Tunable Platform Capacity of Metal–Organic Frameworks via High-Entropy Strategy for Ultra-Fast Sodium Storage
Corresponding Author: Guoqiang Zou
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 201
Abstract
Precise regulation of the platform capacity/voltage of electrode materials contributes to the efficient operation of sodium-ion fast-charging devices. However, the design of such electrode materials is still in a blank stage. Herein, based on tunable metal–organic frameworks, we have designed a novel material system—two-dimensional high-entropy metal–organic frameworks (HE-MOFs), which exhibits unique properties in sodium storage and is of vital importance for realizing fast-charging batteries. Furthermore, we have found that the high-entropy effect can regulate the electronic structure, the sodium-ion migration environment, and the sodium-ion storage active sites, thereby meeting the requirements of electrode materials for sodium-ion fast-charging devices. Impressively, the HE-MOFs material still maintains a reversible specific capacity of 89 mAh g−1 at a current density of 20 A g−1. It presents an ideal sodium storage voltage plateau of approximately 0.5 V, and its platform capacity is increased to 122.7 mAh g−1, far superior to that of Mn-MOFs (with no platform capacity). This helps to reduce safety hazards during the fast-charging process and demonstrates its great application value in the fields of fast-charging sodium-ion batteries and capacitors. Our research findings have broken the barriers to the application of non-conductive MOFs as energy storage materials, enhanced the understanding of the regulation of platform capacity and voltage, and paved the way for the realization of high-security sodium-ion fast-charging devices.
Highlights:
1 A novel high-entropy metal–organic frameworks (HE-MOFs) electrode for fast sodium-ion storage devices has been realized by introducing five metallic elements.
2 The platform capacity/voltage of the electrode materials are precisely regulated by the adjustable metal species/content of HE-MOFs.
3 The sodium-ion capacitors assembled based on high-entropy MOFs electrode exhibit high-power density (20,000 W kg-1) and high-energy density (99.4 Wh kg-1).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014). https://doi.org/10.1126/science.1249625
- C. Gervillié-Mouravieff, C. Boussard-Plédel, J. Huang, C. Leau, L.A. Blanquer et al., Unlocking cell chemistry evolution with operando fibre optic infrared spectroscopy in commercial Na(Li)-ion batteries. Nat. Energy 7(12), 1157–1169 (2022). https://doi.org/10.1038/s41560-022-01141-3
- M.A. Deshmukh, A. Bakandritsos, R. Zbořil, Bimetallic single-atom catalysts for water splitting. Nano-Micro Lett. 17(1), 1 (2024). https://doi.org/10.1007/s40820-024-01505-2
- Y. Wu, J. Chen, J. Liu, L. Zhang, R. Abazari et al., Iron phthalocyanine coupled with Co-Nx sites in carbon nanostraws for Zn-air batteries. Chem. Eng. J. 503, 158343 (2025). https://doi.org/10.1016/j.cej.2024.158343
- H. Liu, Z. Zhu, Q. Yan, S. Yu, X. He et al., A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 585(7823), 63–67 (2020). https://doi.org/10.1038/s41586-020-2637-6
- D. Luo, H. Zhu, Y. Xia, Z. Yin, Y. Qin et al., A Li-rich layered oxide cathode with negligible voltage decay. Nat. Energy 8(10), 1078–1087 (2023). https://doi.org/10.1038/s41560-023-01289-6
