Metal–Organic Framework Materials for Electrochemical Supercapacitors
Corresponding Author: Guoqiang Zou
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 181
Abstract
Exploring new materials with high stability and capacity is full of challenges in sustainable energy conversion and storage systems. Metal–organic frameworks (MOFs), as a new type of porous material, show the advantages of large specific surface area, high porosity, low density, and adjustable pore size, exhibiting a broad application prospect in the field of electrocatalytic reactions, batteries, particularly in the field of supercapacitors. This comprehensive review outlines the recent progress in synthetic methods and electrochemical performances of MOF materials, as well as their applications in supercapacitors. Additionally, the superiorities of MOFs-related materials are highlighted, while major challenges or opportunities for future research on them for electrochemical supercapacitors have been discussed and displayed, along with extensive experimental experiences.
Highlights:
1 The classification of metal–organic frameworks (MOFs) is summarized: MOFs can be divided into one, two and three dimensions based on the skeletal structure, MOFs can be divided into isoreticular metal organic frameworks, zeolitic imidazolate frameworks, and so on according to the ligand.
2 The preparation methods of MOFs are reviewed, which can be divided into traditional one pot method and the emerging preparation methods.
3 The application of MOF materials, MOF composite materials, and MOFs-derived materials in supercapacitor is emphasized.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F.B. Ajdari, E. Kowsari, M.N. Shahrak, A. Ehsani, Z. Kiaei et al., A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors. Coord. Chem. Rev. 422, 213441 (2020). https://doi.org/10.1016/j.ccr.2020.213441
- F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini et al., Graphene related two-dimensional crystals and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015). https://doi.org/10.1126/science.1246501
- L. Zhao, Z. Liu, D. Chen, F. Liu, Z. Yang et al., Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett. 13, 49 (2021). https://doi.org/10.1007/s40820-020-00577-0
- W. He, Z. Liang, K. Ji, Q. Sun, T. Zhai et al., Hierarchical Ni-Co-S@Ni-W-O core–shell nanosheet arrays on nickel foam for high-performance asymmetric supercapacitors. Nano Res. 11, 1415–1425 (2018). https://doi.org/10.1007/s12274-017-1757-2
- X. Xiao, X. Duan, Z. Song, X. Deng, W. Deng et al., High-throughput production of cheap mineral-based heterostructures for high power sodium ion capacitors. Adv. Funct. Mater. 32(18), 2110476 (2022). https://doi.org/10.1002/adfm.202110476
- J. Jin, X. Geng, Q. Chen, T. Ren, A better Zn-ion storage device: recent progress for Zn-ion hybrid supercapacitors. Nano-Micro Lett. 14, 64 (2022). https://doi.org/10.1007/s40820-022-00793-w
- J. Yang, Z. Ma, W. Gao, M. Wei, Layered structural Co-based MOF with conductive network frames as a new supercapacitor electrode. Chemistry 23, 631–636 (2017). https://doi.org/10.1002/chem.201604071
- L. Zhang, X. Hu, Z. Wang, F. Sun, D.G. Dorrell, A review of supercapacitor modeling, estimation, and applications: a control/management perspective. Renew. Sustain. Energy Rev. 81, 1868–1878 (2018). https://doi.org/10.1016/j.rser.2017.05.283
- Y. Zhu, C. Huang, C. Li, M. Fan, K. Shu et al., Strong synergetic electrochemistry between transition metals of α phase Ni−Co−Mn hydroxide contributed superior performance for hybrid supercapacitors. J. Power Sources 412, 559–567 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.080
- D. Sheberla, J.C. Bachman, J.S. Elias, C.J. Sun, Y. Shao-Horn et al., Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220–224 (2017). https://doi.org/10.1038/nmat4766
- C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44(21), 7484–7539 (2015). https://doi.org/10.1039/c5cs00303b
- X. Feng, X. Shi, J. Ning, D. Wang, J. Zhang et al., Recent advances in micro-supercapacitors for AC line-filtering performance: from fundamental models to emerging applications. eScience 1, 124–140 (2021). https://doi.org/10.1016/j.esci.2021.11.005
- S. Cao, H. Zhang, Y. Zhao, Y. Zhao, Pillararene/calixarene-based systems for battery and supercapacitor applications. eScience 1, 28–43 (2021). https://doi.org/10.1016/j.esci.2021.10.001
- G. Gao, S. Yang, S. Wang, L. Li, Construction of 3D porous MXene supercapacitor electrode through a dual-step freezing strategy. Scr. Mater. 213, 114605 (2022). https://doi.org/10.1016/j.scriptamat.2022.114605
- H. Liu, X. Liu, S. Wang, H. Liu, L. Li, Transition metal based battery-type electrodes in hybrid supercapacitors: a review. Energy Storage Mater. 28, 122–145 (2020). https://doi.org/10.1016/j.ensm.2020.03.003
- R. Reece, C. Lekakou, P.A. Smith, A high-performance structural supercapacitor. ACS Appl. Mater. Interfaces 12(23), 25683–25692 (2020). https://doi.org/10.1021/acsami.9b23427
- Y. Shen, X. Wang, H. Hu, B. Jiang, Y. Bai et al., Sheet-like structure FeF3/graphene composite as novel cathode material for Na ion batteries. RSC Adv. 5(48), 38277–38383 (2015). https://doi.org/10.1039/C5RA02235E
- M. Yu, X. Feng, Thin-film electrode-based supercapacitors. Joule 3, 338–360 (2019). https://doi.org/10.1016/j.joule.2018.12.012
- Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang et al., Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118(18), 9233–9280 (2018). https://doi.org/10.1021/acs.chemrev.8b00252
- L. Yang, B. Gu, Z. Chen, Y. Yue, W. Wang et al., Synthetic biopigment supercapacitors. ACS Appl. Mater. Interfaces 11(33), 30360–30367 (2019). https://doi.org/10.1021/acsami.9b10956
- P. Kong, L. Zhu, F. Li, G. Xu, Self-supporting electrode composed of SnSe nanosheets, thermally treated protein, and reduced graphene oxide with enhanced pseudocapacitance for advanced sodium-ion batteries. Chem. Electro. Chem. 6, 5642–5650 (2019). https://doi.org/10.1002/celc.201901517
- J. Wang, G. Liu, K. Fan, D. Zhao, B. Liu et al., N-doped carbon coated anatase TiO2 nanops as superior Na-ion battery anodes. J. Colloid Interface Sci. 517, 134–143 (2018). https://doi.org/10.1016/j.jcis.2018.02.001
- J. Jiang, B. Liu, G. Liu, D. Qian, C. Yang et al., A systematically comparative study on LiNO3 and Li2SO4 aqueous electrolytes for electrochemical double-layer capacitors. Electrochim. Acta 274, 121–130 (2018). https://doi.org/10.1016/j.electacta.2018.04.097
- J. Jiang, G. Tan, S. Peng, D. Qian, J. Liu et al., Electrochemical performance of carbon-coated Li3V2(PO4)3 as a cathode material for asymmetric hybrid capacitors. Electrochim. Acta 107, 59–65 (2013). https://doi.org/10.1016/j.electacta.2013.06.051
- Z. Fu, X. Li, G. Xu, Novel electrospun SnO2@carbon nanofibers as high performance anodes for lithium-ion batteries. Cryst. Res. Technol. 49, 441–445 (2014). https://doi.org/10.1002/crat.201300211
- Y. Li, X. Wu, S. Wang, W. Wang, Y. Xiang et al., Surfactant-assisted solvothermal synthesis of NiCo2O4 as an anode for lithium-ion batteries. RSC Adv. 7(59), 36909–36916 (2017). https://doi.org/10.1039/C7RA06172B
- Z. Song, G. Zhang, X. Deng, K. Zou, X. Xiao et al., Ultra-low-dose pre-metallation strategy served for commercial metal-ion capacitors. Nano-Micro Lett. 14, 53 (2022). https://doi.org/10.1007/s40820-022-00792-x
- K. Zou, P. Cai, B. Wang, C. Liu, J. Li et al., Insights into enhanced capacitive behavior of carbon cathode for lithium ion capacitors: the coupling of pore size and graphitization engineering. Nano-Micro Lett. 12, 121 (2020). https://doi.org/10.1007/s40820-020-00458-6
- F. Song, J. Hu, G. Li, J. Wang, S. Chen et al., Room-temperature assembled MXene-based aerogels for high mass-loading sodium-ion storage. Nano-Micro Lett. 14, 37 (2022). https://doi.org/10.1007/s40820-021-00781-6
- Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13, 203 (2021). https://doi.org/10.1007/s40820-021-00726-z
- J. Yang, X. Wang, W. Dai, X. Lian, X. Cui et al., From micropores to ultra-micropores inside hard carbon: toward enhanced capacity in room-/low-temperature sodium-ion storage. Nano-Micro Lett. 13, 98 (2021). https://doi.org/10.1007/s40820-020-00587-y
- X. Sheng, T. Li, M. Sun, G. Liu, Q. Zhang et al., Flexible electrospun iron compounds/carbon fibers: phase transformation and electrochemical properties. Electrochim. Acta 407, 139892 (2022). https://doi.org/10.1016/j.electacta.2022.139892
- D. Li, L. Chen, L. Chen, Q. Sun, M. Zhu et al., Potassium gluconate-derived N/S Co-doped carbon nanosheets as superior electrode materials for supercapacitors and sodium-ion batteries. J. Power Sources 414, 308–316 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.091
- M.A. Deyab, A.E. Awadallah, H.A. Ahmed, Q. Mohsen, Progress study on nickel ferrite alloy-graphene nanosheets nanocomposites as supercapacitor electrodes. J. Power Sources 46, 103926 (2022). https://doi.org/10.1016/j.est.2021.103926
- K.A. Sammed, L. Pan, M. Asif, M. Usman, T. Cong et al., Reduced holey graphene oxide film and carbon nanotubes sandwich structure as a binder-free electrode material for supercapcitor. Sci. Rep. 10, 2315 (2020). https://doi.org/10.1038/s41598-020-58162-9
