org/10.1016/j.carbon.2018.08.044
Y. Ma, H. Chang, M. Zhang, Y. Chen, Graphene-based materials for lithium-ion hybrid supercapacitors. Adv. Mater. 27, 5296–5308 (2015). https://doi.org/10.1002/adma.201501622
P. Han, G. Xu, X. Han, J. Zhao, X. Zhou, G. Cui, Lithium ion capacitors in organic electrolyte system: scientific problems, material development, and key technologies. Adv. Energy Mater. 8, 1801243 (2018). https://doi.org/10.1002/aenm.201801243
D. Han, Z. Weng, P. Li, Y. Tao, C. Cui et al., Electrode thickness matching for achieving high-volumetric-performance lithium-ion capacitors. Energy Storage Mater. 18, 133–138 (2019). https://doi.org/10.1016/j.ensm.2019.01.020
C. Liu, B.B. Koyyalamudi, L. Li, S. Emani, C. Wang, L.L. Shaw, Improved capacitive energy storage via surface functionalization of activated carbon as cathodes for lithium ion capacitors. Carbon 109, 163–172 (2016). https://doi.org/10.1016/j.carbon.2016.07.071
K. Zou, P. Cai, C. Liu, J. Li, X. Gao et al., A kinetically well-matched full-carbon sodium-ion capacitor. J. Mater. Chem. A 7, 13540–13549 (2019). https://doi.org/10.1039/C9TA03797G
J. Zhang, W. Lv, D. Zheng, Q. Liang, D.W. Wang, F. Kang, Q.H. Yang, The interplay of oxygen functional groups and folded texture in densified graphene electrodes for compact sodium-ion capacitors. Adv. Energy Mater. 8, 1702395 (2018). https://doi.org/10.1002/aenm.201702395
Q. Xia, H. Yang, M. Wang, M. Yang, Q. Guo, L. Wan, H. Xia, Y. Yu, High energy and high power lithium-ion capacitors based on boron and nitrogen dual-doped 3D carbon nanofibers as both cathode and anode. Adv. Energy Mater. 7, 1701336 (2017). https://doi.org/10.1002/aenm.201701336
P. Simon, Y. Gogotsi, Capacitive energy storage in nanostructured carbon electrolyte systems. Acc. Chem. Res. 46, 1094–1103 (2013). https://doi.org/10.1021/ar200306b
Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925–5950 (2016). https://doi.org/10.1039/C5CS00580A
J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006). https://doi.org/10.1126/science.1132195
C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi, P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130, 2730–2731 (2008). https://doi.org/10.1021/ja7106178
J. Huang, B.G. Sumpter, V. Meunier, A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chem. Eur. J. 14, 6614–6626 (2008). https://doi.org/10.1002/chem.200800639
S. Kondrat, C.R. Pérez, V. Presser, Y. Gogotsi, A.A. Kornyshev, Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy Environ. Sci. 5, 6474–6479 (2012). https://doi.org/10.1039/c2ee03092f
D. Weingarth, M. Zeiger, N. Jäckel, M. Aslan, G. Feng, V. Presser, Graphitization as a universal tool to tailor the potential-dependent capacitance of carbon supercapacitors. Adv. Energy Mater. 4, 1400316 (2014). https://doi.org/10.1002/aenm.201400316
R.R. Salunkhe, C. Young, J. Tang, T. Takei, Y. Ide, N. Kobayashi, Y. Yamauchi, A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chem. Commun. 52, 4764–4767 (2016). https://doi.org/10.1039/C6CC00413J
Y. Gong, D. Li, C. Luo, Q. Fu, C. Pan, Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 19, 4132–4140 (2017). https://doi.org/10.1039/C7GC01681F
