Graphitic Carbon Quantum Dots Modified Nickel Cobalt Sulfide as Cathode Materials for Alkaline Aqueous Batteries
Corresponding Author: Hongshuai Hou
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 16
Abstract
Carbon quantum dots (CQDs) as a new class of emerging materials have gradually drawn researchers’ concern in recent years. In this work, the graphitic CQDs are prepared through a scalable approach, achieving a high yield with more than 50%. The obtained CQDs are further used as structure-directing and conductive agents to synthesize novel N,S-CQDs/NiCo2S4 composite cathode materials, manifesting the enhanced electrochemical properties resulted from the synergistic effect of highly conductive N,S-codoped CQDs offering fast electronic transport and unique micro-/nanostructured NiCo2S4 microspheres with Faradaic redox characteristic contributing large capacity. Moreover, the nitrogen-doped reduced graphene oxide (N-rGO)/Fe2O3 composite anode materials exhibit ultrahigh specific capacity as well as significantly improved rate property and cycle performance originating from the high-capacity prism-like Fe2O3 hexahedrons tightly wrapped by highly conductive N-rGO. A novel alkaline aqueous battery assembled by these materials displays a specific energy (50.2 Wh kg−1), ultrahigh specific power (9.7 kW kg−1) and excellent cycling performance with 91.5% of capacity retention at 3 A g−1 for 5000 cycles. The present research offers a valuable guidance for the exploitation of advanced energy storage devices by the rational design and selection of battery/capacitive composite materials.
Highlights:
1 The scalable graphitic carbon quantum dots (CQDs) are obtained with a high yield of more than 50%.
2 The CQDs are utilized to synthesize novel NS-CQDs/NiCo2S4 composite which shows enhanced electrochemical properties.
3 The assembled novel alkaline aqueous battery delivers superior electrochemical performances.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362–381 (2015). https://doi.org/10.1039/C4CS00269E
- R. Das, R. Bandyopadhyay, P. Pramanik, Carbon quantum dots from natural resource: a review. Mater. Today Chem. 8, 96–109 (2018). https://doi.org/10.1016/j.mtchem.2018.03.003
- J. Li, X. Yun, Z. Hu, L. Xi, N. Li, H. Tang, P. Lu, Y. Zhu, Three-dimensional nitrogen and phosphorus co-doped carbon quantum dots/reduced graphene oxide composite aerogels with a hierarchical porous structure as superior electrode materials for supercapacitors. J. Mater. Chem. A 7, 26311–26325 (2019). https://doi.org/10.1039/C9TA08151H
- X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, P. Chen, Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11, 1620–1636 (2015). https://doi.org/10.1002/smll.201402648
- X. Li, M. Rui, J. Song, Z. Shen, H. Zeng, Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv. Funct. Mater. 25, 4929–4947 (2015). https://doi.org/10.1002/adfm.201501250
- B. De, N. Karak, Recent progress in carbon dot-metal based nanohybrids for photochemical and electrochemical applications. J. Mater. Chem. A 5, 1826–1859 (2017). https://doi.org/10.1039/C6TA10220D
- Y. Wang, A. Hu, Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. C 2, 6921–6939 (2014). https://doi.org/10.1039/C4TC00988F
- Y. Zhu, X. Ji, C. Pan, Q. Sun, W. Song, L. Fang, Q. Chen, C.E. Banks, A carbon quantum dot decorated RuO2 network: outstanding supercapacitances under ultrafast charge and discharge. Energy Environ. Sci. 6, 3665–3675 (2013). https://doi.org/10.1039/C3EE41776J
- J.-S. Wei, H. Ding, P. Zhang, Y.-F. Song, J. Chen, Y.-G. Wang, H.-M. Xiong, Carbon dots/NiCo2O4 nanocomposites with various morphologies for high performance supercapacitors. Small 12, 5927–5934 (2016). https://doi.org/10.1002/smll.201602164
- Y. Zhu, Z. Wu, M. Jing, H. Hou, Y. Yang, Y. Zhang, X. Yang, W. Song, X. Jia, X. Ji, Porous NiCo2O4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor. J. Mater. Chem. A 3, 866–877 (2015). https://doi.org/10.1039/C4TA05507A
- M.-S. Balogun, Y. Luo, F. Lyu, F. Wang, H. Yang, H. Li, C. Liang, M. Huang, Y. Huang, Y. Tong, Carbon quantum dot surface-engineered VO2 interwoven nanowires: a flexible cathode material for lithium and sodium ion batteries. ACS Appl. Mater. Interfaces 8, 9733–9744 (2016). https://doi.org/10.1021/acsami.6b01305