- C.C. Shih, Y.C. Lin, M. Gao, M. Wu, H.C. Hsieh et al., A rapid and green method for the fabrication of conductive hydrogels and their applications in stretchable supercapacitors. J. Power Sources 426, 205–215 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.030
- Y. Li, Y. Xu, Y. Liu, H. Pang, Exposing 001 crystal plane on hexagonal Ni-MOF with surface-grown cross-linked mesh-structures for electrochemical energy storage. Small 15(36), 1902463 (2019). https://doi.org/10.1002/smll.201902463
- W. Yang, X. Shi, Y. Li, H. Pang, Manganese-doped cobalt zeolitic imidazolate framework with highly enhanced performance for supercapacitor. J. Energy Storage 26, 101018 (2019). https://doi.org/10.1016/j.est.2019.101018
- P. Pachfule, D. Shinde, M. Majumder, Q. Xu, Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nat. Chem. 8, 718–724 (2016). https://doi.org/10.1038/nchem.2515
- S. Yang, S. Park, Y. Kang, MOF-derived CoSe2@N-doped carbon matrix confined in hollow mesoporous carbon nanospheres as high-performance anodes for potassium-ion batteries. Nano-Micro Lett. 13, 9 (2021). https://doi.org/10.1007/s40820-020-00539-6
- C.C. Hou, Q. Xu, Metal–organic frameworks for energy. Adv. Energy Mater. 9(23), 1801307 (2018). https://doi.org/10.1002/aenm.201801307
- B. Cao, H. Liu, X. Zhang, P. Zhang, Q. Zhu et al., MOF-derived ZnS nanodots/Ti3C2Tx MXene hybrids boosting superior lithium storage performance. Nano-Micro Lett. 13, 202 (2021). https://doi.org/10.1007/s40820-021-00728-x
- Y. Zhu, K. Yue, C. Xia, S. Zaman, H. Yang et al., Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc-air batteries. Nano-Micro Lett. 13, 137 (2021). https://doi.org/10.1007/s40820-021-00669-5
- Z.X. Cai, Z.L. Wang, J. Kim, Y. Yamauchi, Hollow functional materials derived from metal–organic frameworks: synthetic strategies, conversion mechanisms, and electrochemical applications. Adv. Mater. 31(11), 1804903 (2019). https://doi.org/10.1002/adma.201804903
- A. Indra, T. Song, U. Paik, Metal–organic framework derived materials: progress and prospects for the energy conversion and storage. Adv. Mater. 30(39), 1705146 (2018). https://doi.org/10.1002/adma.201705146
- J.S. Park, J.H. Kim, S.J. Yang, Rational design of metal–organic framework based materials for advanced LiS batteries. Bull. Korean Chem. Soc. 42(2), 148–158 (2020). https://doi.org/10.1002/bkcs.12184
- S. Cheng, S. Liu, Q. Zhao, J. Li, Improved synthesis and hydrogen storage of a microporous metal–organic framework material. Energy Convers. Manag. 50, 1314–1317 (2009). https://doi.org/10.1016/j.enconman.2009.01.014
- M. Latroche, S. Surble, C. Serre, C. Mellot-Draznieks, P.L. Llewellyn et al., Hydrogen storage in the giant-pore metal–organic frameworks MIL-100 and MIL-101. Angew. Chem. Int. Ed. 45(48), 8227–8231 (2006). https://doi.org/10.1002/anie.200600105
- X. Wu, J. Ge, C. Yang, M. Hou, Z. Liu, Facile synthesis of multiple enzyme-containing metal–organic frameworks in a biomolecule-friendly environment. Chem. Commun. 51, 13408–13411 (2015). https://doi.org/10.1039/c5cc05136c
- B. Yu, G. Ye, Z. Zeng, L. Zhang, J. Chen et al., Mussel-inspired polydopamine chemistry to modulate template synthesis of 1D metal–organic framework superstructures. J. Mater. Chem. A 6(43), 21567–21576 (2018). https://doi.org/10.1039/c8ta08514e
- D. Feng, T. Lei, M.R. Lukatskaya, J. Park, Z. Huang et al., Robust and conductive two-dimensional metal–organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 3, 30–36 (2018). https://doi.org/10.1038/s41560-017-0044-5
- H. Dong, H. Gao, J. Geng, X. Hou, S. Gao et al., Quinone-based conducting three-dimensional metal–organic framework as a cathode material for lithium-ion batteries. J. Phys. Chem. C 125, 20814–20820 (2021). https://doi.org/10.1021/acs.jpcc.1c06870
- Y. Yoo, Z. Lai, H.K. Jeong, Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth. Microporous Mesoporous Mater. 123, 100–106 (2009). https://doi.org/10.1016/j.micromeso.2009.03.036
- K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. PNAS 103, 10186–10191 (2006). https://doi.org/10.1073/pnas.0602439103
- V.V. Butova, A.P. Budnyk, E.A. Bulanova, C. Lamberti, A.V. Soldatov, Hydrothermal synthesis of high surface area ZIF-8 with minimal use of TEA. Solid State Sci. 69, 13–21 (2017). https://doi.org/10.1016/j.solidstatesciences.2017.05.002
- M. Latroche, S. Surblé, C. Serre, C. Mellot-Draznieks, P.L. Llewellyn et al., Hydrogen storage in the giant-pore metal–organic frameworks MIL-100 and MIL-101. Angew. Chem. 118(48), 8407–8411 (2006). https://doi.org/10.1002/ange.200600105
- D. Yuan, D. Zhao, D. Sun, H.C. Zhou, An isoreticular series of metal–organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem. Int. Ed. 49(31), 5357–5361 (2010). https://doi.org/10.1002/anie.201001009
- J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti et al., A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130(42), 13850–13851 (2008). https://doi.org/10.1021/ja8057953
- L. Sun, H. Xing, J. Xu, Z. Liang, J. Yu et al., A novel (3,3,6)-connected luminescent metal–organic framework for sensing of nitroaromatic explosives. Dalton Trans. 42, 5508–5513 (2013). https://doi.org/10.1039/c3dt32851a
- Y.K. Seo, G. Hundal, I.T. Jang, Y.K. Hwang, C.H. Jun et al., Microwave synthesis of hybrid inorganic–organic materials including porous Cu3(BTC)2 from Cu(II)-trimesate mixture. Microporous Mesoporous Mater. 119, 331–337 (2009). https://doi.org/10.1016/j.micromeso.2008.10.035
- D. Lv, Y. Chen, Y. Li, R. Shi, H. Wu et al., Efficient mechanochemical synthesis of MOF-5 for linear alkanes adsorption. J. Chem. Eng. Data 62, 2030–2036 (2017). https://doi.org/10.1021/acs.jced.7b00049
- S.H. Mosavi, R. Zare-Dorabei, M. Bereyhi, Rapid and effective ultrasonic-assisted adsorptive removal of congo red onto MOF-5 modified by CuCl2 in ambient conditions: adsorption isotherms and kinetics studies. ChemistrySelect 6(18), 4432–4439 (2021). https://doi.org/10.1002/slct.202100540
- H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999). https://doi.org/10.1038/46248
- M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter et al., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(5554), 469–472 (2002). https://doi.org/10.1126/science.1067208
- X. Wu, Z. Bao, B. Yuan, J. Wang, Y. Sun et al., Microwave synthesis and characterization of MOF-74 (M=Ni, Mg) for gas separation. Microporous Mesoporous Mater. 180, 114–122 (2013). https://doi.org/10.1016/j.micromeso.2013.06.023
- S.H. Jhung, J.H. Lee, J.S. Chang, Microwave synthesis of a nanoporous hybrid material, chromium trimesate. Bull. Korean Chem. Soc. 26(6), 880–881 (2005). https://doi.org/10.5012/bkcs.2005.26.6.880
- S.H. Jhung, J.H. Lee, J.W. Yoon, C. Serre, G. Férey et al., Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv. Mater. 19(1), 121–124 (2007). https://doi.org/10.1002/adma.200601604
- U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt et al., metal–organic frameworks prospective industrial applications. J. Mater. Chem. 16(7), 626–636 (2006). https://doi.org/10.1039/b511962f
- A. Pichon, A. Lazuen-Garay, S.L. James, Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 8(3), 211–214 (2006). https://doi.org/10.1039/b513750k
- Z. Li, L. Qiu, T. Xu, Y. Wu, W. Wang et al., Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: an efficient and environmentally friendly method. Mater. Lett. 63(1), 78–80 (2009). https://doi.org/10.1016/j.matlet.2008.09.010
- S. Laha, A. Chakraborty, T.K. Maji, Synergistic role of microwave and perturbation toward synthesis of hierarchical porous MOFs with tunable porosity. Inorg. Chem. 59, 3775–3782 (2020). https://doi.org/10.1021/acs.inorgchem.9b03422
- A.D. Katsenis, A. Puskaric, V. Strukil, C. Mottillo, P.A. Julien et al., In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal–organic framework. Nat. Commun. 6, 6662 (2015). https://doi.org/10.1038/ncomms7662
- A. Carne-Sanchez, I. Imaz, M. Cano-Sarabia, D. Maspoch, A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures. Nat. Chem. 5, 203–211 (2013). https://doi.org/10.1038/nchem.1569
- M. Bosch, S. Yuan, W. Rutledge, H.C. Zhou, Stepwise synthesis of metal–organic frameworks. Acc. Chem. Res. 50(4), 857–865 (2017). https://doi.org/10.1021/acs.accounts.6b00457
- H.Q. Xu, K. Wang, M. Ding, D. Feng, H.L. Jiang et al., Seed-mediated synthesis of metal–organic frameworks. J. Am. Chem. Soc. 138(16), 5316–5320 (2016). https://doi.org/10.1021/jacs.6b01414
- G. Cai, W. Zhang, L. Jiao, S.H. Yu, H.L. Jiang, Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting. Chem 2(6), 791–802 (2017). https://doi.org/10.1016/j.chempr.2017.04.016
- C. Duan, J. Huo, F. Li, M. Yang, H. Xi, Ultrafast room-temperature synthesis of hierarchically porous metal–organic frameworks by a versatile cooperative template strategy. J. Mater. Sci. 53, 16276–16287 (2018). https://doi.org/10.1007/s10853-018-2793-3
- O.M. Yaghi, G. Li, H. Li, Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703–706 (1995). https://doi.org/10.1038/378703a0