- P. Jing, M. Liu, H.-P. Ho, Y. Ma, W. Hua et al., Tailoring the Wadsley-Roth crystallographic shear structures for high-power lithium-ion batteries. Energy Environ. Sci. 17(18), 6571–6581 (2024). https://doi.org/10.1039/d4ee02293a
- Y. Li, F. Wu, Y. Li, M. Liu, X. Feng et al., Ether-based electrolytes for sodium ion batteries. Chem. Soc. Rev. 51(11), 4484–4536 (2022). https://doi.org/10.1039/d1cs00948f
- J.L. Pimlott, R.J. Street, M.P. Down, C.E. Banks, Electrochemical overview: a summary of ACoxMnyNizO2 and metal oxides as versatile cathode materials for metal-ion batteries. Adv. Funct. Mater. 31(51), 2107761 (2021). https://doi.org/10.1002/adfm.202107761
- C. Li, Q. Yang, M. Shen, J. Ma, B. Hu, The electrochemical Na intercalation/extraction mechanism of ultrathin cobalt(II) terephthalate-based MOF nanosheets revealed by synchrotron X-ray absorption spectroscopy. Energy Storage Mater. 14, 82–89 (2018). https://doi.org/10.1016/j.ensm.2018.02.021
- Y. Ma, Y. Ma, S.L. Dreyer, Q. Wang, K. Wang et al., High-entropy metal-organic frameworks for highly reversible sodium storage. Adv. Mater. 33(34), e2101342 (2021). https://doi.org/10.1002/adma.202101342
- A. Rudola, C.J. Wright, J. Barker, Communication: surprisingly high fast charge volumetric capacities of hard carbon electrodes in sodium-ion batteries. J. Electrochem. Soc. 168(11), 110534 (2021). https://doi.org/10.1149/1945-7111/ac377a
- Y. Li, A. Vasileiadis, Q. Zhou, Y. Lu, Q. Meng et al., Origin of fast charging in hard carbon anodes. Nat. Energy 9, 134–142 (2024). https://doi.org/10.1038/s41560-023-01414-5
- Q. Li, W. Zhang, O.Š Miljanić, C.-H. Sue, Y.-L. Zhao et al., Docking in metal-organic frameworks. Science 325(5942), 855–859 (2009). https://doi.org/10.1126/science.1175441
- H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341(6149), 1230444 (2013). https://doi.org/10.1126/science.1230444
- J.E. Zhou, R.C.K. Reddy, A. Zhong, Y. Li, Q. Huang et al., Metal–organic framework-based materials for advanced sodium storage: development and anticipation. Adv. Mater. 36(16), 2312471 (2024). https://doi.org/10.1002/adma.202312471
- D. Sheberla, J.C. Bachman, J.S. Elias, C.-J. Sun, Y. Shao-Horn et al., Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16(2), 220–224 (2017). https://doi.org/10.1038/nmat4766
- J. Park, M. Lee, D. Feng, Z. Huang, A.C. Hinckley et al., Stabilization of hexaaminobenzene in a 2D conductive metal-organic framework for high power sodium storage. J. Am. Chem. Soc. 140(32), 10315–10323 (2018). https://doi.org/10.1021/jacs.8b06020
- J.M. Wrogemann, M.J. Lüther, P. Bärmann, M. Lounasvuori, A. Javed et al., Overcoming diffusion limitation of faradaic processes: property-performance relationships of 2D conductive metal-organic framework Cu3(HHTP)2 for reversible lithium-ion storage. Angew. Chem. Int. Ed. 62(26), e202303111 (2023). https://doi.org/10.1002/anie.202303111
- J. Liu, Y. Chen, X. Huang, Y. Ren, M. Hambsch et al., On-liquid-gallium surface synthesis of ultrasmooth thin films of conductive metal–organic frameworks. Nat. Synth. 3(6), 715–726 (2024). https://doi.org/10.1038/s44160-024-00513-9
- H.T.B. Pham, J.Y. Choi, S. Huang, X. Wang, A. Claman et al., Imparting functionality and enhanced surface area to a 2D electrically conductive MOF via macrocyclic linker. J. Am. Chem. Soc. 144(23), 10615–10621 (2022). https://doi.org/10.1021/jacs.2c03793