- H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 27, 7861–7866 (2015). https://doi.org/10.1002/adma.201503816
- C. Ma, K. Dai, H. Hou, X. Ji, L. Chen, D.G. Ivey, W. Wei, High ion-conducting solid-state composite electrolytes with carbon quantum dot nanofillers. Adv. Sci. 5, 1700996 (2018). https://doi.org/10.1002/advs.201700996
- L. Zhang, Y. Yang, M.A. Ziaee, K. Lu, R. Wang, Nanohybrid of carbon quantum dots/molybdenum phosphide nanoparticle for efficient electrochemical hydrogen evolution in alkaline medium. ACS Appl. Mater. Interfaces 10, 9460–9467 (2018). https://doi.org/10.1021/acsami.8b00211
- X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126, 12736–12737 (2004). https://doi.org/10.1021/ja040082h
- X. Yun, J. Li, X. Chen, H. Chen, L. Xiao, K. Xiang, W. Chen, H. Liao, Y. Zhu, Porous Fe2O3 modified by nitrogen-doped carbon quantum dots/reduced graphene oxide composite aerogel as a high-capacity and high-rate anode material for alkaline aqueous batteries. ACS Appl. Mater. Interfaces 11, 36970–36984 (2019). https://doi.org/10.1021/acsami.9b12827
- Q. Liang, W. Ma, Y. Shi, Z. Li, X. Yang, Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon 60, 421–428 (2013). https://doi.org/10.1016/j.carbon.2013.04.055
- H. Peng, J. Travas-Sejdic, Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem. Mater. 21, 5563–5565 (2009). https://doi.org/10.1021/cm901593y
- A.B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, M. Karakassides, E.P. Giannelis, Surface functionalized carbogenic quantum dots. Small 4, 455–458 (2008). https://doi.org/10.1002/smll.200700578
- R. Liu, D. Wu, S. Liu, K. Koynov, W. Knoll, Q. Li, An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem. Int. Ed. 48, 4598–4601 (2009). https://doi.org/10.1002/anie.200900652
- H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, X. Yang, Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. 34, 5118–5120 (2009). https://doi.org/10.1039/B907612C
- X. Jia, X. Ji, Electrochemical probing of carbon quantum dots: not suitable for a single electrode material. RSC Adv. 5, 107270–107275 (2015). https://doi.org/10.1039/C5RA24625C
- T.-Y. Wei, C.-H. Chen, H.-C. Chien, S.-Y. Lu, C.-C. Hu, A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv. Mater. 22, 347–351 (2010). https://doi.org/10.1002/adma.200902175
- G. He, M. Qiao, W. Li, Y. Lu, T. Zhao, R. Zou, B. Li, J.A. Darr, J. Hu, M.-M. Titirici, I.P. Parkin, S, N-Co-doped graphene-nickel cobalt sulfide aerogel: improved energy storage and electrocatalytic performance. Adv. Sci. 4, 1600214 (2017). https://doi.org/10.1002/advs.201600214
- Y. Wang, Z. Chen, T. Lei, Y. Ai, Z. Peng, X. Yan, H. Li, J. Zhang, Z.M. Wang, Y.-L. Chueh, Hollow NiCo2S4 nanospheres hybridized with 3D hierarchical porous rGO/Fe2O3 composites toward high-performance energy storage device. Adv. Energy Mater. 8, 1703453 (2018). https://doi.org/10.1002/aenm.201703453
- W. Liu, H. Niu, J. Yang, K. Cheng, K. Ye, K. Zhu, G. Wang, D. Cao, J. Yan, Ternary transition metal sulfides embedded in graphene nanosheets as both the anode and cathode for high-performance asymmetric supercapacitors. Chem. Mater. 30, 1055–1068 (2018). https://doi.org/10.1021/acs.chemmater.7b04976
- S. Tang, B. Zhu, X. Shi, J. Wu, X. Meng, General controlled sulfidation toward achieving novel nanosheet-built porous square-FeCo2S4-tube arrays for high-performance asymmetric all-solid-state pseudocapacitors. Adv. Energy Mater. 7, 1601985 (2017). https://doi.org/10.1002/aenm.201601985
- H. Khani, D.O. Wipf, Iron oxide nanosheets and pulse-electrodeposited Ni–Co–S nanoflake arrays for high-performance charge storage. ACS Appl. Mater. Interfaces 9, 6967–6978 (2017). https://doi.org/10.1021/acsami.6b11498
- F. Lu, M. Zhou, W. Li, Q. Weng, C. Li, Y. Xue, X. Jiang, X. Zeng, Y. Bando, D. Golberg, Engineering sulfur vacancies and impurities in NiCo2S4 nanostructures toward optimal supercapacitive performance. Nano Energy 26, 313–323 (2016). https://doi.org/10.1016/j.nanoen.2016.05.042
- B.Y. Guan, L. Yu, X. Wang, S. Song, X.W. Lou, Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv. Mater. 29, 1605051 (2017). https://doi.org/10.1002/adma.201605051