- D.Y. Lee, S.J. Yoon, N.K. Shrestha, S.H. Lee, H. Ahn et al., Unusual energy storage and charge retention in Co-based metal–organic frameworks. Microporous Mesoporous Mater. 153, 163–165 (2012). https://doi.org/10.1016/j.micromeso.2011.12.040
- D.Y. Lee, D.V. Shinde, E.K. Kim, W. Lee, I.W. Oh et al., Supercapacitive property of metal–organic frameworks with different pore dimensions and morphology. Microporous Mesoporous Mater. 171, 53–57 (2013). https://doi.org/10.1016/j.micromeso.2012.12.039
- R. Abazari, S. Sanati, A. Morsali, A. Slawin, L.C. Carpenter-Warren, Dual-purpose 3D pillared metal–organic framework with excellent properties for catalysis of oxidative desulfurization and energy storage in asymmetric supercapacitor. ACS Appl. Mater. Interfaces 11(16), 14759–14773 (2019). https://doi.org/10.1021/acsami.9b00415
- Y. Zhou, Y. Xu, B. Lu, J. Guo, S. Zhang et al., Schiff base-functionalized cobalt-based metal organic framework microspheres with a sea urchin-like structure for supercapacitor electrode material. J. Electroanal. Chem. 847, 113248 (2019). https://doi.org/10.1016/j.jelechem.2019.113248
- P. Du, Y. Dong, C. Liu, W. Wei, D. Liu et al., Fabrication of hierarchical porous nickel based metal–organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor. J. Colloid Interface Sci. 518, 57–68 (2018). https://doi.org/10.1016/j.jcis.2018.02.010
- L. Kang, S.X. Sun, L.B. Kong, J.W. Lang, Y.C. Luo, Investigating metal–organic framework as a new pseudo-capacitive material for supercapacitors. Chin. Chem. Lett. 25, 957–961 (2014). https://doi.org/10.1016/j.cclet.2014.05.032
- C. Qu, Y. Jiao, B. Zhao, D. Chen, R. Zou et al., Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study. Nano Energy 26, 66–73 (2016). https://doi.org/10.1016/j.nanoen.2016.04.003
- L. Deng, H. Qu, Y. Zhang, S. Jiao, X. Zhang et al., Temperature effect on the synthesis of two Ni-MOFs with distinct performance in supercapacitor. J. Solid State Chem. 281, 121026 (2020). https://doi.org/10.1016/j.jssc.2019.121026
- J. Yang, P. Xiong, C. Zheng, H. Qiu, M. Wei, metal–organic frameworks: a new promising class of materials for a high performance supercapacitor electrode. J. Mater. Chem. A 2(39), 16640–16644 (2014). https://doi.org/10.1039/c4ta04140b
- Y. Yan, P. Gu, S. Zheng, M. Zheng, H. Pang et al., Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J. Mater. Chem. A 4(48), 19078–19085 (2016). https://doi.org/10.1039/c6ta08331e
- C. Liao, Y. Zuo, W. Zhang, J. Zhao, B. Tang et al., Electrochemical performance of metal–organic framework synthesized by a solvothermal method for supercapacitors. J. Electrochem. 49, 983–986 (2012). https://doi.org/10.1134/s1023193512080113
- Y. Tan, W. Zhang, Y. Gao, J. Wu, B. Tang, Facile synthesis and supercapacitive properties of Zr-metal organic frameworks (UiO-66). RSC Adv. 5(23), 17601–17605 (2015). https://doi.org/10.1039/c4ra11896k
- K.M. Choi, H.M. Jeong, J.H. Park, Y.B. Zhang, J.K. Kang et al., Supercapacitors of nanocrystalline metal–organic frameworks. ACS Nano 8(7), 7451–7457 (2014). https://doi.org/10.1021/nn5027092
- W. Gao, D. Chen, H. Quan, R. Zou, W. Wang et al., Fabrication of hierarchical porous metal–organic framework electrode for aqueous asymmetric supercapacitor. ACS Sustain. Chem. Eng. 5(5), 4144–4153 (2017). https://doi.org/10.1021/acssuschemeng.7b00112
- N. Campagnol, R. Romero-Vara, W. Deleu, L. Stappers, K. Binnemans et al., A hybrid supercapacitor based on porous carbon and the metal–organic framework MIL-100 (Fe). ChemElectroChem 1(7), 1182–1188 (2014). https://doi.org/10.1002/celc.201402022
- Y.Y. Kannangara, U.A. Rathnayake, J.K. Song, Hybrid supercapacitors based on metal organic frameworks using p-phenylenediamine building block. Chem. Eng. J. 361, 1235–1244 (2019). https://doi.org/10.1016/j.cej.2018.12.173
- P.A. Shinde, Y. Seo, S. Lee, H. Kim, Q.N. Pham et al., Layered manganese metal–organic framework with high specific and areal capacitance for hybrid supercapacitors. Chem. Eng. J. 387, 122982 (2020). https://doi.org/10.1016/j.cej.2019.122982
- A.S. Dezfuli, E. Kohan, H.R. Naderi, E. Salehi, Study of the supercapacitive activity of a Eu-MOF as an electrode material. New J. Chem. 43, 9260–9264 (2019). https://doi.org/10.1039/c9nj00980a
- H. Jafari, P. Mohammadnezhad, Z. Khalaj, H.R. Naderi, E. Kohan et al., Terbium metal–organic frameworks as capable electrodes for supercapacitors. New J. Chem. 44, 11615–11621 (2020). https://doi.org/10.1039/d0nj01818j
- X. Chu, F. Meng, T. Deng, Y. Lu, O. Bondarchuk et al., Mechanistic insight into bimetallic CoNi-MOF arrays with enhanced performance for supercapacitors. Nanoscale 12(9), 5669–5677 (2020). https://doi.org/10.1039/c9nr10473a
- X. Zhang, J. Wang, X. Ji, Y. Sui, F. Wei et al., Nickel/cobalt bimetallic metal–organic frameworks ultrathin nanosheets with enhanced performance for supercapacitors. J. Alloys Compd. 825, 154069 (2020). https://doi.org/10.1016/j.jallcom.2020.154069
- Y. Wang, Y. Liu, H. Wang, W. Liu, Y. Li et al., Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes. ACS Appl. Energy Mater. 2(3), 2063–2071 (2019). https://doi.org/10.1021/acsaem.8b02128
- L. Chen, D. Ou, G. Zhang, J. Yan, J. Liu et al., Ni–Co coordination hollow spheres for high performance flexible all-solid-state supercapacitor. Electrochim. Acta 337, 135828 (2020). https://doi.org/10.1016/j.electacta.2020.135828
- C. Chen, M.K. Wu, K. Tao, J.J. Zhou, Y.L. Li et al., Formation of bimetallic metal–organic framework nanosheets and their derived porous nickel-cobalt sulfides for supercapacitors. Dalton Trans. 47, 5639–5645 (2018). https://doi.org/10.1039/c8dt00464a
- F. Xu, N. Chen, Z. Fan, G. Du, Ni/Co-based metal organic frameworks rapidly synthesized in ambient environment for high energy and power hybrid supercapacitors. Appl. Surf. Sci. 528, 146920 (2020). https://doi.org/10.1016/j.apsusc.2020.146920
- Y. Seo, P.A. Shinde, S. Park, S.C. Jun, Self-assembled bimetallic cobalt-manganese metal–organic framework as a highly efficient, robust electrode for asymmetric supercapacitors. Electrochim. Acta 335, 135327 (2020). https://doi.org/10.1016/j.electacta.2019.135327
- X. Kang, Y. Ma, J. Wang, X. Shi, B. Liu et al., Fabrication and properties of coral-like Ni/Mn-MOFs as electrode materials for supercapacitors. J. Mater. Sci. Mater. Electron. 32, 13430–13439 (2021). https://doi.org/10.1007/s10854-021-05921-7
- S.H. Kazemi, B. Hosseinzadeh, H. Kazemi, M.A. Kiani, S. Hajati, Facile synthesis of mixed metal–organic frameworks: electrode materials for supercapacitors with excellent areal capacitance and operational stability. ACS Appl. Mater. Interfaces 10(27), 23063–23073 (2018). https://doi.org/10.1021/acsami.8b04502
- R. Rajak, M. Saraf, S.M. Mobin, Mixed-ligand architected unique topological heterometallic sodium/cobalt-based metal–organic framework for high-performance supercapacitors. Inorg. Chem. 59(3), 1642–1652 (2020). https://doi.org/10.1021/acs.inorgchem.9b02762
- Y. Jiao, J. Pei, D. Chen, C. Yan, Y. Hu et al., Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors. J. Mater. Chem. A 5(3), 1094–1102 (2017). https://doi.org/10.1039/c6ta09805c
- P. Wen, P. Gong, J. Sun, J. Wang, S. Yang, Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J. Mater. Chem. A 3(26), 13874–13883 (2015). https://doi.org/10.1039/c5ta02461g
- Y. Zhang, B. Lin, Y. Sun, X. Zhang, H. Yang et al., Carbon nanotubes@metal–organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage. RSC Adv. 5(72), 58100–58106 (2015). https://doi.org/10.1039/c5ra11597c
- P. Srimuk, S. Luanwuthi, A. Krittayavathananon, M. Sawangphruk, Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper. Electrochim. Acta 157, 69–77 (2015). https://doi.org/10.1016/j.electacta.2015.01.082
- Y. Liu, Y. Wang, H. Wang, P. Zhao, H. Hou et al., Acetylene black enhancing the electrochemical performance of NiCo-MOF nanosheets for supercapacitor electrodes. Appl. Surf. Sci. 492, 455–463 (2019). https://doi.org/10.1016/j.apsusc.2019.06.238
- S. Zhao, H. Wu, Y. Li, Q. Li, J. Zhou et al., Core-shell assembly of carbon nanofibers and a 2D conductive metal–organic framework as a flexible free-standing membrane for high-performance supercapacitors. Inorg. Chem. Front. 6(7), 1824–1830 (2019). https://doi.org/10.1039/c9qi00390h
- J. Hong, S.J. Park, S. Kim, Synthesis and electrochemical characterization of nanostructured Ni-Co-MOF/graphene oxide composites as capacitor electrodes. Electrochim. Acta 311, 62–71 (2019). https://doi.org/10.1016/j.electacta.2019.04.121
- Y. Chen, N. Wang, W. Hu, S. Komarneni, In situ construction of porous Ni/Co-MOF@Carbon cloth electrode with honeycomb-like structure for high-performance energy storage. J. Porous Mater. 26, 921–929 (2019). https://doi.org/10.1007/s10934-019-00735-9
- L. Liu, Y. Yan, Z. Cai, S. Lin, X. Hu, Growth-oriented Fe-based MOFs synergized with graphene aerogels for high-performanc supercapacitors. Adv. Mater. Interfaces 5(8), 1701548 (2018). https://doi.org/10.1002/admi.201701548