H. Wang, Q.L. Zhu, R. Zou, Q. Xu, Metal-organic frameworks for energy applications. Chem 2, 52–80 (2017). https://doi.org/10.1016/j.chempr.2016.12.002
R.R. Salunkhe, Y.V. Kaneti, J. Kim, J.H. Kim, Y. Yamauchi, Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc. Chem. Res. 49, 2796–2806 (2016). https://doi.org/10.1021/acs.accounts.6b00460
D.M. Chen, J.Y. Tian, Z.W. Wang, C.S. Liu, M. Chen, M. Du, An anionic Na(I)-organic framework platform: separation of organic dyes and post-modification for highly sensitive detection of picric acid. Chem. Commun. 53, 10668–10671 (2017). https://doi.org/10.1039/C7CC06073D
D. Shi, R. Zheng, M.J. Sun, X. Cao, C.X. Sun et al., Semiconductive copper(I)-organic frameworks for efficient light-driven hydrogen generation without additional photosensitizers and cocatalysts. Angew. Chem. Int. Ed. 56, 14637–14641 (2017). https://doi.org/10.1002/anie.201709869
K.Y. Zou, Z.X. Li, Controllable syntheses of MOF-derived materials. Chem. Eur. J. 24, 6506–6518 (2018). https://doi.org/10.1002/chem.201705415
S. Dang, Q.L. Zhu, Q. Xu, Nanomaterials derived from metal-organic frameworks. Nat. Rev. Mater. 3, 17075 (2017). https://doi.org/10.1038/natrevmats.2017.75
Y.V. Kaneti, J. Tang, R.R. Salunkhe, X. Jiang, A. Yu, K.C. Wu, Y. Yamauchi, Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 29, 1604898 (2017). https://doi.org/10.1002/adma.201604898
D. Shi, R. Zheng, C.S. Liu, D.M. Chen, J. Zhao, M. Du, Dual-functionalized mixed keggin- and lindqvist-type Cu24-based POM@MOF for visible-light-driven H2 and O2 Evolution. Inorg. Chem. 58, 7229–7235 (2019). https://doi.org/10.1021/acs.inorgchem.9b00206
J. Tang, R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, S. Furukawa, Y. Yamauchi, Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 137, 1572–1580 (2015). https://doi.org/10.1021/ja511539a
W. Guo, W. Xia, K. Cai, Y. Wu, B. Qiu, Z. Liang, C. Qu, R. Zou, Kinetic-controlled formation of bimetallic metal-organic framework hybrid structures. Small 13, 1702049 (2017). https://doi.org/10.1002/smll.201702049
C.S. Liu, Z.H. Zhang, M. Chen, H. Zhao, F.H. Duan et al., Pore modulation of zirconium-organic frameworks for high-efficiency detection of trace proteins. Chem. Commun. 53, 3941–3944 (2017). https://doi.org/10.1039/C7CC00029D
D.M. Chen, J.Y. Tian, C.S. Liu, M. Du, A bracket approach to improve the stability and gas sorption performance of a metal-organic framework via in situ incorporating the size-matching molecular building blocks. Chem. Commun. 52, 8413–8416 (2016). https://doi.org/10.1039/C6CC02359B
G. Zou, H. Hou, C.W. Foster, C.E. Banks, T. Guo, Y. Jiang, Y. Zhang, X. Ji, Advanced hierarchical vesicular carbon Co-doped with S, P, N for high-rate sodium storage. Adv. Sci. 5, 1800241 (2018). https://doi.org/10.1002/advs.201800241
H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 27, 7861–7866 (2015). https://doi.org/10.1002/adma.201503816
T. Wu, C. Zhang, G. Zou, J. Hu, L. Zhu, X. Cao, H. Hou, X. Ji, The bond evolution mechanism of covalent sulfurized carbon during electrochemical sodium storage process. Sci. China Mater. 62, 1127–1138 (2019). https://doi.org/10.1007/s40843-019-9418-8