- R. Abazari, S. Sanati, W.K. Fan, M. Tahir, S. Nayak et al., Design and engineering of MOF/LDH hybrid nanocomposites and LDHs derived from MOF templates for electrochemical energy conversion/storage and environmental remediation: Mechanism and future perspectives. Coord. Chem. Rev. 523, 216256 (2025). https://doi.org/10.1016/j.ccr.2024.216256
- S. Dang, Q.-L. Zhu, Q. Xu, Nanomaterials derived from metal–organic frameworks. Nat. Rev. Mater. 3, 17075 (2018). https://doi.org/10.1038/natrevmats.2017.75
- B. He, Q. Zhang, Z. Pan, L. Li, C. Li et al., Freestanding metal-organic frameworks and their derivatives: an emerging platform for electrochemical energy storage and conversion. Chem. Rev. 122(11), 10087–10125 (2022). https://doi.org/10.1021/acs.chemrev.1c00978
- K. Jayaramulu, S. Mukherjee, D.M. Morales, D.P. Dubal, A.K. Nanjundan et al., Graphene-based metal-organic framework hybrids for applications in catalysis, environmental, and energy technologies. Chem. Rev. 122(24), 17241–17338 (2022). https://doi.org/10.1021/acs.chemrev.2c00270
- M. Du, P. Geng, C. Pei, X. Jiang, Y. Shan et al., High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 61(41), e202209350 (2022). https://doi.org/10.1002/anie.202209350
- S. Schweidler, M. Botros, F. Strauss, Q. Wang, Y. Ma et al., High-entropy materials for energy and electronic applications. Nat. Rev. Mater. 9(4), 266–281 (2024). https://doi.org/10.1038/s41578-024-00654-5
- M. Li, C. Sun, X. Yuan, Y. Li, Y. Yuan et al., A configuration entropy enabled high-performance polyanionic cathode for sodium-ion batteries. Adv. Funct. Mater. 34(21), 2314019 (2024). https://doi.org/10.1002/adfm.202314019
- M. Li, C. Sun, Q. Ni, Z. Sun, Y. Liu et al., High entropy enabling the reversible redox reaction of V4+/V5+ couple in NASICON-type sodium ion cathode. Adv. Energy Mater. 13(12), 2203971 (2023). https://doi.org/10.1002/aenm.202203971
- Z. Sun, Y. Zhao, C. Sun, Q. Ni, C. Wang et al., High entropy spinel-structure oxide for electrochemical application. Chem. Eng. J. 431, 133448 (2022). https://doi.org/10.1016/j.cej.2021.133448
- G. Cao, J. Liang, Z. Guo, K. Yang, G. Wang et al., Liquid metal for high-entropy alloy nanops synthesis. Nature 619, 73–77 (2023). https://doi.org/10.1038/s41586-023-06082-9
- X. Wang, Q. Dong, H. Qiao, Z. Huang, M.T. Saray et al., Continuous synthesis of hollow high-entropy nanops for energy and catalysis applications. Adv. Mater. 32(46), e2002853 (2020). https://doi.org/10.1002/adma.202002853
- Z. Lun, B. Ouyang, D.-H. Kwon, Y. Ha, E.E. Foley et al., Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nat. Mater. 20(2), 214–221 (2021). https://doi.org/10.1038/s41563-020-00816-0
- J. Liu, Y. Li, Z. Chen, N. Liu, L. Zheng et al., Polyoxometalate cluster-incorporated high entropy oxide sub-1 nm nanowires. J. Am. Chem. Soc. 144(50), 23191–23197 (2022). https://doi.org/10.1021/jacs.2c10602
- J.-T. Ren, L. Chen, H.-Y. Wang, Z.-Y. Yuan, High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem. Soc. Rev. 52(23), 8319–8373 (2023). https://doi.org/10.1039/d3cs00557g
- L.J. Wang, H. Deng, H. Furukawa, F. Gándara, K.E. Cordova et al., Synthesis and characterization of metal-organic framework-74 containing 2, 4, 6, 8, and 10 different metals. Inorg. Chem. 53(12), 5881–5883 (2014). https://doi.org/10.1021/ic500434a
- Y. Ma, Y. Hu, Y. Pramudya, T. Diemant, Q. Wang et al., Resolving the role of configurational entropy in improving cycling performance of multicomponent hexacyanoferrate cathodes for sodium-ion batteries. Adv. Funct. Mater. 32(34), 2202372 (2022). https://doi.org/10.1002/adfm.202202372