- K. Jayaramulu, M. Horn, A. Schneemann, H. Saini, A. Bakandritsos et al., Covalent graphene-MOF hybrids for high-performance asymmetric supercapacitors. Adv. Mater. 33(4), 2004560 (2021). https://doi.org/10.1002/adma.202004560
- Z. Neisi, Z. Ansari-Asl, A.S. Dezfuli, Polyaniline/Cu(II) metal–organic frameworks composite for high performance supercapacitor electrode. J. Inorg. Organomet. Polym. Mater. 29, 1838–1847 (2019). https://doi.org/10.1007/s10904-019-01145-9
- L. Wang, X. Feng, L. Ren, Q. Piao, J. Zhong et al., Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI. J. Am. Chem. Soc. 137(15), 4920–4923 (2015). https://doi.org/10.1021/jacs.5b01613
- R. Srinivasan, E. Elaiyappillai, E.J. Nixon, I.S. Lydia, P.M. Johnson, Enhanced electrochemical behaviour of Co-MOF/PANI composite electrode for supercapacitors. Inorg. Chim. Acta 502, 119393 (2020). https://doi.org/10.1016/j.ica.2019.119393
- Q. Cheng, K. Tao, X. Han, Y. Yang, Z. Yang et al., Ultrathin Ni-MOF nanosheet arrays grown on polyaniline decorated Ni foam as an advanced electrode for asymmetric supercapacitors with high energy density. Dalton Trans. 48, 4119–4123 (2019). https://doi.org/10.1039/c9dt00386j
- B. Wang, W. Li, Z. Liu, Y. Duan, B. Zhao et al., Incorporating Ni-MOF structure with polypyrrole: enhanced capacitive behavior as electrode material for supercapacitor. RSC Adv. 10(21), 12129–12134 (2020). https://doi.org/10.1039/c9ra10467d
- J. Yang, C. Zheng, P. Xiong, Y. Li, M. Wei, Zn-doped Ni-MOF material with a high supercapacitive performance. J. Mater. Chem. A 2(44), 19005–19010 (2014). https://doi.org/10.1039/c4ta04346d
- S. Xiong, S. Jiang, J. Wang, H. Lin, M. Lin et al., A high-performance hybrid supercapacitor with NiO derived NiO@Ni-MOF composite electrodes. Electrochim. Acta 340, 135956 (2020). https://doi.org/10.1016/j.electacta.2020.135956
- Y. Chen, D. Ni, X. Yang, C. Liu, J. Yin et al., Microwave-assisted synthesis of honeycomblike hierarchical spherical Zn-doped Ni-MOF as a high-performance battery-type supercapacitor electrode material. Electrochim. Acta 278, 114–123 (2018). https://doi.org/10.1016/j.electacta.2018.05.024
- D. Zheng, H. Wen, X. Sun, X. Guan, J. Zhang et al., Ultrathin Mn doped Ni-MOF nanosheet array for highly capacitive and stable asymmetric supercapacitor. Chemistry 26(71), 17149–17155 (2020). https://doi.org/10.1002/chem.202003220
- P. Zhang, F. Sun, Z. Shen, D. Cao, ZIF-derived porous carbon: a promising supercapacitor electrode material. J. Mater. Chem. A 2(32), 12873–12880 (2014). https://doi.org/10.1039/c4ta00475b
- Y. Liu, X. Xu, Z. Shao, S.P. Jiang, Metal–organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application. Energy Storage Mater. 26, 1–22 (2020). https://doi.org/10.1016/j.ensm.2019.12.019
- K. Le, M. Gao, W. Liu, J. Liu, Z. Wang et al., MOF-derived hierarchical core-shell hollow iron-cobalt sulfides nanoarrays on Ni foam with enhanced electrochemical properties for high energy density asymmetric supercapacitors. Electrochim. Acta 323, 134826 (2019). https://doi.org/10.1016/j.electacta.2019.134826
- S. Sun, J. Luo, Y. Qian, Y. Jin, Y. Liu et al., metal–organic framework derived honeycomb Co9S8@C composites for high-performance supercapacitors. Adv. Energy Mater. 8(25), 1801080 (2018). https://doi.org/10.1002/aenm.201801080
- K. Tao, X. Han, Q. Ma, L. Han, A metal–organic framework derived hierarchical nickel-cobalt sulfide nanosheet array on Ni foam with enhanced electrochemical performance for supercapacitors. Dalton Trans. 47, 3496–3502 (2018). https://doi.org/10.1039/c7dt04942k
- J. Ren, Y. Huang, H. Zhu, B. Zhang, H. Zhu et al., Recent progress on MOF-derived carbon materials for energy storage. Carbon Energy 2(2), 176–202 (2020). https://doi.org/10.1002/cey2.44
- B. Liu, H. Shioyama, T. Akita, Q. Xu, metal–organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130(16), 5390–5391 (2008). https://doi.org/10.1021/ja7106146
- S.J. Yang, S. Nam, T. Kim, J.H. Im, H. Jung et al., Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal–organic framework. J. Am. Chem. Soc. 135(20), 7394–7397 (2013). https://doi.org/10.1021/ja311550t
- X. Yan, X. Li, Z. Yan, S. Komarneni, Porous carbons prepared by direct carbonization of MOFs for supercapacitors. Appl. Surf. Sci. 308, 306–310 (2014). https://doi.org/10.1016/j.apsusc.2014.04.160
- X. Deng, J. Li, S. Zhu, L. Ma, N. Zhao, Boosting the capacitive storage performance of MOF-derived carbon frameworks via structural modulation for supercapacitors. Energy Storage Mater. 23, 491–498 (2019). https://doi.org/10.1016/j.ensm.2019.04.015
- Q. Li, Z. Dai, J. Wu, W. Liu, T. Di et al., Fabrication of ordered macro-microporous single-crystalline MOF and its derivative carbon material for supercapacitor. Adv. Energy Mater. 10(33), 1903750 (2020). https://doi.org/10.1002/aenm.201903750
- T. Gao, F. Zhou, W. Ma, H. Li, Metal–organic-framework derived carbon polyhedron and carbon nanotube hybrids as electrode for electrochemical supercapacitor and capacitive deionization. Electrochim. Acta 263, 85–93 (2018). https://doi.org/10.1016/j.electacta.2018.01.044
- C.C. Hou, Y. Wang, L. Zou, M. Wang, H. Liu et al., A gas-steamed MOF route to P-doped open carbon cages with enhanced Zn-ion energy storage capability and ultrastability. Adv. Mater. 33(31), 2101698 (2021). https://doi.org/10.1002/adma.202101698
- S. Wu, J. Liu, H. Wang, H. Yan, A review of performance optimization of MOF-derived metal oxide as electrode materials for supercapacitors. Int. J. Energy Res. 43(2), 697–716 (2019). https://doi.org/10.1002/er.4232
- W. Liu, F. Zhu, B. Ge, L. Sun, Y. Liu et al., MOF derived ZnO/C@(Ni, Co)Se2 core–shell nanostructure on carbon cloth for high-performance supercapacitors. Chem. Eng. J. 427, 130788 (2022). https://doi.org/10.1016/j.cej.2021.130788
- S. Maiti, A. Pramanik, S. Mahanty, Extraordinarily high pseudocapacitance of metal organic framework derived nanostructured cerium oxide. Chem. Commun. 50, 11717–11720 (2014). https://doi.org/10.1039/c4cc05363j
- H. Pang, F. Gao, Q. Chen, R. Liu, Q. Lu, Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis. Dalton Trans. 41, 5862–5868 (2012). https://doi.org/10.1039/c2dt12494g
- Y.Z. Zhang, Y. Wang, Y.L. Xie, T. Cheng, W.Y. Lai et al., Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale 6(23), 14354–14359 (2014). https://doi.org/10.1039/c4nr04782f
- S. Dai, F. Han, J. Tang, W. Tang, MOF-derived Co3O4 nanosheets rich in oxygen vacancies for efficient all-solid-state symmetric supercapacitors. Electrochim. Acta 328, 135103 (2019). https://doi.org/10.1016/j.electacta.2019.135103
- Y. Han, S. Zhang, N. Shen, D. Li, X. Li, MOF-derived porous NiO nanop architecture for high performance supercapacitors. Mater. Lett. 188, 1–4 (2017). https://doi.org/10.1016/j.matlet.2016.09.051
- M.K. Wu, C. Chen, J.J. Zhou, F.Y. Yi, K. Tao et al., MOF–derived hollow double–shelled NiO nanospheres for high-performance supercapacitors. J. Alloys Compd. 734, 1–8 (2018). https://doi.org/10.1016/j.jallcom.2017.10.171
- G.C. Li, P.F. Liu, R. Liu, M. Liu, K. Tao et al., MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors. Dalton Trans. 45, 13311–13316 (2016). https://doi.org/10.1039/c6dt01791f
- F. Saleki, A. Mohammadi, S. Moosavifard, A. Hafizi, M. Rahimpour, MOF assistance synthesis of nanoporous double-shelled CuCo2O4 hollow spheres for hybrid supercapacitors. J. Colloid Interface Sci. 565, 83–91 (2019). https://doi.org/10.1016/j.jcis.2019.08.044
- X.Y. Yu, L. Yu, H.B. Wu, X.W. Lou, Formation of nickel sulfide nanoframes from metal–organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew. Chem. Int. Ed. 54(18), 5331–5335 (2015). https://doi.org/10.1002/anie.201500267
- Y. Yang, M.L. Li, J.N. Lin, M.Y. Zou, S.T. Gu et al., MOF-derived Ni3S4 encapsulated in 3D conductive network for high-performance supercapacitor. Inorg. Chem. 59(4), 2406–2412 (2020). https://doi.org/10.1021/acs.inorgchem.9b03263
- R. Gao, Q. Zhang, F. Soyekwo, C. Lin, R. Lv et al., Novel amorphous nickel sulfide@CoS double-shelled polyhedral nanocages for supercapacitor electrode materials with superior electrochemical properties. Electrochim. Acta 237, 94–101 (2017). https://doi.org/10.1016/j.electacta.2017.03.214
- S. Hou, Y. Lian, Y. Bai, Q. Zhou, C. Ban et al., Hollow dodecahedral Co3S4@NiO derived from ZIF-67 for supercapacitor. Electrochim. Acta 341, 136053 (2020). https://doi.org/10.1016/j.electacta.2020.136053
- Z. Xiao, B. Xu, S. Zhang, Z. Yang, Y. Mei et al., Balancing crystallinity and specific surface area of metal–organic framework derived nickel hydroxide for high-performance supercapacitor. Electrochim. Acta 284, 202–210 (2018). https://doi.org/10.1016/j.electacta.2018.07.173
- C. Qu, B. Zhao, Y. Jiao, D. Chen, S. Dai et al., Functionalized bimetallic hydroxides derived from metal–organic frameworks for high-performance hybrid supercapacitor with exceptional cycling stability. ACS Energy Lett. 2(6), 1263–1269 (2017). https://doi.org/10.1021/acsenergylett.7b00265
- S. Zhang, Z. Yang, K. Gong, B. Xu, H. Mei et al., Temperature controlled diffusion of hydroxide ions in 1D channels of Ni-MOF-74 for its complete conformal hydrolysis to hierarchical Ni(OH)2 supercapacitor electrodes. Nanoscale 11(19), 9598–9607 (2019). https://doi.org/10.1039/C9NR02555C