- D. Bhattacharjya, A. Sinhamahapatra, J.-J. Ko, J.-S. Yu, High capacity and exceptional cycling stability of ternary metal sulfide nanorods as Li ion battery anodes. Chem. Commun. 51, 13350–13353 (2015). https://doi.org/10.1039/C5CC04289E
- H. Li, G. Xu, J. Wang, L. Shen, H. Dou, X. Zhang, NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv. Energy Mater. 5, 1400977 (2015). https://doi.org/10.1002/aenm.201400977
- Y. Cui, J. Zhang, C. Jin, Y. Liu, W. Luo, W. Zheng, Ionic liquid-controlled growth of NiCo2S4 3D hierarchical hollow nanoarrow arrays on Ni foam for superior performance binder free hybrid supercapacitors. Small 15, 1804318 (2019). https://doi.org/10.1002/smll.201804318
- J. Yang, C. Yu, X. Fan, S. Liang, S. Li, H. Huang, Z. Ling, C. Hao, J. Qiu, Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high performance asymmetric supercapacitors. Energy Environ. Sci. 9, 1299–1307 (2016). https://doi.org/10.1039/C5EE03633J
- D. Li, Y. Gong, C. Pan, Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors. Sci. Rep. 6, 29788 (2016). https://doi.org/10.1038/srep29788
- J. Zhou, C. Booker, R. Li, X. Zhou, T.-K. Sham, X. Sun, Z. Ding, An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc. 129, 744–745 (2007). https://doi.org/10.1021/ja0669070
- Y. Dong, N. Zhou, X. Lin, J. Lin, Y. Chi, G. Chen, Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chem. Mater. 22, 5895–5899 (2010). https://doi.org/10.1021/cm1018844
- F. Yuan, T. Yuan, L. Sui, Z. Wang, Z. Xi, Y. Li, X. Li, L. Fan, Z. Tan, A. Chen, M. Jin, S. Yang, Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 9, 2249 (2018). https://doi.org/10.1038/s41467-018-04635-5
- Y. Si, E.T. Samulski, Synthesis of water soluble graphene. Nano Lett. 8, 1679–1682 (2008). https://doi.org/10.1021/nl080604h
- H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C.H.A. Tsang, X. Yang, S.-T. Lee, Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 49, 4430–4434 (2010). https://doi.org/10.1002/anie.200906154
- C. Wei, Y. Huang, S. Xue, X. Zhang, X. Chen, J. Yan, W. Yao, One-step hydrothermal synthesis of flaky attached hollow-sphere structure NiCo2S4 for electrochemical capacitor application. Chem. Eng. J. 317, 873–881 (2017). https://doi.org/10.1016/j.cej.2017.02.130
- Q. Liu, J. Jin, J. Zhang, NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces 5, 5002–5008 (2013). https://doi.org/10.1021/am4007897
- G. Qiuyue, X. Wang, Z. Shi, Z. Ye, W. Wang, N. Zhang, Z. Hong, M. Zhi, Synthesis of porous NiCo2S4 aerogel for supercapacitor electrode and oxygen evolution reaction electrocatalyst. Chem. Eng. J. 331, 185–193 (2018). https://doi.org/10.1016/j.cej.2017.08.067
- D. Yuan, G. Huang, D. Yin, X. Wang, C. Wang, L. Wang, Metal-organic framework template synthesis of NiCo2S4@C encapsulated in hollow nitrogen-doped carbon cubes with enhanced electrochemical performance for lithium storage. ACS Appl. Mater. Interfaces 9, 18178–18186 (2017). https://doi.org/10.1021/acsami.7b02176
- S. Li, P. Ge, F. Jiang, H. Shuai, W. Xu, Y. Jiang, Y. Zhang, J. Hu, H. Hou, X. Ji, The advance of nickel-cobalt-sulfide as ultra-fast/high sodium storage materials: the influences of morphology structure, phase evolution and interface property. Energy Storage Mater. 16, 267–280 (2019). https://doi.org/10.1016/j.ensm.2018.06.006
- Y. Zheng, J. Xu, X. Yang, Y. Zhang, Y. Shang, X. Hu, Decoration NiCo2S4 nanoflakes onto Ppy nanotubes as core-shell heterostructure material for high-performance asymmetric supercapacitor. Chem. Eng. J. 333, 111–121 (2018). https://doi.org/10.1016/j.cej.2017.09.155
- S.N. Tiruneh, B.K. Kang, S.H. Kwag, Y. Lee, M. Kim, D.H. Yoon, Synergistically active NiCo2S4 nanoparticles coupled with holey defect graphene hydrogel for high-performance solid-state supercapacitors. Chem. Eur. J. 24, 1–9 (2018). https://doi.org/10.1002/chem.201705445
- R. Jia, F. Zhu, S. Sun, T. Zhai, H. Xia, Dual support ensuring high-energy supercapacitors via high-performance NiCo2S4@Fe2O3 anode and working potential enlarged MnO2 cathode. J. Power Sources 341, 427–434 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.014