Y. Han, P. Qi, S. Li, X. Feng, J. Zhou, H. Li, S. Su, X. Li, B. Wang, A novel anode material derived from organic-coated ZIF-8 nanocomposites with high performance in lithium ion batteries. Chem. Commun. 50, 8057–8060 (2014). https://doi.org/10.1039/C4CC02691H
Z.X. Li, K.Y. Zou, X. Zhang, T. Han, Y. Yang, Hierarchically flower-like N-doped porous carbon materials derived from an explosive 3-fold interpenetrating diamondoid copper metal-organic framework for a supercapacitor. Inorg. Chem. 55, 6552–6562 (2016). https://doi.org/10.1021/acs.inorgchem.6b00746
Z. Wu, Y. Wang, X. Liu, C. Lv, Y. Li, D. Wei, Z. Liu, Carbon-nanomaterial-based flexible batteries for wearable electronics. Adv. Mater. 31, 1800716 (2019). https://doi.org/10.1002/adma.201800716
R. Wang, G. Lu, W. Qiao, J. Yu, Catalytic graphitization of coal-based carbon materials with light rare earth elements. Langmuir 32, 8583–8592 (2016). https://doi.org/10.1021/acs.langmuir.6b02000
D. Ayillath Kutteri, I.W. Wang, A. Samanta, L. Li, J. Hu, Methane decomposition to tip and base grown carbon nanotubes and COx-free H2 over mono-and bimetallic 3d transition metal catalysts. Catal. Sci. Technol. 8, 858-869 (2018). https://doi.org/10.1039/C7CY01927K
W. Zhang, X. Jiang, X. Wang, Y.V. Kaneti, Y. Chen et al., Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals. Angew. Chem. Int. Ed. 56, 8435–8440 (2017). https://doi.org/10.1002/anie.201701252
P. Ge, H. Hou, X. Cao, S. Li, G. Zhao, T. Guo, C. Wang, X. Ji, Multidimensional evolution of carbon structures underpinned by temperature-induced intermediate of chloride for sodium-ion batteries. Adv. Sci. 5, 1800080 (2018). https://doi.org/10.1002/advs.201800080
H. Hou, L. Shao, Y. Zhang, G. Zou, J. Chen, X. Ji, Large-area carbon nanosheets doped with phosphorus: a high-performance anode material for sodium-ion batteries. Adv. Sci. 4, 1600243 (2017). https://doi.org/10.1002/advs.201600243
Z. Wu, K. Liu, C. Lv, S. Zhong, Q. Wang et al., Ultrahigh-energy density lithium-ion cable battery based on the carbon-nanotube woven macrofilm. Small 14, 1800414 (2018). https://doi.org/10.1002/smll.201800414
H.J. Peng, G.X. Hao, Z.H. Chu, Y.L. Cui, X.M. Lin, Y.P. Cai, From metal-organic framework to porous carbon polyhedron: toward highly reversible lithium storage. Inorg. Chem. 56, 10007–10012 (2017). https://doi.org/10.1021/acs.inorgchem.7b01539
Q. Wang, W. Xia, W. Guo, L. An, D. Xia, R. Zou, Functional zeolitic-imidazolate-framework-templated porous carbon materials for CO2 capture and enhanced capacitors. Chem. Asian J. 8, 1879–1885 (2013). https://doi.org/10.1002/asia.201300147
M. Ding, W. Shi, L. Guo, Z.Y. Leong, A. Baji, H.Y. Yang, Bimetallic metal-organic framework derived porous carbon nanostructures for high performance membrane capacitive desalination. J. Mater. Chem. A 5, 6113–6121 (2017). https://doi.org/10.1039/C7TA00339K
H. Peng, B. Yao, X. Wei, T. Liu, T. Kou, P. Xiao, Y. Zhang, Y. Li, Pore and heteroatom engineered carbon foams for supercapacitors. Adv. Energy Mater. 9, 1803665 (2019). https://doi.org/10.1002/aenm.201803665
M. Wang, B. Liu, H. Chen, D. Yang, H. Li, N/O codoped porous carbons with layered structure for high-rate performance supercapacitors. ACS Sustain. Chem. Eng. 7, 11219–11227 (2019). https://doi.org/10.1021/acssuschemeng.9b00541