- H. Zhang, B. Xu, Z. Xiao, H. Mei, L. Zhang et al., Optimizing crystallinity and porosity of hierarchical Ni(OH)2 through conformal transformation of metal–organic framework template for supercapacitor applications. CrystEngComm 20, 4313–4320 (2018). https://doi.org/10.1039/c8ce00741a
- Z. Wang, Y. Liu, C. Gao, H. Jiang, J. Zhang, A porous Co(OH)2 material derived from a MOF template and its superior energy storage performance for supercapacitors. J. Mater. Chem. A 3(41), 20658–20663 (2015). https://doi.org/10.1039/c5ta04663g
- Q. Tang, L. Ma, F. Cao, M. Gan, F. Yan, Different morphologies of Ni(OH)2 derived from a MOF template for high performance supercapacitors. J. Mater. Sci. Mater. Electron. 30, 9114–9122 (2019). https://doi.org/10.1007/s10854-019-01240-0
- X. Li, J. Li, Y. Zhang, P. Zhao, R. Lei et al., The evolution in electrochemical performance of honeycomb-like Ni(OH)2 derived from MOF template with morphology as a high-performance electrode material for supercapacitors. Materials 13(21), 4870 (2020). https://doi.org/10.3390/ma13214870
References
F.B. Ajdari, E. Kowsari, M.N. Shahrak, A. Ehsani, Z. Kiaei et al., A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors. Coord. Chem. Rev. 422, 213441 (2020). https://doi.org/10.1016/j.ccr.2020.213441
F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini et al., Graphene related two-dimensional crystals and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015). https://doi.org/10.1126/science.1246501
L. Zhao, Z. Liu, D. Chen, F. Liu, Z. Yang et al., Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett. 13, 49 (2021). https://doi.org/10.1007/s40820-020-00577-0
W. He, Z. Liang, K. Ji, Q. Sun, T. Zhai et al., Hierarchical Ni-Co-S@Ni-W-O core–shell nanosheet arrays on nickel foam for high-performance asymmetric supercapacitors. Nano Res. 11, 1415–1425 (2018). https://doi.org/10.1007/s12274-017-1757-2
X. Xiao, X. Duan, Z. Song, X. Deng, W. Deng et al., High-throughput production of cheap mineral-based heterostructures for high power sodium ion capacitors. Adv. Funct. Mater. 32(18), 2110476 (2022). https://doi.org/10.1002/adfm.202110476
J. Jin, X. Geng, Q. Chen, T. Ren, A better Zn-ion storage device: recent progress for Zn-ion hybrid supercapacitors. Nano-Micro Lett. 14, 64 (2022). https://doi.org/10.1007/s40820-022-00793-w
J. Yang, Z. Ma, W. Gao, M. Wei, Layered structural Co-based MOF with conductive network frames as a new supercapacitor electrode. Chemistry 23, 631–636 (2017). https://doi.org/10.1002/chem.201604071
L. Zhang, X. Hu, Z. Wang, F. Sun, D.G. Dorrell, A review of supercapacitor modeling, estimation, and applications: a control/management perspective. Renew. Sustain. Energy Rev. 81, 1868–1878 (2018). https://doi.org/10.1016/j.rser.2017.05.283
Y. Zhu, C. Huang, C. Li, M. Fan, K. Shu et al., Strong synergetic electrochemistry between transition metals of α phase Ni−Co−Mn hydroxide contributed superior performance for hybrid supercapacitors. J. Power Sources 412, 559–567 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.080
D. Sheberla, J.C. Bachman, J.S. Elias, C.J. Sun, Y. Shao-Horn et al., Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220–224 (2017). https://doi.org/10.1038/nmat4766
C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44(21), 7484–7539 (2015). https://doi.org/10.1039/c5cs00303b
X. Feng, X. Shi, J. Ning, D. Wang, J. Zhang et al., Recent advances in micro-supercapacitors for AC line-filtering performance: from fundamental models to emerging applications. eScience 1, 124–140 (2021). https://doi.org/10.1016/j.esci.2021.11.005
S. Cao, H. Zhang, Y. Zhao, Y. Zhao, Pillararene/calixarene-based systems for battery and supercapacitor applications. eScience 1, 28–43 (2021). https://doi.org/10.1016/j.esci.2021.10.001
G. Gao, S. Yang, S. Wang, L. Li, Construction of 3D porous MXene supercapacitor electrode through a dual-step freezing strategy. Scr. Mater. 213, 114605 (2022). https://doi.org/10.1016/j.scriptamat.2022.114605
H. Liu, X. Liu, S. Wang, H. Liu, L. Li, Transition metal based battery-type electrodes in hybrid supercapacitors: a review. Energy Storage Mater. 28, 122–145 (2020). https://doi.org/10.1016/j.ensm.2020.03.003
R. Reece, C. Lekakou, P.A. Smith, A high-performance structural supercapacitor. ACS Appl. Mater. Interfaces 12(23), 25683–25692 (2020). https://doi.org/10.1021/acsami.9b23427
Y. Shen, X. Wang, H. Hu, B. Jiang, Y. Bai et al., Sheet-like structure FeF3/graphene composite as novel cathode material for Na ion batteries. RSC Adv. 5(48), 38277–38383 (2015). https://doi.org/10.1039/C5RA02235E
M. Yu, X. Feng, Thin-film electrode-based supercapacitors. Joule 3, 338–360 (2019). https://doi.org/10.1016/j.joule.2018.12.012
Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang et al., Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118(18), 9233–9280 (2018). https://doi.org/10.1021/acs.chemrev.8b00252
L. Yang, B. Gu, Z. Chen, Y. Yue, W. Wang et al., Synthetic biopigment supercapacitors. ACS Appl. Mater. Interfaces 11(33), 30360–30367 (2019). https://doi.org/10.1021/acsami.9b10956
P. Kong, L. Zhu, F. Li, G. Xu, Self-supporting electrode composed of SnSe nanosheets, thermally treated protein, and reduced graphene oxide with enhanced pseudocapacitance for advanced sodium-ion batteries. Chem. Electro. Chem. 6, 5642–5650 (2019). https://doi.org/10.1002/celc.201901517
J. Wang, G. Liu, K. Fan, D. Zhao, B. Liu et al., N-doped carbon coated anatase TiO2 nanops as superior Na-ion battery anodes. J. Colloid Interface Sci. 517, 134–143 (2018). https://doi.org/10.1016/j.jcis.2018.02.001
J. Jiang, B. Liu, G. Liu, D. Qian, C. Yang et al., A systematically comparative study on LiNO3 and Li2SO4 aqueous electrolytes for electrochemical double-layer capacitors. Electrochim. Acta 274, 121–130 (2018). https://doi.org/10.1016/j.electacta.2018.04.097
J. Jiang, G. Tan, S. Peng, D. Qian, J. Liu et al., Electrochemical performance of carbon-coated Li3V2(PO4)3 as a cathode material for asymmetric hybrid capacitors. Electrochim. Acta 107, 59–65 (2013). https://doi.org/10.1016/j.electacta.2013.06.051
Z. Fu, X. Li, G. Xu, Novel electrospun SnO2@carbon nanofibers as high performance anodes for lithium-ion batteries. Cryst. Res. Technol. 49, 441–445 (2014). https://doi.org/10.1002/crat.201300211
Y. Li, X. Wu, S. Wang, W. Wang, Y. Xiang et al., Surfactant-assisted solvothermal synthesis of NiCo2O4 as an anode for lithium-ion batteries. RSC Adv. 7(59), 36909–36916 (2017). https://doi.org/10.1039/C7RA06172B
Z. Song, G. Zhang, X. Deng, K. Zou, X. Xiao et al., Ultra-low-dose pre-metallation strategy served for commercial metal-ion capacitors. Nano-Micro Lett. 14, 53 (2022). https://doi.org/10.1007/s40820-022-00792-x
K. Zou, P. Cai, B. Wang, C. Liu, J. Li et al., Insights into enhanced capacitive behavior of carbon cathode for lithium ion capacitors: the coupling of pore size and graphitization engineering. Nano-Micro Lett. 12, 121 (2020). https://doi.org/10.1007/s40820-020-00458-6
F. Song, J. Hu, G. Li, J. Wang, S. Chen et al., Room-temperature assembled MXene-based aerogels for high mass-loading sodium-ion storage. Nano-Micro Lett. 14, 37 (2022). https://doi.org/10.1007/s40820-021-00781-6
Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13, 203 (2021). https://doi.org/10.1007/s40820-021-00726-z
J. Yang, X. Wang, W. Dai, X. Lian, X. Cui et al., From micropores to ultra-micropores inside hard carbon: toward enhanced capacity in room-/low-temperature sodium-ion storage. Nano-Micro Lett. 13, 98 (2021). https://doi.org/10.1007/s40820-020-00587-y
X. Sheng, T. Li, M. Sun, G. Liu, Q. Zhang et al., Flexible electrospun iron compounds/carbon fibers: phase transformation and electrochemical properties. Electrochim. Acta 407, 139892 (2022). https://doi.org/10.1016/j.electacta.2022.139892
D. Li, L. Chen, L. Chen, Q. Sun, M. Zhu et al., Potassium gluconate-derived N/S Co-doped carbon nanosheets as superior electrode materials for supercapacitors and sodium-ion batteries. J. Power Sources 414, 308–316 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.091
M.A. Deyab, A.E. Awadallah, H.A. Ahmed, Q. Mohsen, Progress study on nickel ferrite alloy-graphene nanosheets nanocomposites as supercapacitor electrodes. J. Power Sources 46, 103926 (2022). https://doi.org/10.1016/j.est.2021.103926
K.A. Sammed, L. Pan, M. Asif, M. Usman, T. Cong et al., Reduced holey graphene oxide film and carbon nanotubes sandwich structure as a binder-free electrode material for supercapcitor. Sci. Rep. 10, 2315 (2020). https://doi.org/10.1038/s41598-020-58162-9
C.C. Shih, Y.C. Lin, M. Gao, M. Wu, H.C. Hsieh et al., A rapid and green method for the fabrication of conductive hydrogels and their applications in stretchable supercapacitors. J. Power Sources 426, 205–215 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.030
Y. Li, Y. Xu, Y. Liu, H. Pang, Exposing 001 crystal plane on hexagonal Ni-MOF with surface-grown cross-linked mesh-structures for electrochemical energy storage. Small 15(36), 1902463 (2019). https://doi.org/10.1002/smll.201902463