- J. Feng, Y. Wang, Y. Xu, Y. Sun, Y. Tang et al., Ion regulation of ionic liquid electrolytes for supercapacitors. Energy Environ. Sci. 14(5), 2859–2882 (2021). https://doi.org/10.1039/d0ee04002a
- Z. Cao, H. Zhang, B. Song, D. Xiong, S. Tao et al., Angstrom-level ionic sieve 2D-MOF membrane for high power aqueous zinc anode. Adv. Funct. Mater. 33(28), 2300339 (2023). https://doi.org/10.1002/adfm.202300339
- H. Li, Z. Hu, Q. Xia, H. Zhang, Z. Li et al., operando magnetometry probing the charge storage mechanism of CoO lithium-ion batteries. Adv. Mater. 33(12), e2006629 (2021). https://doi.org/10.1002/adma.202006629
- X. Xiao, X. Deng, Y. Tian, S. Tao, Z. Song et al., Ultrathin two-dimensional nanosheet metal-organic frameworks with high-density ligand active sites for advanced lithium-ion capacitors. Nano Energy 103, 107797 (2022). https://doi.org/10.1016/j.nanoen.2022.107797
- P. Ge, H. Hou, C.E. Banks, C.W. Foster, S. Li et al., Binding MoSe2 with carbon constrained in carbonous nanosphere towards high-capacity and ultrafast Li/Na-ion storage. Energy Storage Mater. 12, 310–323 (2018). https://doi.org/10.1016/j.ensm.2018.02.012
- R. Mehek, N. Iqbal, O. Javed, T. Noor, W. Liu, Improved rate capability and long cycle life of metal-organic framework derived TiO2@V2O5 composite as an efficient cathode for sodium-ion batteries. J. Energy Storage 78, 109921 (2024). https://doi.org/10.1016/j.est.2023.109921
- B. Cong, S. Sun, B. Wang, C. Lv, J. Zhao et al., Iron selenide nanops-encapsulated within bamboo-like n-doped carbon nanotubes as composite anodes for superior lithium and sodium-ion storage. Chem. Eng. J. 435, 135185 (2022). https://doi.org/10.1016/j.cej.2022.135185
- W.J. Liu, X. Zhang, Y.N. Xu, L. Wang, Z. Li et al., 2D graphene/MnO heterostructure with strongly stable interface enabling high-performance flexible solid-state lithium-ion capacitors. Adv. Funct. Mater. 32(30), 2202342 (2022). https://doi.org/10.1002/adfm.202202342
- S. Sanati, Q. Wang, R. Abazari, M. Liu, Recent advanced strategies for bimetallenes toward electrocatalytic energy conversion reactions. Chem. Commun. 60(23), 3129–3137 (2024). https://doi.org/10.1039/d3cc06073j
- R. Abazari, S. Sanati, A.K. Nanjundan, Q. Wang, D.P. Dubal et al., Structure–property–performance relationship of vanadium- and manganese-based metal–organic frameworks and their derivatives for energy storage and conversion applications. J. Mater. Chem. A 12(19), 11149–11175 (2024). https://doi.org/10.1039/D4TA00736K
- D. Wang, P. Cai, G.-Q. Zou, H.-S. Hou, X.-B. Ji et al., Ultra-stable carbon-coated sodium vanadium phosphate as cathode material for sodium-ion battery. Rare Met. 41(1), 115–124 (2022). https://doi.org/10.1007/s12598-021-01743-y
- K. Zou, P. Cai, C. Liu, J. Li, X. Gao et al., A kinetically well-matched full-carbon sodium-ion capacitor. J. Mater. Chem. A 7(22), 13540–13549 (2019). https://doi.org/10.1039/C9TA03797G
- Z.L. Hu, X.L. Zhao, Z.Z. Li, S. Li, P.F. Sun et al., Secondary bonding channel design induces intercalation pseudocapacitance toward ultrahigh-capacity and high-rate organic electrodes. Adv. Mater. 33(44), 2104039 (2021). https://doi.org/10.1002/adma.202104039
- J. Wu, Z. Ju, X. Zhang, A.C. Marschilok, K.J. Takeuchi et al., Gradient design for high-energy and high-power batteries. Adv. Mater. 34(29), 2202780 (2022). https://doi.org/10.1002/adma.202202780