- B. Li, Z. Tian, H. Li, Z. Yang, Y. Wang, X. Wang, Self-supporting graphene aerogel electrode intensified by NiCo2S4 nanoparticles for asymmetric supercapacitor. Electrochim. Acta 314, 32–39 (2019). https://doi.org/10.1016/j.electacta.2019.05.040
- Y. Zhu, X. Ji, Z. Wu, Y. Liu, NiCo2S4 hollow microsphere decorated by acetylene black for high-performance asymmetric supercapacitor. Electrochim. Acta 186, 562–571 (2015). https://doi.org/10.1016/j.electacta.2015.10.176
- X. Liang, K. Nie, X. Ding, L. Dang, J. Sun et al., Highly compressible carbon sponge supercapacitor electrode with enhanced performance by growing nickel-cobalt sulfide nanosheets. ACS Appl. Mater. Interfaces 10, 10087–10095 (2018). https://doi.org/10.1021/acsami.7b19043
- Y.-M. Fan, Y. Liu, X. Liu, Y. Liu, L.-Z. Fan, Hierarchical porous NiCo2S4-rGO composites for high-performance supercapacitors. Electrochim. Acta 249, 1–8 (2017). https://doi.org/10.1016/j.electacta.2017.07.175
- Y. Shen, K. Zhang, B. Chen, F. Yang, K. Xu, X. Lu, Enhancing the electrochemical performance of nickel cobalt sulphides hollow nanospheres by structural modulation for asymmetric supercapacitors. J. Colloid Interf. Sci. 557, 135–143 (2019). https://doi.org/10.1016/j.jcis.2019.09.007
- X. Yun, S. Wu, J. Li, L. Li, J. Zhou, P. Lu, H. Tang, Y. Zhu, Facile synthesis of crystalline RuSe2 nanoparticles as a novel pseudocapacitive electrode material for supercapacitors. Chem. Commun. 55, 12320–12323 (2019). https://doi.org/10.1039/c9cc06023e
- Y. Zhu, Z. Huang, Z. Hu, L. Xi, X. Ji, Y. Liu, 3D Interconnected ultrathin cobalt selenide nanosheets as cathode materials for hybrid supercapacitors. Electrochim. Acta 269, 30–37 (2018). https://doi.org/10.1016/j.electacta.2018.02.146
- Y. Wang, C. Shen, L. Niu, R. Li, H. Guo, Y. Shi, C. Li, X. Liu, Y. Gong, Hydrothermal synthesis of CuCo2O4/CuO nanowire arrays and RGO/Fe2O3 composites for high-performance aqueous asymmetric supercapacitors. J. Mater. Chem. A 4, 9977–9985 (2016). https://doi.org/10.1039/C6TA02950G
- Y. Li, J. Xu, T. Feng, Q. Yao, J. Xie, H. Xia, Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors. Adv. Funct. Mater. 27, 1606728 (2017). https://doi.org/10.1002/adfm.201606728
- L. Liu, J. Lang, P. Zhang, B. Hu, X. Yan, Facile synthesis of Fe2O3 nano-dots@nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte. ACS Appl. Mater. Interfaces 8, 9335–9344 (2016). https://doi.org/10.1021/acsami.6b00225
- F. Yang, T. Qiu, C. Chi, S. Liang, L. Deng, X. Wang, C. Wang, J. Fu, Y. Wang, Y. Li, Synergistic effects of nitrogen-doped graphene and Fe2O3 nanocomposites in catalytic oxidization of aldehyde with O2. Chem. Eng. J. 330, 880–889 (2017). https://doi.org/10.1016/j.cej.2017.08.022
- H. Xia, C. Hong, B. Li, B. Zhao, Z. Lin, M. Zheng, S.V. Savilov, S.M. Aldoshin, Facile synthesis of hematite quantum-dot/functionalized graphene-sheet composites as advanced anode materials for asymmetric supercapacitors. Adv. Funct. Mater. 25, 627–635 (2015). https://doi.org/10.1002/adfm.201403554
- Y. Zhu, S. Cheng, W. Zhou, J. Jia, L. Yang, M. Yao, M. Wang, J. Zhou, P. Wu, M. Liu, Construction and performance characterization of α-Fe2O3/rGO composite for long-cycling-life supercapacitor anode. ACS Sustainable Chem. Eng. 5, 5067–5074 (2017). https://doi.org/10.1021/acssuschemeng.7b00445
- Q.X. Low, G.W. Ho, Facile structural tuning and compositing of iron oxide-graphene anode towards enhanced supacapacitive performance. Nano Energy 5, 28–35 (2014). https://doi.org/10.1016/j.nanoen.2014.01.002
- X. Xu, W. Shi, P. Li, S. Ye, C. Ye, H. Ye, T. Lu, A. Zheng, J. Zhu, L. Xu, M. Zhong, X. Cao, Facile fabrication of three-dimensional graphene and metal-organic framework composites and their derivatives for flexible all-solid-state supercapacitors. Chem. Mater. 29, 6058–6065 (2017). https://doi.org/10.1021/acs.chemmater.7b01947
- Y. Zeng, Y. Han, Y. Zhao, Y. Zeng, M. Yu, Y. Liu, H. Tang, Y. Tong, X. Lu, Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv. Energy Mater. 5, 1402176 (2015). https://doi.org/10.1002/aenm.201402176
- H.B. Li, M.H. Yu, F.X. Wang, P. Liu, Y. Liang et al., Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 4, 1894 (2013). https://doi.org/10.1038/ncomms2932