W. Yang, X. Shi, Y. Li, H. Pang, Manganese-doped cobalt zeolitic imidazolate framework with highly enhanced performance for supercapacitor. J. Energy Storage 26, 101018 (2019). https://doi.org/10.1016/j.est.2019.101018
P. Pachfule, D. Shinde, M. Majumder, Q. Xu, Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nat. Chem. 8, 718–724 (2016). https://doi.org/10.1038/nchem.2515
S. Yang, S. Park, Y. Kang, MOF-derived CoSe2@N-doped carbon matrix confined in hollow mesoporous carbon nanospheres as high-performance anodes for potassium-ion batteries. Nano-Micro Lett. 13, 9 (2021). https://doi.org/10.1007/s40820-020-00539-6
C.C. Hou, Q. Xu, Metal–organic frameworks for energy. Adv. Energy Mater. 9(23), 1801307 (2018). https://doi.org/10.1002/aenm.201801307
B. Cao, H. Liu, X. Zhang, P. Zhang, Q. Zhu et al., MOF-derived ZnS nanodots/Ti3C2Tx MXene hybrids boosting superior lithium storage performance. Nano-Micro Lett. 13, 202 (2021). https://doi.org/10.1007/s40820-021-00728-x
Y. Zhu, K. Yue, C. Xia, S. Zaman, H. Yang et al., Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc-air batteries. Nano-Micro Lett. 13, 137 (2021). https://doi.org/10.1007/s40820-021-00669-5
Z.X. Cai, Z.L. Wang, J. Kim, Y. Yamauchi, Hollow functional materials derived from metal–organic frameworks: synthetic strategies, conversion mechanisms, and electrochemical applications. Adv. Mater. 31(11), 1804903 (2019). https://doi.org/10.1002/adma.201804903
A. Indra, T. Song, U. Paik, Metal–organic framework derived materials: progress and prospects for the energy conversion and storage. Adv. Mater. 30(39), 1705146 (2018). https://doi.org/10.1002/adma.201705146
J.S. Park, J.H. Kim, S.J. Yang, Rational design of metal–organic framework based materials for advanced LiS batteries. Bull. Korean Chem. Soc. 42(2), 148–158 (2020). https://doi.org/10.1002/bkcs.12184
S. Cheng, S. Liu, Q. Zhao, J. Li, Improved synthesis and hydrogen storage of a microporous metal–organic framework material. Energy Convers. Manag. 50, 1314–1317 (2009). https://doi.org/10.1016/j.enconman.2009.01.014
M. Latroche, S. Surble, C. Serre, C. Mellot-Draznieks, P.L. Llewellyn et al., Hydrogen storage in the giant-pore metal–organic frameworks MIL-100 and MIL-101. Angew. Chem. Int. Ed. 45(48), 8227–8231 (2006). https://doi.org/10.1002/anie.200600105
X. Wu, J. Ge, C. Yang, M. Hou, Z. Liu, Facile synthesis of multiple enzyme-containing metal–organic frameworks in a biomolecule-friendly environment. Chem. Commun. 51, 13408–13411 (2015). https://doi.org/10.1039/c5cc05136c
B. Yu, G. Ye, Z. Zeng, L. Zhang, J. Chen et al., Mussel-inspired polydopamine chemistry to modulate template synthesis of 1D metal–organic framework superstructures. J. Mater. Chem. A 6(43), 21567–21576 (2018). https://doi.org/10.1039/c8ta08514e
D. Feng, T. Lei, M.R. Lukatskaya, J. Park, Z. Huang et al., Robust and conductive two-dimensional metal–organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 3, 30–36 (2018). https://doi.org/10.1038/s41560-017-0044-5
H. Dong, H. Gao, J. Geng, X. Hou, S. Gao et al., Quinone-based conducting three-dimensional metal–organic framework as a cathode material for lithium-ion batteries. J. Phys. Chem. C 125, 20814–20820 (2021). https://doi.org/10.1021/acs.jpcc.1c06870
Y. Yoo, Z. Lai, H.K. Jeong, Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth. Microporous Mesoporous Mater. 123, 100–106 (2009). https://doi.org/10.1016/j.micromeso.2009.03.036
K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. PNAS 103, 10186–10191 (2006). https://doi.org/10.1073/pnas.0602439103
V.V. Butova, A.P. Budnyk, E.A. Bulanova, C. Lamberti, A.V. Soldatov, Hydrothermal synthesis of high surface area ZIF-8 with minimal use of TEA. Solid State Sci. 69, 13–21 (2017). https://doi.org/10.1016/j.solidstatesciences.2017.05.002
M. Latroche, S. Surblé, C. Serre, C. Mellot-Draznieks, P.L. Llewellyn et al., Hydrogen storage in the giant-pore metal–organic frameworks MIL-100 and MIL-101. Angew. Chem. 118(48), 8407–8411 (2006). https://doi.org/10.1002/ange.200600105
D. Yuan, D. Zhao, D. Sun, H.C. Zhou, An isoreticular series of metal–organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem. Int. Ed. 49(31), 5357–5361 (2010). https://doi.org/10.1002/anie.201001009
J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti et al., A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130(42), 13850–13851 (2008). https://doi.org/10.1021/ja8057953
L. Sun, H. Xing, J. Xu, Z. Liang, J. Yu et al., A novel (3,3,6)-connected luminescent metal–organic framework for sensing of nitroaromatic explosives. Dalton Trans. 42, 5508–5513 (2013). https://doi.org/10.1039/c3dt32851a
Y.K. Seo, G. Hundal, I.T. Jang, Y.K. Hwang, C.H. Jun et al., Microwave synthesis of hybrid inorganic–organic materials including porous Cu3(BTC)2 from Cu(II)-trimesate mixture. Microporous Mesoporous Mater. 119, 331–337 (2009). https://doi.org/10.1016/j.micromeso.2008.10.035
D. Lv, Y. Chen, Y. Li, R. Shi, H. Wu et al., Efficient mechanochemical synthesis of MOF-5 for linear alkanes adsorption. J. Chem. Eng. Data 62, 2030–2036 (2017). https://doi.org/10.1021/acs.jced.7b00049
S.H. Mosavi, R. Zare-Dorabei, M. Bereyhi, Rapid and effective ultrasonic-assisted adsorptive removal of congo red onto MOF-5 modified by CuCl2 in ambient conditions: adsorption isotherms and kinetics studies. ChemistrySelect 6(18), 4432–4439 (2021). https://doi.org/10.1002/slct.202100540
H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999). https://doi.org/10.1038/46248
M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter et al., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(5554), 469–472 (2002). https://doi.org/10.1126/science.1067208
X. Wu, Z. Bao, B. Yuan, J. Wang, Y. Sun et al., Microwave synthesis and characterization of MOF-74 (M=Ni, Mg) for gas separation. Microporous Mesoporous Mater. 180, 114–122 (2013). https://doi.org/10.1016/j.micromeso.2013.06.023
S.H. Jhung, J.H. Lee, J.S. Chang, Microwave synthesis of a nanoporous hybrid material, chromium trimesate. Bull. Korean Chem. Soc. 26(6), 880–881 (2005). https://doi.org/10.5012/bkcs.2005.26.6.880
S.H. Jhung, J.H. Lee, J.W. Yoon, C. Serre, G. Férey et al., Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv. Mater. 19(1), 121–124 (2007). https://doi.org/10.1002/adma.200601604
U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt et al., metal–organic frameworks prospective industrial applications. J. Mater. Chem. 16(7), 626–636 (2006). https://doi.org/10.1039/b511962f
A. Pichon, A. Lazuen-Garay, S.L. James, Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 8(3), 211–214 (2006). https://doi.org/10.1039/b513750k
Z. Li, L. Qiu, T. Xu, Y. Wu, W. Wang et al., Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: an efficient and environmentally friendly method. Mater. Lett. 63(1), 78–80 (2009). https://doi.org/10.1016/j.matlet.2008.09.010
S. Laha, A. Chakraborty, T.K. Maji, Synergistic role of microwave and perturbation toward synthesis of hierarchical porous MOFs with tunable porosity. Inorg. Chem. 59, 3775–3782 (2020). https://doi.org/10.1021/acs.inorgchem.9b03422
A.D. Katsenis, A. Puskaric, V. Strukil, C. Mottillo, P.A. Julien et al., In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal–organic framework. Nat. Commun. 6, 6662 (2015). https://doi.org/10.1038/ncomms7662
A. Carne-Sanchez, I. Imaz, M. Cano-Sarabia, D. Maspoch, A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures. Nat. Chem. 5, 203–211 (2013). https://doi.org/10.1038/nchem.1569
M. Bosch, S. Yuan, W. Rutledge, H.C. Zhou, Stepwise synthesis of metal–organic frameworks. Acc. Chem. Res. 50(4), 857–865 (2017). https://doi.org/10.1021/acs.accounts.6b00457
H.Q. Xu, K. Wang, M. Ding, D. Feng, H.L. Jiang et al., Seed-mediated synthesis of metal–organic frameworks. J. Am. Chem. Soc. 138(16), 5316–5320 (2016). https://doi.org/10.1021/jacs.6b01414
G. Cai, W. Zhang, L. Jiao, S.H. Yu, H.L. Jiang, Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting. Chem 2(6), 791–802 (2017). https://doi.org/10.1016/j.chempr.2017.04.016
C. Duan, J. Huo, F. Li, M. Yang, H. Xi, Ultrafast room-temperature synthesis of hierarchically porous metal–organic frameworks by a versatile cooperative template strategy. J. Mater. Sci. 53, 16276–16287 (2018). https://doi.org/10.1007/s10853-018-2793-3
O.M. Yaghi, G. Li, H. Li, Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703–706 (1995). https://doi.org/10.1038/378703a0
D.Y. Lee, S.J. Yoon, N.K. Shrestha, S.H. Lee, H. Ahn et al., Unusual energy storage and charge retention in Co-based metal–organic frameworks. Microporous Mesoporous Mater. 153, 163–165 (2012). https://doi.org/10.1016/j.micromeso.2011.12.040
D.Y. Lee, D.V. Shinde, E.K. Kim, W. Lee, I.W. Oh et al., Supercapacitive property of metal–organic frameworks with different pore dimensions and morphology. Microporous Mesoporous Mater. 171, 53–57 (2013). https://doi.org/10.1016/j.micromeso.2012.12.039