- M. Xu, Y. Li, M. Ihsan-Ul-Haq, N. Mubarak, Z. Liu et al., NaF-rich solid electrolyte interphase for dendrite-free sodium metal batteries. Energy Storage Mater. 44, 477–486 (2022). https://doi.org/10.1016/j.ensm.2021.10.038
- C. Zhu, D. Wu, Z. Wang, H. Wang, J. Liu et al., Optimizing naf-rich solid electrolyte interphase for stabilizing sodium metal batteries by electrolyte additive. Adv. Funct. Mater. 34, 2214195 (2024). https://doi.org/10.1002/adfm.202214195
- Y.-Y. Zhang, C.-H. Zhang, Y.-J. Guo, M. Fan, Y. Zhao et al., Refined electrolyte and interfacial chemistry toward realization of high-energy anode-free rechargeable sodium batteries. J. Am. Chem. Soc. 145(47), 25643–25652 (2023). https://doi.org/10.1021/jacs.3c07804
- X. Zhou, X. Chen, W. Kuang, W. Zhu, X. Zhang et al., Entropy-assisted anion-reinforced solvation structure for fast-charging sodium-ion full batteries. Angew. Chem. Int. Ed. 63(42), e202410494 (2024). https://doi.org/10.1002/anie.202410494
- H. Chen, K. Chen, J. Yang, B. Liu, L. Luo et al., Designing advanced electrolytes for high-safety and long-lifetime sodium-ion batteries via anion-cation interaction modulation. J. Am. Chem. Soc. 146(23), 15751–15760 (2024). https://doi.org/10.1021/jacs.4c01395
References
P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014). https://doi.org/10.1126/science.1249625
C. Gervillié-Mouravieff, C. Boussard-Plédel, J. Huang, C. Leau, L.A. Blanquer et al., Unlocking cell chemistry evolution with operando fibre optic infrared spectroscopy in commercial Na(Li)-ion batteries. Nat. Energy 7(12), 1157–1169 (2022). https://doi.org/10.1038/s41560-022-01141-3
M.A. Deshmukh, A. Bakandritsos, R. Zbořil, Bimetallic single-atom catalysts for water splitting. Nano-Micro Lett. 17(1), 1 (2024). https://doi.org/10.1007/s40820-024-01505-2
Y. Wu, J. Chen, J. Liu, L. Zhang, R. Abazari et al., Iron phthalocyanine coupled with Co-Nx sites in carbon nanostraws for Zn-air batteries. Chem. Eng. J. 503, 158343 (2025). https://doi.org/10.1016/j.cej.2024.158343
H. Liu, Z. Zhu, Q. Yan, S. Yu, X. He et al., A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 585(7823), 63–67 (2020). https://doi.org/10.1038/s41586-020-2637-6
D. Luo, H. Zhu, Y. Xia, Z. Yin, Y. Qin et al., A Li-rich layered oxide cathode with negligible voltage decay. Nat. Energy 8(10), 1078–1087 (2023). https://doi.org/10.1038/s41560-023-01289-6
P. Jing, M. Liu, H.-P. Ho, Y. Ma, W. Hua et al., Tailoring the Wadsley-Roth crystallographic shear structures for high-power lithium-ion batteries. Energy Environ. Sci. 17(18), 6571–6581 (2024). https://doi.org/10.1039/d4ee02293a
Y. Li, F. Wu, Y. Li, M. Liu, X. Feng et al., Ether-based electrolytes for sodium ion batteries. Chem. Soc. Rev. 51(11), 4484–4536 (2022). https://doi.org/10.1039/d1cs00948f
J.L. Pimlott, R.J. Street, M.P. Down, C.E. Banks, Electrochemical overview: a summary of ACoxMnyNizO2 and metal oxides as versatile cathode materials for metal-ion batteries. Adv. Funct. Mater. 31(51), 2107761 (2021). https://doi.org/10.1002/adfm.202107761
C. Li, Q. Yang, M. Shen, J. Ma, B. Hu, The electrochemical Na intercalation/extraction mechanism of ultrathin cobalt(II) terephthalate-based MOF nanosheets revealed by synchrotron X-ray absorption spectroscopy. Energy Storage Mater. 14, 82–89 (2018). https://doi.org/10.1016/j.ensm.2018.02.021
Y. Ma, Y. Ma, S.L. Dreyer, Q. Wang, K. Wang et al., High-entropy metal-organic frameworks for highly reversible sodium storage. Adv. Mater. 33(34), e2101342 (2021). https://doi.org/10.1002/adma.202101342