- J. Huang, J. Wei, Y. Xu, Y. Xiao, Y. Chen, A pinecone-inspired hierarchical vertically aligned nanosheet array electrode for high-performance asymmetric supercapacitors. J. Mater. Chem. A 5, 23349–23360 (2017). https://doi.org/10.1039/C7TA07868D
- F. Yu, Z. Chang, X. Yuan, F. Wang, Y. Zhu et al., Ultrathin NiCo2S4@graphene with a core-shell structure as a high performance positive electrode for hybrid supercapacitors. J. Mater. Chem. A 6, 5856–5861 (2018). https://doi.org/10.1039/C8TA00835C
- X. Wang, S.-X. Zhao, L. Dong, Q.-L. Lu, J. Zhu, C.-W. Nan, One-step synthesis of surface-enriched nickel cobalt sulfide nanoparticles on graphene for high-performance supercapacitors. Energy Storage Mater. 6, 180–187 (2017). https://doi.org/10.1016/j.ensm.2016.11.005
- G. Sun, H. Xie, J. Ran, L. Ma, X. Shen, J. Hu, H. Tong, Rational design of uniformly embedded metal oxide nanoparticles into nitrogen-doped carbon aerogel for high-performance asymmetric supercapacitors with a high operating voltage window. J. Mater. Chem. A 4, 16576–16587 (2016). https://doi.org/10.1039/C6TA07240B
References
S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362–381 (2015). https://doi.org/10.1039/C4CS00269E
R. Das, R. Bandyopadhyay, P. Pramanik, Carbon quantum dots from natural resource: a review. Mater. Today Chem. 8, 96–109 (2018). https://doi.org/10.1016/j.mtchem.2018.03.003
J. Li, X. Yun, Z. Hu, L. Xi, N. Li, H. Tang, P. Lu, Y. Zhu, Three-dimensional nitrogen and phosphorus co-doped carbon quantum dots/reduced graphene oxide composite aerogels with a hierarchical porous structure as superior electrode materials for supercapacitors. J. Mater. Chem. A 7, 26311–26325 (2019). https://doi.org/10.1039/C9TA08151H
X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, P. Chen, Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11, 1620–1636 (2015). https://doi.org/10.1002/smll.201402648
X. Li, M. Rui, J. Song, Z. Shen, H. Zeng, Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv. Funct. Mater. 25, 4929–4947 (2015). https://doi.org/10.1002/adfm.201501250
B. De, N. Karak, Recent progress in carbon dot-metal based nanohybrids for photochemical and electrochemical applications. J. Mater. Chem. A 5, 1826–1859 (2017). https://doi.org/10.1039/C6TA10220D
Y. Wang, A. Hu, Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. C 2, 6921–6939 (2014). https://doi.org/10.1039/C4TC00988F
Y. Zhu, X. Ji, C. Pan, Q. Sun, W. Song, L. Fang, Q. Chen, C.E. Banks, A carbon quantum dot decorated RuO2 network: outstanding supercapacitances under ultrafast charge and discharge. Energy Environ. Sci. 6, 3665–3675 (2013). https://doi.org/10.1039/C3EE41776J
J.-S. Wei, H. Ding, P. Zhang, Y.-F. Song, J. Chen, Y.-G. Wang, H.-M. Xiong, Carbon dots/NiCo2O4 nanocomposites with various morphologies for high performance supercapacitors. Small 12, 5927–5934 (2016). https://doi.org/10.1002/smll.201602164
Y. Zhu, Z. Wu, M. Jing, H. Hou, Y. Yang, Y. Zhang, X. Yang, W. Song, X. Jia, X. Ji, Porous NiCo2O4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor. J. Mater. Chem. A 3, 866–877 (2015). https://doi.org/10.1039/C4TA05507A
M.-S. Balogun, Y. Luo, F. Lyu, F. Wang, H. Yang, H. Li, C. Liang, M. Huang, Y. Huang, Y. Tong, Carbon quantum dot surface-engineered VO2 interwoven nanowires: a flexible cathode material for lithium and sodium ion batteries. ACS Appl. Mater. Interfaces 8, 9733–9744 (2016). https://doi.org/10.1021/acsami.6b01305
H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 27, 7861–7866 (2015). https://doi.org/10.1002/adma.201503816
C. Ma, K. Dai, H. Hou, X. Ji, L. Chen, D.G. Ivey, W. Wei, High ion-conducting solid-state composite electrolytes with carbon quantum dot nanofillers. Adv. Sci. 5, 1700996 (2018). https://doi.org/10.1002/advs.201700996
L. Zhang, Y. Yang, M.A. Ziaee, K. Lu, R. Wang, Nanohybrid of carbon quantum dots/molybdenum phosphide nanoparticle for efficient electrochemical hydrogen evolution in alkaline medium. ACS Appl. Mater. Interfaces 10, 9460–9467 (2018). https://doi.org/10.1021/acsami.8b00211
X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126, 12736–12737 (2004). https://doi.org/10.1021/ja040082h