R. Abazari, S. Sanati, A. Morsali, A. Slawin, L.C. Carpenter-Warren, Dual-purpose 3D pillared metal–organic framework with excellent properties for catalysis of oxidative desulfurization and energy storage in asymmetric supercapacitor. ACS Appl. Mater. Interfaces 11(16), 14759–14773 (2019). https://doi.org/10.1021/acsami.9b00415
Y. Zhou, Y. Xu, B. Lu, J. Guo, S. Zhang et al., Schiff base-functionalized cobalt-based metal organic framework microspheres with a sea urchin-like structure for supercapacitor electrode material. J. Electroanal. Chem. 847, 113248 (2019). https://doi.org/10.1016/j.jelechem.2019.113248
P. Du, Y. Dong, C. Liu, W. Wei, D. Liu et al., Fabrication of hierarchical porous nickel based metal–organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor. J. Colloid Interface Sci. 518, 57–68 (2018). https://doi.org/10.1016/j.jcis.2018.02.010
L. Kang, S.X. Sun, L.B. Kong, J.W. Lang, Y.C. Luo, Investigating metal–organic framework as a new pseudo-capacitive material for supercapacitors. Chin. Chem. Lett. 25, 957–961 (2014). https://doi.org/10.1016/j.cclet.2014.05.032
C. Qu, Y. Jiao, B. Zhao, D. Chen, R. Zou et al., Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study. Nano Energy 26, 66–73 (2016). https://doi.org/10.1016/j.nanoen.2016.04.003
L. Deng, H. Qu, Y. Zhang, S. Jiao, X. Zhang et al., Temperature effect on the synthesis of two Ni-MOFs with distinct performance in supercapacitor. J. Solid State Chem. 281, 121026 (2020). https://doi.org/10.1016/j.jssc.2019.121026
J. Yang, P. Xiong, C. Zheng, H. Qiu, M. Wei, metal–organic frameworks: a new promising class of materials for a high performance supercapacitor electrode. J. Mater. Chem. A 2(39), 16640–16644 (2014). https://doi.org/10.1039/c4ta04140b
Y. Yan, P. Gu, S. Zheng, M. Zheng, H. Pang et al., Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J. Mater. Chem. A 4(48), 19078–19085 (2016). https://doi.org/10.1039/c6ta08331e
C. Liao, Y. Zuo, W. Zhang, J. Zhao, B. Tang et al., Electrochemical performance of metal–organic framework synthesized by a solvothermal method for supercapacitors. J. Electrochem. 49, 983–986 (2012). https://doi.org/10.1134/s1023193512080113
Y. Tan, W. Zhang, Y. Gao, J. Wu, B. Tang, Facile synthesis and supercapacitive properties of Zr-metal organic frameworks (UiO-66). RSC Adv. 5(23), 17601–17605 (2015). https://doi.org/10.1039/c4ra11896k
K.M. Choi, H.M. Jeong, J.H. Park, Y.B. Zhang, J.K. Kang et al., Supercapacitors of nanocrystalline metal–organic frameworks. ACS Nano 8(7), 7451–7457 (2014). https://doi.org/10.1021/nn5027092
W. Gao, D. Chen, H. Quan, R. Zou, W. Wang et al., Fabrication of hierarchical porous metal–organic framework electrode for aqueous asymmetric supercapacitor. ACS Sustain. Chem. Eng. 5(5), 4144–4153 (2017). https://doi.org/10.1021/acssuschemeng.7b00112
N. Campagnol, R. Romero-Vara, W. Deleu, L. Stappers, K. Binnemans et al., A hybrid supercapacitor based on porous carbon and the metal–organic framework MIL-100 (Fe). ChemElectroChem 1(7), 1182–1188 (2014). https://doi.org/10.1002/celc.201402022
Y.Y. Kannangara, U.A. Rathnayake, J.K. Song, Hybrid supercapacitors based on metal organic frameworks using p-phenylenediamine building block. Chem. Eng. J. 361, 1235–1244 (2019). https://doi.org/10.1016/j.cej.2018.12.173
P.A. Shinde, Y. Seo, S. Lee, H. Kim, Q.N. Pham et al., Layered manganese metal–organic framework with high specific and areal capacitance for hybrid supercapacitors. Chem. Eng. J. 387, 122982 (2020). https://doi.org/10.1016/j.cej.2019.122982
A.S. Dezfuli, E. Kohan, H.R. Naderi, E. Salehi, Study of the supercapacitive activity of a Eu-MOF as an electrode material. New J. Chem. 43, 9260–9264 (2019). https://doi.org/10.1039/c9nj00980a
H. Jafari, P. Mohammadnezhad, Z. Khalaj, H.R. Naderi, E. Kohan et al., Terbium metal–organic frameworks as capable electrodes for supercapacitors. New J. Chem. 44, 11615–11621 (2020). https://doi.org/10.1039/d0nj01818j
X. Chu, F. Meng, T. Deng, Y. Lu, O. Bondarchuk et al., Mechanistic insight into bimetallic CoNi-MOF arrays with enhanced performance for supercapacitors. Nanoscale 12(9), 5669–5677 (2020). https://doi.org/10.1039/c9nr10473a
X. Zhang, J. Wang, X. Ji, Y. Sui, F. Wei et al., Nickel/cobalt bimetallic metal–organic frameworks ultrathin nanosheets with enhanced performance for supercapacitors. J. Alloys Compd. 825, 154069 (2020). https://doi.org/10.1016/j.jallcom.2020.154069
Y. Wang, Y. Liu, H. Wang, W. Liu, Y. Li et al., Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes. ACS Appl. Energy Mater. 2(3), 2063–2071 (2019). https://doi.org/10.1021/acsaem.8b02128
L. Chen, D. Ou, G. Zhang, J. Yan, J. Liu et al., Ni–Co coordination hollow spheres for high performance flexible all-solid-state supercapacitor. Electrochim. Acta 337, 135828 (2020). https://doi.org/10.1016/j.electacta.2020.135828
C. Chen, M.K. Wu, K. Tao, J.J. Zhou, Y.L. Li et al., Formation of bimetallic metal–organic framework nanosheets and their derived porous nickel-cobalt sulfides for supercapacitors. Dalton Trans. 47, 5639–5645 (2018). https://doi.org/10.1039/c8dt00464a
F. Xu, N. Chen, Z. Fan, G. Du, Ni/Co-based metal organic frameworks rapidly synthesized in ambient environment for high energy and power hybrid supercapacitors. Appl. Surf. Sci. 528, 146920 (2020). https://doi.org/10.1016/j.apsusc.2020.146920
Y. Seo, P.A. Shinde, S. Park, S.C. Jun, Self-assembled bimetallic cobalt-manganese metal–organic framework as a highly efficient, robust electrode for asymmetric supercapacitors. Electrochim. Acta 335, 135327 (2020). https://doi.org/10.1016/j.electacta.2019.135327
X. Kang, Y. Ma, J. Wang, X. Shi, B. Liu et al., Fabrication and properties of coral-like Ni/Mn-MOFs as electrode materials for supercapacitors. J. Mater. Sci. Mater. Electron. 32, 13430–13439 (2021). https://doi.org/10.1007/s10854-021-05921-7
S.H. Kazemi, B. Hosseinzadeh, H. Kazemi, M.A. Kiani, S. Hajati, Facile synthesis of mixed metal–organic frameworks: electrode materials for supercapacitors with excellent areal capacitance and operational stability. ACS Appl. Mater. Interfaces 10(27), 23063–23073 (2018). https://doi.org/10.1021/acsami.8b04502
R. Rajak, M. Saraf, S.M. Mobin, Mixed-ligand architected unique topological heterometallic sodium/cobalt-based metal–organic framework for high-performance supercapacitors. Inorg. Chem. 59(3), 1642–1652 (2020). https://doi.org/10.1021/acs.inorgchem.9b02762
Y. Jiao, J. Pei, D. Chen, C. Yan, Y. Hu et al., Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors. J. Mater. Chem. A 5(3), 1094–1102 (2017). https://doi.org/10.1039/c6ta09805c
P. Wen, P. Gong, J. Sun, J. Wang, S. Yang, Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J. Mater. Chem. A 3(26), 13874–13883 (2015). https://doi.org/10.1039/c5ta02461g
Y. Zhang, B. Lin, Y. Sun, X. Zhang, H. Yang et al., Carbon nanotubes@metal–organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage. RSC Adv. 5(72), 58100–58106 (2015). https://doi.org/10.1039/c5ra11597c
P. Srimuk, S. Luanwuthi, A. Krittayavathananon, M. Sawangphruk, Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper. Electrochim. Acta 157, 69–77 (2015). https://doi.org/10.1016/j.electacta.2015.01.082
Y. Liu, Y. Wang, H. Wang, P. Zhao, H. Hou et al., Acetylene black enhancing the electrochemical performance of NiCo-MOF nanosheets for supercapacitor electrodes. Appl. Surf. Sci. 492, 455–463 (2019). https://doi.org/10.1016/j.apsusc.2019.06.238
S. Zhao, H. Wu, Y. Li, Q. Li, J. Zhou et al., Core-shell assembly of carbon nanofibers and a 2D conductive metal–organic framework as a flexible free-standing membrane for high-performance supercapacitors. Inorg. Chem. Front. 6(7), 1824–1830 (2019). https://doi.org/10.1039/c9qi00390h
J. Hong, S.J. Park, S. Kim, Synthesis and electrochemical characterization of nanostructured Ni-Co-MOF/graphene oxide composites as capacitor electrodes. Electrochim. Acta 311, 62–71 (2019). https://doi.org/10.1016/j.electacta.2019.04.121
Y. Chen, N. Wang, W. Hu, S. Komarneni, In situ construction of porous Ni/Co-MOF@Carbon cloth electrode with honeycomb-like structure for high-performance energy storage. J. Porous Mater. 26, 921–929 (2019). https://doi.org/10.1007/s10934-019-00735-9
L. Liu, Y. Yan, Z. Cai, S. Lin, X. Hu, Growth-oriented Fe-based MOFs synergized with graphene aerogels for high-performanc supercapacitors. Adv. Mater. Interfaces 5(8), 1701548 (2018). https://doi.org/10.1002/admi.201701548
K. Jayaramulu, M. Horn, A. Schneemann, H. Saini, A. Bakandritsos et al., Covalent graphene-MOF hybrids for high-performance asymmetric supercapacitors. Adv. Mater. 33(4), 2004560 (2021). https://doi.org/10.1002/adma.202004560
Z. Neisi, Z. Ansari-Asl, A.S. Dezfuli, Polyaniline/Cu(II) metal–organic frameworks composite for high performance supercapacitor electrode. J. Inorg. Organomet. Polym. Mater. 29, 1838–1847 (2019). https://doi.org/10.1007/s10904-019-01145-9
L. Wang, X. Feng, L. Ren, Q. Piao, J. Zhong et al., Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI. J. Am. Chem. Soc. 137(15), 4920–4923 (2015). https://doi.org/10.1021/jacs.5b01613
R. Srinivasan, E. Elaiyappillai, E.J. Nixon, I.S. Lydia, P.M. Johnson, Enhanced electrochemical behaviour of Co-MOF/PANI composite electrode for supercapacitors. Inorg. Chim. Acta 502, 119393 (2020). https://doi.org/10.1016/j.ica.2019.119393