A. Rudola, C.J. Wright, J. Barker, Communication: surprisingly high fast charge volumetric capacities of hard carbon electrodes in sodium-ion batteries. J. Electrochem. Soc. 168(11), 110534 (2021). https://doi.org/10.1149/1945-7111/ac377a
Y. Li, A. Vasileiadis, Q. Zhou, Y. Lu, Q. Meng et al., Origin of fast charging in hard carbon anodes. Nat. Energy 9, 134–142 (2024). https://doi.org/10.1038/s41560-023-01414-5
Q. Li, W. Zhang, O.Š Miljanić, C.-H. Sue, Y.-L. Zhao et al., Docking in metal-organic frameworks. Science 325(5942), 855–859 (2009). https://doi.org/10.1126/science.1175441
H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341(6149), 1230444 (2013). https://doi.org/10.1126/science.1230444
J.E. Zhou, R.C.K. Reddy, A. Zhong, Y. Li, Q. Huang et al., Metal–organic framework-based materials for advanced sodium storage: development and anticipation. Adv. Mater. 36(16), 2312471 (2024). https://doi.org/10.1002/adma.202312471
D. Sheberla, J.C. Bachman, J.S. Elias, C.-J. Sun, Y. Shao-Horn et al., Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16(2), 220–224 (2017). https://doi.org/10.1038/nmat4766
J. Park, M. Lee, D. Feng, Z. Huang, A.C. Hinckley et al., Stabilization of hexaaminobenzene in a 2D conductive metal-organic framework for high power sodium storage. J. Am. Chem. Soc. 140(32), 10315–10323 (2018). https://doi.org/10.1021/jacs.8b06020
J.M. Wrogemann, M.J. Lüther, P. Bärmann, M. Lounasvuori, A. Javed et al., Overcoming diffusion limitation of faradaic processes: property-performance relationships of 2D conductive metal-organic framework Cu3(HHTP)2 for reversible lithium-ion storage. Angew. Chem. Int. Ed. 62(26), e202303111 (2023). https://doi.org/10.1002/anie.202303111
J. Liu, Y. Chen, X. Huang, Y. Ren, M. Hambsch et al., On-liquid-gallium surface synthesis of ultrasmooth thin films of conductive metal–organic frameworks. Nat. Synth. 3(6), 715–726 (2024). https://doi.org/10.1038/s44160-024-00513-9
H.T.B. Pham, J.Y. Choi, S. Huang, X. Wang, A. Claman et al., Imparting functionality and enhanced surface area to a 2D electrically conductive MOF via macrocyclic linker. J. Am. Chem. Soc. 144(23), 10615–10621 (2022). https://doi.org/10.1021/jacs.2c03793
R. Abazari, S. Sanati, W.K. Fan, M. Tahir, S. Nayak et al., Design and engineering of MOF/LDH hybrid nanocomposites and LDHs derived from MOF templates for electrochemical energy conversion/storage and environmental remediation: Mechanism and future perspectives. Coord. Chem. Rev. 523, 216256 (2025). https://doi.org/10.1016/j.ccr.2024.216256
S. Dang, Q.-L. Zhu, Q. Xu, Nanomaterials derived from metal–organic frameworks. Nat. Rev. Mater. 3, 17075 (2018). https://doi.org/10.1038/natrevmats.2017.75
B. He, Q. Zhang, Z. Pan, L. Li, C. Li et al., Freestanding metal-organic frameworks and their derivatives: an emerging platform for electrochemical energy storage and conversion. Chem. Rev. 122(11), 10087–10125 (2022). https://doi.org/10.1021/acs.chemrev.1c00978
K. Jayaramulu, S. Mukherjee, D.M. Morales, D.P. Dubal, A.K. Nanjundan et al., Graphene-based metal-organic framework hybrids for applications in catalysis, environmental, and energy technologies. Chem. Rev. 122(24), 17241–17338 (2022). https://doi.org/10.1021/acs.chemrev.2c00270
M. Du, P. Geng, C. Pei, X. Jiang, Y. Shan et al., High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 61(41), e202209350 (2022). https://doi.org/10.1002/anie.202209350