X. Yun, J. Li, X. Chen, H. Chen, L. Xiao, K. Xiang, W. Chen, H. Liao, Y. Zhu, Porous Fe2O3 modified by nitrogen-doped carbon quantum dots/reduced graphene oxide composite aerogel as a high-capacity and high-rate anode material for alkaline aqueous batteries. ACS Appl. Mater. Interfaces 11, 36970–36984 (2019). https://doi.org/10.1021/acsami.9b12827
Q. Liang, W. Ma, Y. Shi, Z. Li, X. Yang, Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon 60, 421–428 (2013). https://doi.org/10.1016/j.carbon.2013.04.055
H. Peng, J. Travas-Sejdic, Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem. Mater. 21, 5563–5565 (2009). https://doi.org/10.1021/cm901593y
A.B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, M. Karakassides, E.P. Giannelis, Surface functionalized carbogenic quantum dots. Small 4, 455–458 (2008). https://doi.org/10.1002/smll.200700578
R. Liu, D. Wu, S. Liu, K. Koynov, W. Knoll, Q. Li, An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem. Int. Ed. 48, 4598–4601 (2009). https://doi.org/10.1002/anie.200900652
H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, X. Yang, Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. 34, 5118–5120 (2009). https://doi.org/10.1039/B907612C
X. Jia, X. Ji, Electrochemical probing of carbon quantum dots: not suitable for a single electrode material. RSC Adv. 5, 107270–107275 (2015). https://doi.org/10.1039/C5RA24625C
T.-Y. Wei, C.-H. Chen, H.-C. Chien, S.-Y. Lu, C.-C. Hu, A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv. Mater. 22, 347–351 (2010). https://doi.org/10.1002/adma.200902175
G. He, M. Qiao, W. Li, Y. Lu, T. Zhao, R. Zou, B. Li, J.A. Darr, J. Hu, M.-M. Titirici, I.P. Parkin, S, N-Co-doped graphene-nickel cobalt sulfide aerogel: improved energy storage and electrocatalytic performance. Adv. Sci. 4, 1600214 (2017). https://doi.org/10.1002/advs.201600214
Y. Wang, Z. Chen, T. Lei, Y. Ai, Z. Peng, X. Yan, H. Li, J. Zhang, Z.M. Wang, Y.-L. Chueh, Hollow NiCo2S4 nanospheres hybridized with 3D hierarchical porous rGO/Fe2O3 composites toward high-performance energy storage device. Adv. Energy Mater. 8, 1703453 (2018). https://doi.org/10.1002/aenm.201703453
W. Liu, H. Niu, J. Yang, K. Cheng, K. Ye, K. Zhu, G. Wang, D. Cao, J. Yan, Ternary transition metal sulfides embedded in graphene nanosheets as both the anode and cathode for high-performance asymmetric supercapacitors. Chem. Mater. 30, 1055–1068 (2018). https://doi.org/10.1021/acs.chemmater.7b04976
S. Tang, B. Zhu, X. Shi, J. Wu, X. Meng, General controlled sulfidation toward achieving novel nanosheet-built porous square-FeCo2S4-tube arrays for high-performance asymmetric all-solid-state pseudocapacitors. Adv. Energy Mater. 7, 1601985 (2017). https://doi.org/10.1002/aenm.201601985
H. Khani, D.O. Wipf, Iron oxide nanosheets and pulse-electrodeposited Ni–Co–S nanoflake arrays for high-performance charge storage. ACS Appl. Mater. Interfaces 9, 6967–6978 (2017). https://doi.org/10.1021/acsami.6b11498
F. Lu, M. Zhou, W. Li, Q. Weng, C. Li, Y. Xue, X. Jiang, X. Zeng, Y. Bando, D. Golberg, Engineering sulfur vacancies and impurities in NiCo2S4 nanostructures toward optimal supercapacitive performance. Nano Energy 26, 313–323 (2016). https://doi.org/10.1016/j.nanoen.2016.05.042
B.Y. Guan, L. Yu, X. Wang, S. Song, X.W. Lou, Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv. Mater. 29, 1605051 (2017). https://doi.org/10.1002/adma.201605051
D. Bhattacharjya, A. Sinhamahapatra, J.-J. Ko, J.-S. Yu, High capacity and exceptional cycling stability of ternary metal sulfide nanorods as Li ion battery anodes. Chem. Commun. 51, 13350–13353 (2015). https://doi.org/10.1039/C5CC04289E
H. Li, G. Xu, J. Wang, L. Shen, H. Dou, X. Zhang, NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv. Energy Mater. 5, 1400977 (2015). https://doi.org/10.1002/aenm.201400977
Y. Cui, J. Zhang, C. Jin, Y. Liu, W. Luo, W. Zheng, Ionic liquid-controlled growth of NiCo2S4 3D hierarchical hollow nanoarrow arrays on Ni foam for superior performance binder free hybrid supercapacitors. Small 15, 1804318 (2019). https://doi.org/10.1002/smll.201804318
J. Yang, C. Yu, X. Fan, S. Liang, S. Li, H. Huang, Z. Ling, C. Hao, J. Qiu, Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high performance asymmetric supercapacitors. Energy Environ. Sci. 9, 1299–1307 (2016). https://doi.org/10.1039/C5EE03633J