J. Li, H. Wei, Y. Peng, L. Geng, L. Zhu et al., A multifunctional self-healing G-PyB/KCl hydrogel: smart conductive, rapid room-temperature phase-selective gelation, and ultrasensitive detection of alpha-fetoprotein. Chem. Commun. 55, 7922–7925 (2019). https://doi.org/10.1039/C9CC02770J
N. Jäckel, P. Simon, Y. Gogotsi, V. Presser, Increase in capacitance by subnanometer pores in carbon. ACS Energy Lett. 1, 1262–1265 (2016). https://doi.org/10.1021/acsenergylett.6b00516
K.Y. Zou, Y.C. Liu, Y.F. Jiang, C.Y. Yu, M.L. Yue, Z.X. Li, Benzoate acid-dependent lattice dimension of Co-MOFs and MOF-derived CoS2@CNTs with tunable pore diameters for supercapacitors. Inorg. Chem. 56, 6184–6196 (2017). https://doi.org/10.1021/acs.inorgchem.7b00200
R. Wang, D. Jin, Y. Zhang, S. Wang, J. Lang, X. Yan, L. Zhang, Engineering metal organic framework derived 3D nanostructures for high performance hybrid supercapacitors. J. Mater. Chem. A 5, 292–302 (2017). https://doi.org/10.1039/C6TA09143A
H. Ma, H. Geng, B. Yao, M. Wu, C. Li, M. Zhang, F. Chi, L. Qu, Highly ordered graphene solid: an efficient platform for capacitive sodium-ion storage with ultrahigh volumetric capacity and superior rate capability. ACS Nano 13, 9161–9170 (2019). https://doi.org/10.1021/acsnano.9b03492
S. Yang, S. Wang, X. Liu, L. Li, Biomass derived interconnected hierarchical micro-meso-macro-porous carbon with ultrahigh capacitance for supercapacitors. Carbon 147, 540–549 (2019). https://doi.org/10.1016/j.carbon.2019.03.023
C. Chang, M. Li, H. Wang, S. Wang, X. Liu, H. Liu, L. Li, A novel fabrication strategy for doped hierarchical porous biomass-derived carbon with high microporosity for ultrahigh-capacitance supercapacitors. J. Mater. Chem. A 7, 19939–19949 (2019). https://doi.org/10.1039/C9TA06210F
J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007). https://doi.org/10.1021/jp074464w
S. Li, J. Chen, X. Gong, J. Wang, P.S. Lee, Holey graphene-wrapped porous TiNb24O62 microparticles as high-performance intercalation pseudocapacitive anode materials for lithium-ion capacitors. NPG Asia Mater. 10, 406–416 (2018). https://doi.org/10.1038/s41427-018-0042-5
P. Zhang, X. Zhao, Z. Liu, F. Wang, Y. Huang et al., Exposed high-energy facets in ultradispersed sub-10 nm SnO2 nanocrystals anchored on graphene for pseudocapacitive sodium storage and high-performance quasi-solid-state sodium-ion capacitors. NPG Asia Mater. 10, 429–440 (2018). https://doi.org/10.1038/s41427-018-0049-y
S. Miyoshi, T. Akbay, T. Kurihara, T. Fukuda, A.T. Staykov, S. Ida, T. Ishihara, Fast diffusivity of PF6− anions in graphitic carbon for a dual-carbon rechargeable battery with superior rate property. J. Phys. Chem. C 120, 22887–22894 (2016). https://doi.org/10.1021/acs.jpcc.6b07957
P. Ge, S. Li, L. Xu, K. Zou, X. Gao et al., Hierarchical hollow-microsphere metal-selenide@carbon composites with rational surface engineering for advanced sodium storage. Adv. Energy Mater. 9, 1803035 (2019). https://doi.org/10.1002/aenm.201803035
T. Thomberg, R. Väli, J. Eskusson, T. Romann, A. Jänes, Potassium salts based non-aqueous electrolytes for electrical double layer capacitors: a comparison with LiPF6 and NaPF6 cased electrolytes. J. Electrochem. Soc. 165, A3862–A3870 (2018). https://doi.org/10.1149/2.0661816jes