S. Schweidler, M. Botros, F. Strauss, Q. Wang, Y. Ma et al., High-entropy materials for energy and electronic applications. Nat. Rev. Mater. 9(4), 266–281 (2024). https://doi.org/10.1038/s41578-024-00654-5
M. Li, C. Sun, X. Yuan, Y. Li, Y. Yuan et al., A configuration entropy enabled high-performance polyanionic cathode for sodium-ion batteries. Adv. Funct. Mater. 34(21), 2314019 (2024). https://doi.org/10.1002/adfm.202314019
M. Li, C. Sun, Q. Ni, Z. Sun, Y. Liu et al., High entropy enabling the reversible redox reaction of V4+/V5+ couple in NASICON-type sodium ion cathode. Adv. Energy Mater. 13(12), 2203971 (2023). https://doi.org/10.1002/aenm.202203971
Z. Sun, Y. Zhao, C. Sun, Q. Ni, C. Wang et al., High entropy spinel-structure oxide for electrochemical application. Chem. Eng. J. 431, 133448 (2022). https://doi.org/10.1016/j.cej.2021.133448
G. Cao, J. Liang, Z. Guo, K. Yang, G. Wang et al., Liquid metal for high-entropy alloy nanops synthesis. Nature 619, 73–77 (2023). https://doi.org/10.1038/s41586-023-06082-9
X. Wang, Q. Dong, H. Qiao, Z. Huang, M.T. Saray et al., Continuous synthesis of hollow high-entropy nanops for energy and catalysis applications. Adv. Mater. 32(46), e2002853 (2020). https://doi.org/10.1002/adma.202002853
Z. Lun, B. Ouyang, D.-H. Kwon, Y. Ha, E.E. Foley et al., Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nat. Mater. 20(2), 214–221 (2021). https://doi.org/10.1038/s41563-020-00816-0
J. Liu, Y. Li, Z. Chen, N. Liu, L. Zheng et al., Polyoxometalate cluster-incorporated high entropy oxide sub-1 nm nanowires. J. Am. Chem. Soc. 144(50), 23191–23197 (2022). https://doi.org/10.1021/jacs.2c10602
J.-T. Ren, L. Chen, H.-Y. Wang, Z.-Y. Yuan, High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem. Soc. Rev. 52(23), 8319–8373 (2023). https://doi.org/10.1039/d3cs00557g
L.J. Wang, H. Deng, H. Furukawa, F. Gándara, K.E. Cordova et al., Synthesis and characterization of metal-organic framework-74 containing 2, 4, 6, 8, and 10 different metals. Inorg. Chem. 53(12), 5881–5883 (2014). https://doi.org/10.1021/ic500434a
Y. Ma, Y. Hu, Y. Pramudya, T. Diemant, Q. Wang et al., Resolving the role of configurational entropy in improving cycling performance of multicomponent hexacyanoferrate cathodes for sodium-ion batteries. Adv. Funct. Mater. 32(34), 2202372 (2022). https://doi.org/10.1002/adfm.202202372
J. Feng, Y. Wang, Y. Xu, Y. Sun, Y. Tang et al., Ion regulation of ionic liquid electrolytes for supercapacitors. Energy Environ. Sci. 14(5), 2859–2882 (2021). https://doi.org/10.1039/d0ee04002a
Z. Cao, H. Zhang, B. Song, D. Xiong, S. Tao et al., Angstrom-level ionic sieve 2D-MOF membrane for high power aqueous zinc anode. Adv. Funct. Mater. 33(28), 2300339 (2023). https://doi.org/10.1002/adfm.202300339
H. Li, Z. Hu, Q. Xia, H. Zhang, Z. Li et al., operando magnetometry probing the charge storage mechanism of CoO lithium-ion batteries. Adv. Mater. 33(12), e2006629 (2021). https://doi.org/10.1002/adma.202006629
X. Xiao, X. Deng, Y. Tian, S. Tao, Z. Song et al., Ultrathin two-dimensional nanosheet metal-organic frameworks with high-density ligand active sites for advanced lithium-ion capacitors. Nano Energy 103, 107797 (2022). https://doi.org/10.1016/j.nanoen.2022.107797
P. Ge, H. Hou, C.E. Banks, C.W. Foster, S. Li et al., Binding MoSe2 with carbon constrained in carbonous nanosphere towards high-capacity and ultrafast Li/Na-ion storage. Energy Storage Mater. 12, 310–323 (2018). https://doi.org/10.1016/j.ensm.2018.02.012