D. Li, Y. Gong, C. Pan, Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors. Sci. Rep. 6, 29788 (2016). https://doi.org/10.1038/srep29788
J. Zhou, C. Booker, R. Li, X. Zhou, T.-K. Sham, X. Sun, Z. Ding, An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc. 129, 744–745 (2007). https://doi.org/10.1021/ja0669070
Y. Dong, N. Zhou, X. Lin, J. Lin, Y. Chi, G. Chen, Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chem. Mater. 22, 5895–5899 (2010). https://doi.org/10.1021/cm1018844
F. Yuan, T. Yuan, L. Sui, Z. Wang, Z. Xi, Y. Li, X. Li, L. Fan, Z. Tan, A. Chen, M. Jin, S. Yang, Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 9, 2249 (2018). https://doi.org/10.1038/s41467-018-04635-5
Y. Si, E.T. Samulski, Synthesis of water soluble graphene. Nano Lett. 8, 1679–1682 (2008). https://doi.org/10.1021/nl080604h
H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C.H.A. Tsang, X. Yang, S.-T. Lee, Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 49, 4430–4434 (2010). https://doi.org/10.1002/anie.200906154
C. Wei, Y. Huang, S. Xue, X. Zhang, X. Chen, J. Yan, W. Yao, One-step hydrothermal synthesis of flaky attached hollow-sphere structure NiCo2S4 for electrochemical capacitor application. Chem. Eng. J. 317, 873–881 (2017). https://doi.org/10.1016/j.cej.2017.02.130
Q. Liu, J. Jin, J. Zhang, NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces 5, 5002–5008 (2013). https://doi.org/10.1021/am4007897
G. Qiuyue, X. Wang, Z. Shi, Z. Ye, W. Wang, N. Zhang, Z. Hong, M. Zhi, Synthesis of porous NiCo2S4 aerogel for supercapacitor electrode and oxygen evolution reaction electrocatalyst. Chem. Eng. J. 331, 185–193 (2018). https://doi.org/10.1016/j.cej.2017.08.067
D. Yuan, G. Huang, D. Yin, X. Wang, C. Wang, L. Wang, Metal-organic framework template synthesis of NiCo2S4@C encapsulated in hollow nitrogen-doped carbon cubes with enhanced electrochemical performance for lithium storage. ACS Appl. Mater. Interfaces 9, 18178–18186 (2017). https://doi.org/10.1021/acsami.7b02176
S. Li, P. Ge, F. Jiang, H. Shuai, W. Xu, Y. Jiang, Y. Zhang, J. Hu, H. Hou, X. Ji, The advance of nickel-cobalt-sulfide as ultra-fast/high sodium storage materials: the influences of morphology structure, phase evolution and interface property. Energy Storage Mater. 16, 267–280 (2019). https://doi.org/10.1016/j.ensm.2018.06.006
Y. Zheng, J. Xu, X. Yang, Y. Zhang, Y. Shang, X. Hu, Decoration NiCo2S4 nanoflakes onto Ppy nanotubes as core-shell heterostructure material for high-performance asymmetric supercapacitor. Chem. Eng. J. 333, 111–121 (2018). https://doi.org/10.1016/j.cej.2017.09.155
S.N. Tiruneh, B.K. Kang, S.H. Kwag, Y. Lee, M. Kim, D.H. Yoon, Synergistically active NiCo2S4 nanoparticles coupled with holey defect graphene hydrogel for high-performance solid-state supercapacitors. Chem. Eur. J. 24, 1–9 (2018). https://doi.org/10.1002/chem.201705445
R. Jia, F. Zhu, S. Sun, T. Zhai, H. Xia, Dual support ensuring high-energy supercapacitors via high-performance NiCo2S4@Fe2O3 anode and working potential enlarged MnO2 cathode. J. Power Sources 341, 427–434 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.014
B. Li, Z. Tian, H. Li, Z. Yang, Y. Wang, X. Wang, Self-supporting graphene aerogel electrode intensified by NiCo2S4 nanoparticles for asymmetric supercapacitor. Electrochim. Acta 314, 32–39 (2019). https://doi.org/10.1016/j.electacta.2019.05.040
Y. Zhu, X. Ji, Z. Wu, Y. Liu, NiCo2S4 hollow microsphere decorated by acetylene black for high-performance asymmetric supercapacitor. Electrochim. Acta 186, 562–571 (2015). https://doi.org/10.1016/j.electacta.2015.10.176
X. Liang, K. Nie, X. Ding, L. Dang, J. Sun et al., Highly compressible carbon sponge supercapacitor electrode with enhanced performance by growing nickel-cobalt sulfide nanosheets. ACS Appl. Mater. Interfaces 10, 10087–10095 (2018). https://doi.org/10.1021/acsami.7b19043
Y.-M. Fan, Y. Liu, X. Liu, Y. Liu, L.-Z. Fan, Hierarchical porous NiCo2S4-rGO composites for high-performance supercapacitors. Electrochim. Acta 249, 1–8 (2017). https://doi.org/10.1016/j.electacta.2017.07.175