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
K. Tasaki, A. Goldberg, J.J. Liang, M. Winter, New insight into differences in cycling behaviors of a lithium-ion battery cell between the ethylene carbonate- and propylene carbonate-based electrolytes. ECS Trans. 33, 9–69 (2011). https://doi.org/10.1149/1.3563090
B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990). https://doi.org/10.1063/1.458452
A. Karatrantos, Q. Cai, Effects of pore size and surface charge on Na ion storage in carbon nanopores. Phys. Chem. Chem. Phys. 18, 30761–30769 (2016). https://doi.org/10.1039/C6CP04611H
B. Yang, J. Chen, S. Lei, R. Guo, H. Li, S. Shi, X. Yan, Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors. Adv. Energy Mater. 8, 1702409 (2018). https://doi.org/10.1002/aenm.201702409
J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov, X. Tan, A. Kohandehghan, D. Mitlin, Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy Environ. Sci. 8, 941–955 (2015). https://doi.org/10.1039/C4EE02986K
S. Li, J. Chen, X. Gong, J. Wang, P.S. Lee, A nonpresodiate sodium-ion capacitor with high performance. Small 14, 1804035 (2018). https://doi.org/10.1002/smll.201804035
X. Zhang, C. Lu, H. Peng, X. Wang, Y. Zhang, Z. Wang, Y. Zhong, G. Wang, Influence of sintering temperature and graphene additives on the electrochemical performance of porous Li4Ti5O12 anode for lithium ion capacitor. Electrochim. Acta 246, 1237–1247 (2017). https://doi.org/10.1016/j.electacta.2017.07.014
L.F. Que, F.D. Yu, Z.B. Wang, D.M. Gu, Pseudocapacitance of TiO2-x/CNT anodes for high-performance quasi-solid-state Li-Ion and Na-Ion capacitors. Small 14, 1704508 (2018). https://doi.org/10.1002/smll.201704508
E. Lim, C. Jo, H. Kim, M.H. Kim, Y. Mun et al., Facile synthesis of Nb2O5@carbon core-shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors. ACS Nano 9, 7497–7505 (2015). https://doi.org/10.1021/acsnano.5b02601
Y.K. Wang, W.B. Zhang, Y. Zhao, K. Li, L.B. Kong, Coprecipitation reaction system synthesis and lithium-ion capacitor energy storage application of the porous structural bimetallic sulfide CoMoS4 nanoparticles. ACS Omega 3, 8803–8812 (2018). https://doi.org/10.1021/acsomega.8b01408
H.J. Zhang, Y.K. Wang, L.B. Kong, A facile strategy for the synthesis of three-dimensional heterostructure self-assembled MoSe2 nanosheets and their application as an anode for high-energy lithium-ion hybrid capacitors. Nanoscale 11, 7263–7276 (2019). https://doi.org/10.1039/C9NR00164F
R. Shi, C. Han, H. Li, L. Xu, T. Zhang et al., NaCl-templated synthesis of hierarchical porous carbon with extremely large specific surface area and improved graphitization degree for high energy density lithium ion capacitors. J. Mater. Chem. A 6, 17057–17066 (2018). https://doi.org/10.1039/C8TA05853A
C. Han, J. Tong, X. Tang, D. Zhou, H. Duan, B. Li, G. Wang, Boost anion storage capacity using conductive polymer as a pseudocapacitive cathode for high-energy and flexible lithium ion capacitors. ACS Appl. Mater. Interfaces. 12, 10479–10489 (2020). https://doi.org/10.1021/acsami.9b22081