R. Mehek, N. Iqbal, O. Javed, T. Noor, W. Liu, Improved rate capability and long cycle life of metal-organic framework derived TiO2@V2O5 composite as an efficient cathode for sodium-ion batteries. J. Energy Storage 78, 109921 (2024). https://doi.org/10.1016/j.est.2023.109921
B. Cong, S. Sun, B. Wang, C. Lv, J. Zhao et al., Iron selenide nanops-encapsulated within bamboo-like n-doped carbon nanotubes as composite anodes for superior lithium and sodium-ion storage. Chem. Eng. J. 435, 135185 (2022). https://doi.org/10.1016/j.cej.2022.135185
W.J. Liu, X. Zhang, Y.N. Xu, L. Wang, Z. Li et al., 2D graphene/MnO heterostructure with strongly stable interface enabling high-performance flexible solid-state lithium-ion capacitors. Adv. Funct. Mater. 32(30), 2202342 (2022). https://doi.org/10.1002/adfm.202202342
S. Sanati, Q. Wang, R. Abazari, M. Liu, Recent advanced strategies for bimetallenes toward electrocatalytic energy conversion reactions. Chem. Commun. 60(23), 3129–3137 (2024). https://doi.org/10.1039/d3cc06073j
R. Abazari, S. Sanati, A.K. Nanjundan, Q. Wang, D.P. Dubal et al., Structure–property–performance relationship of vanadium- and manganese-based metal–organic frameworks and their derivatives for energy storage and conversion applications. J. Mater. Chem. A 12(19), 11149–11175 (2024). https://doi.org/10.1039/D4TA00736K
D. Wang, P. Cai, G.-Q. Zou, H.-S. Hou, X.-B. Ji et al., Ultra-stable carbon-coated sodium vanadium phosphate as cathode material for sodium-ion battery. Rare Met. 41(1), 115–124 (2022). https://doi.org/10.1007/s12598-021-01743-y
K. Zou, P. Cai, C. Liu, J. Li, X. Gao et al., A kinetically well-matched full-carbon sodium-ion capacitor. J. Mater. Chem. A 7(22), 13540–13549 (2019). https://doi.org/10.1039/C9TA03797G
Z.L. Hu, X.L. Zhao, Z.Z. Li, S. Li, P.F. Sun et al., Secondary bonding channel design induces intercalation pseudocapacitance toward ultrahigh-capacity and high-rate organic electrodes. Adv. Mater. 33(44), 2104039 (2021). https://doi.org/10.1002/adma.202104039
J. Wu, Z. Ju, X. Zhang, A.C. Marschilok, K.J. Takeuchi et al., Gradient design for high-energy and high-power batteries. Adv. Mater. 34(29), 2202780 (2022). https://doi.org/10.1002/adma.202202780
M. Xu, Y. Li, M. Ihsan-Ul-Haq, N. Mubarak, Z. Liu et al., NaF-rich solid electrolyte interphase for dendrite-free sodium metal batteries. Energy Storage Mater. 44, 477–486 (2022). https://doi.org/10.1016/j.ensm.2021.10.038
C. Zhu, D. Wu, Z. Wang, H. Wang, J. Liu et al., Optimizing naf-rich solid electrolyte interphase for stabilizing sodium metal batteries by electrolyte additive. Adv. Funct. Mater. 34, 2214195 (2024). https://doi.org/10.1002/adfm.202214195
Y.-Y. Zhang, C.-H. Zhang, Y.-J. Guo, M. Fan, Y. Zhao et al., Refined electrolyte and interfacial chemistry toward realization of high-energy anode-free rechargeable sodium batteries. J. Am. Chem. Soc. 145(47), 25643–25652 (2023). https://doi.org/10.1021/jacs.3c07804
X. Zhou, X. Chen, W. Kuang, W. Zhu, X. Zhang et al., Entropy-assisted anion-reinforced solvation structure for fast-charging sodium-ion full batteries. Angew. Chem. Int. Ed. 63(42), e202410494 (2024). https://doi.org/10.1002/anie.202410494
H. Chen, K. Chen, J. Yang, B. Liu, L. Luo et al., Designing advanced electrolytes for high-safety and long-lifetime sodium-ion batteries via anion-cation interaction modulation. J. Am. Chem. Soc. 146(23), 15751–15760 (2024). https://doi.org/10.1021/jacs.4c01395