Y. Shen, K. Zhang, B. Chen, F. Yang, K. Xu, X. Lu, Enhancing the electrochemical performance of nickel cobalt sulphides hollow nanospheres by structural modulation for asymmetric supercapacitors. J. Colloid Interf. Sci. 557, 135–143 (2019). https://doi.org/10.1016/j.jcis.2019.09.007
X. Yun, S. Wu, J. Li, L. Li, J. Zhou, P. Lu, H. Tang, Y. Zhu, Facile synthesis of crystalline RuSe2 nanoparticles as a novel pseudocapacitive electrode material for supercapacitors. Chem. Commun. 55, 12320–12323 (2019). https://doi.org/10.1039/c9cc06023e
Y. Zhu, Z. Huang, Z. Hu, L. Xi, X. Ji, Y. Liu, 3D Interconnected ultrathin cobalt selenide nanosheets as cathode materials for hybrid supercapacitors. Electrochim. Acta 269, 30–37 (2018). https://doi.org/10.1016/j.electacta.2018.02.146
Y. Wang, C. Shen, L. Niu, R. Li, H. Guo, Y. Shi, C. Li, X. Liu, Y. Gong, Hydrothermal synthesis of CuCo2O4/CuO nanowire arrays and RGO/Fe2O3 composites for high-performance aqueous asymmetric supercapacitors. J. Mater. Chem. A 4, 9977–9985 (2016). https://doi.org/10.1039/C6TA02950G
Y. Li, J. Xu, T. Feng, Q. Yao, J. Xie, H. Xia, Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors. Adv. Funct. Mater. 27, 1606728 (2017). https://doi.org/10.1002/adfm.201606728
L. Liu, J. Lang, P. Zhang, B. Hu, X. Yan, Facile synthesis of Fe2O3 nano-dots@nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte. ACS Appl. Mater. Interfaces 8, 9335–9344 (2016). https://doi.org/10.1021/acsami.6b00225
F. Yang, T. Qiu, C. Chi, S. Liang, L. Deng, X. Wang, C. Wang, J. Fu, Y. Wang, Y. Li, Synergistic effects of nitrogen-doped graphene and Fe2O3 nanocomposites in catalytic oxidization of aldehyde with O2. Chem. Eng. J. 330, 880–889 (2017). https://doi.org/10.1016/j.cej.2017.08.022
H. Xia, C. Hong, B. Li, B. Zhao, Z. Lin, M. Zheng, S.V. Savilov, S.M. Aldoshin, Facile synthesis of hematite quantum-dot/functionalized graphene-sheet composites as advanced anode materials for asymmetric supercapacitors. Adv. Funct. Mater. 25, 627–635 (2015). https://doi.org/10.1002/adfm.201403554
Y. Zhu, S. Cheng, W. Zhou, J. Jia, L. Yang, M. Yao, M. Wang, J. Zhou, P. Wu, M. Liu, Construction and performance characterization of α-Fe2O3/rGO composite for long-cycling-life supercapacitor anode. ACS Sustainable Chem. Eng. 5, 5067–5074 (2017). https://doi.org/10.1021/acssuschemeng.7b00445
Q.X. Low, G.W. Ho, Facile structural tuning and compositing of iron oxide-graphene anode towards enhanced supacapacitive performance. Nano Energy 5, 28–35 (2014). https://doi.org/10.1016/j.nanoen.2014.01.002
X. Xu, W. Shi, P. Li, S. Ye, C. Ye, H. Ye, T. Lu, A. Zheng, J. Zhu, L. Xu, M. Zhong, X. Cao, Facile fabrication of three-dimensional graphene and metal-organic framework composites and their derivatives for flexible all-solid-state supercapacitors. Chem. Mater. 29, 6058–6065 (2017). https://doi.org/10.1021/acs.chemmater.7b01947
Y. Zeng, Y. Han, Y. Zhao, Y. Zeng, M. Yu, Y. Liu, H. Tang, Y. Tong, X. Lu, Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv. Energy Mater. 5, 1402176 (2015). https://doi.org/10.1002/aenm.201402176
H.B. Li, M.H. Yu, F.X. Wang, P. Liu, Y. Liang et al., Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 4, 1894 (2013). https://doi.org/10.1038/ncomms2932
J. Huang, J. Wei, Y. Xu, Y. Xiao, Y. Chen, A pinecone-inspired hierarchical vertically aligned nanosheet array electrode for high-performance asymmetric supercapacitors. J. Mater. Chem. A 5, 23349–23360 (2017). https://doi.org/10.1039/C7TA07868D
F. Yu, Z. Chang, X. Yuan, F. Wang, Y. Zhu et al., Ultrathin NiCo2S4@graphene with a core-shell structure as a high performance positive electrode for hybrid supercapacitors. J. Mater. Chem. A 6, 5856–5861 (2018). https://doi.org/10.1039/C8TA00835C
X. Wang, S.-X. Zhao, L. Dong, Q.-L. Lu, J. Zhu, C.-W. Nan, One-step synthesis of surface-enriched nickel cobalt sulfide nanoparticles on graphene for high-performance supercapacitors. Energy Storage Mater. 6, 180–187 (2017). https://doi.org/10.1016/j.ensm.2016.11.005
G. Sun, H. Xie, J. Ran, L. Ma, X. Shen, J. Hu, H. Tong, Rational design of uniformly embedded metal oxide nanoparticles into nitrogen-doped carbon aerogel for high-performance asymmetric supercapacitors with a high operating voltage window. J. Mater. Chem. A 4, 16576–16587 (2016). https://doi.org/10.1039/C6TA07240B