Q. Cheng, K. Tao, X. Han, Y. Yang, Z. Yang et al., Ultrathin Ni-MOF nanosheet arrays grown on polyaniline decorated Ni foam as an advanced electrode for asymmetric supercapacitors with high energy density. Dalton Trans. 48, 4119–4123 (2019). https://doi.org/10.1039/c9dt00386j
B. Wang, W. Li, Z. Liu, Y. Duan, B. Zhao et al., Incorporating Ni-MOF structure with polypyrrole: enhanced capacitive behavior as electrode material for supercapacitor. RSC Adv. 10(21), 12129–12134 (2020). https://doi.org/10.1039/c9ra10467d
J. Yang, C. Zheng, P. Xiong, Y. Li, M. Wei, Zn-doped Ni-MOF material with a high supercapacitive performance. J. Mater. Chem. A 2(44), 19005–19010 (2014). https://doi.org/10.1039/c4ta04346d
S. Xiong, S. Jiang, J. Wang, H. Lin, M. Lin et al., A high-performance hybrid supercapacitor with NiO derived NiO@Ni-MOF composite electrodes. Electrochim. Acta 340, 135956 (2020). https://doi.org/10.1016/j.electacta.2020.135956
Y. Chen, D. Ni, X. Yang, C. Liu, J. Yin et al., Microwave-assisted synthesis of honeycomblike hierarchical spherical Zn-doped Ni-MOF as a high-performance battery-type supercapacitor electrode material. Electrochim. Acta 278, 114–123 (2018). https://doi.org/10.1016/j.electacta.2018.05.024
D. Zheng, H. Wen, X. Sun, X. Guan, J. Zhang et al., Ultrathin Mn doped Ni-MOF nanosheet array for highly capacitive and stable asymmetric supercapacitor. Chemistry 26(71), 17149–17155 (2020). https://doi.org/10.1002/chem.202003220
P. Zhang, F. Sun, Z. Shen, D. Cao, ZIF-derived porous carbon: a promising supercapacitor electrode material. J. Mater. Chem. A 2(32), 12873–12880 (2014). https://doi.org/10.1039/c4ta00475b
Y. Liu, X. Xu, Z. Shao, S.P. Jiang, Metal–organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application. Energy Storage Mater. 26, 1–22 (2020). https://doi.org/10.1016/j.ensm.2019.12.019
K. Le, M. Gao, W. Liu, J. Liu, Z. Wang et al., MOF-derived hierarchical core-shell hollow iron-cobalt sulfides nanoarrays on Ni foam with enhanced electrochemical properties for high energy density asymmetric supercapacitors. Electrochim. Acta 323, 134826 (2019). https://doi.org/10.1016/j.electacta.2019.134826
S. Sun, J. Luo, Y. Qian, Y. Jin, Y. Liu et al., metal–organic framework derived honeycomb Co9S8@C composites for high-performance supercapacitors. Adv. Energy Mater. 8(25), 1801080 (2018). https://doi.org/10.1002/aenm.201801080
K. Tao, X. Han, Q. Ma, L. Han, A metal–organic framework derived hierarchical nickel-cobalt sulfide nanosheet array on Ni foam with enhanced electrochemical performance for supercapacitors. Dalton Trans. 47, 3496–3502 (2018). https://doi.org/10.1039/c7dt04942k
J. Ren, Y. Huang, H. Zhu, B. Zhang, H. Zhu et al., Recent progress on MOF-derived carbon materials for energy storage. Carbon Energy 2(2), 176–202 (2020). https://doi.org/10.1002/cey2.44
B. Liu, H. Shioyama, T. Akita, Q. Xu, metal–organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130(16), 5390–5391 (2008). https://doi.org/10.1021/ja7106146
S.J. Yang, S. Nam, T. Kim, J.H. Im, H. Jung et al., Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal–organic framework. J. Am. Chem. Soc. 135(20), 7394–7397 (2013). https://doi.org/10.1021/ja311550t
X. Yan, X. Li, Z. Yan, S. Komarneni, Porous carbons prepared by direct carbonization of MOFs for supercapacitors. Appl. Surf. Sci. 308, 306–310 (2014). https://doi.org/10.1016/j.apsusc.2014.04.160
X. Deng, J. Li, S. Zhu, L. Ma, N. Zhao, Boosting the capacitive storage performance of MOF-derived carbon frameworks via structural modulation for supercapacitors. Energy Storage Mater. 23, 491–498 (2019). https://doi.org/10.1016/j.ensm.2019.04.015
Q. Li, Z. Dai, J. Wu, W. Liu, T. Di et al., Fabrication of ordered macro-microporous single-crystalline MOF and its derivative carbon material for supercapacitor. Adv. Energy Mater. 10(33), 1903750 (2020). https://doi.org/10.1002/aenm.201903750
T. Gao, F. Zhou, W. Ma, H. Li, Metal–organic-framework derived carbon polyhedron and carbon nanotube hybrids as electrode for electrochemical supercapacitor and capacitive deionization. Electrochim. Acta 263, 85–93 (2018). https://doi.org/10.1016/j.electacta.2018.01.044
C.C. Hou, Y. Wang, L. Zou, M. Wang, H. Liu et al., A gas-steamed MOF route to P-doped open carbon cages with enhanced Zn-ion energy storage capability and ultrastability. Adv. Mater. 33(31), 2101698 (2021). https://doi.org/10.1002/adma.202101698
S. Wu, J. Liu, H. Wang, H. Yan, A review of performance optimization of MOF-derived metal oxide as electrode materials for supercapacitors. Int. J. Energy Res. 43(2), 697–716 (2019). https://doi.org/10.1002/er.4232
W. Liu, F. Zhu, B. Ge, L. Sun, Y. Liu et al., MOF derived ZnO/C@(Ni, Co)Se2 core–shell nanostructure on carbon cloth for high-performance supercapacitors. Chem. Eng. J. 427, 130788 (2022). https://doi.org/10.1016/j.cej.2021.130788
S. Maiti, A. Pramanik, S. Mahanty, Extraordinarily high pseudocapacitance of metal organic framework derived nanostructured cerium oxide. Chem. Commun. 50, 11717–11720 (2014). https://doi.org/10.1039/c4cc05363j
H. Pang, F. Gao, Q. Chen, R. Liu, Q. Lu, Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis. Dalton Trans. 41, 5862–5868 (2012). https://doi.org/10.1039/c2dt12494g
Y.Z. Zhang, Y. Wang, Y.L. Xie, T. Cheng, W.Y. Lai et al., Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale 6(23), 14354–14359 (2014). https://doi.org/10.1039/c4nr04782f
S. Dai, F. Han, J. Tang, W. Tang, MOF-derived Co3O4 nanosheets rich in oxygen vacancies for efficient all-solid-state symmetric supercapacitors. Electrochim. Acta 328, 135103 (2019). https://doi.org/10.1016/j.electacta.2019.135103
Y. Han, S. Zhang, N. Shen, D. Li, X. Li, MOF-derived porous NiO nanop architecture for high performance supercapacitors. Mater. Lett. 188, 1–4 (2017). https://doi.org/10.1016/j.matlet.2016.09.051
M.K. Wu, C. Chen, J.J. Zhou, F.Y. Yi, K. Tao et al., MOF–derived hollow double–shelled NiO nanospheres for high-performance supercapacitors. J. Alloys Compd. 734, 1–8 (2018). https://doi.org/10.1016/j.jallcom.2017.10.171
G.C. Li, P.F. Liu, R. Liu, M. Liu, K. Tao et al., MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors. Dalton Trans. 45, 13311–13316 (2016). https://doi.org/10.1039/c6dt01791f
F. Saleki, A. Mohammadi, S. Moosavifard, A. Hafizi, M. Rahimpour, MOF assistance synthesis of nanoporous double-shelled CuCo2O4 hollow spheres for hybrid supercapacitors. J. Colloid Interface Sci. 565, 83–91 (2019). https://doi.org/10.1016/j.jcis.2019.08.044
X.Y. Yu, L. Yu, H.B. Wu, X.W. Lou, Formation of nickel sulfide nanoframes from metal–organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew. Chem. Int. Ed. 54(18), 5331–5335 (2015). https://doi.org/10.1002/anie.201500267
Y. Yang, M.L. Li, J.N. Lin, M.Y. Zou, S.T. Gu et al., MOF-derived Ni3S4 encapsulated in 3D conductive network for high-performance supercapacitor. Inorg. Chem. 59(4), 2406–2412 (2020). https://doi.org/10.1021/acs.inorgchem.9b03263
R. Gao, Q. Zhang, F. Soyekwo, C. Lin, R. Lv et al., Novel amorphous nickel sulfide@CoS double-shelled polyhedral nanocages for supercapacitor electrode materials with superior electrochemical properties. Electrochim. Acta 237, 94–101 (2017). https://doi.org/10.1016/j.electacta.2017.03.214
S. Hou, Y. Lian, Y. Bai, Q. Zhou, C. Ban et al., Hollow dodecahedral Co3S4@NiO derived from ZIF-67 for supercapacitor. Electrochim. Acta 341, 136053 (2020). https://doi.org/10.1016/j.electacta.2020.136053
Z. Xiao, B. Xu, S. Zhang, Z. Yang, Y. Mei et al., Balancing crystallinity and specific surface area of metal–organic framework derived nickel hydroxide for high-performance supercapacitor. Electrochim. Acta 284, 202–210 (2018). https://doi.org/10.1016/j.electacta.2018.07.173
C. Qu, B. Zhao, Y. Jiao, D. Chen, S. Dai et al., Functionalized bimetallic hydroxides derived from metal–organic frameworks for high-performance hybrid supercapacitor with exceptional cycling stability. ACS Energy Lett. 2(6), 1263–1269 (2017). https://doi.org/10.1021/acsenergylett.7b00265
S. Zhang, Z. Yang, K. Gong, B. Xu, H. Mei et al., Temperature controlled diffusion of hydroxide ions in 1D channels of Ni-MOF-74 for its complete conformal hydrolysis to hierarchical Ni(OH)2 supercapacitor electrodes. Nanoscale 11(19), 9598–9607 (2019). https://doi.org/10.1039/C9NR02555C
H. Zhang, B. Xu, Z. Xiao, H. Mei, L. Zhang et al., Optimizing crystallinity and porosity of hierarchical Ni(OH)2 through conformal transformation of metal–organic framework template for supercapacitor applications. CrystEngComm 20, 4313–4320 (2018). https://doi.org/10.1039/c8ce00741a
Z. Wang, Y. Liu, C. Gao, H. Jiang, J. Zhang, A porous Co(OH)2 material derived from a MOF template and its superior energy storage performance for supercapacitors. J. Mater. Chem. A 3(41), 20658–20663 (2015). https://doi.org/10.1039/c5ta04663g
Q. Tang, L. Ma, F. Cao, M. Gan, F. Yan, Different morphologies of Ni(OH)2 derived from a MOF template for high performance supercapacitors. J. Mater. Sci. Mater. Electron. 30, 9114–9122 (2019). https://doi.org/10.1007/s10854-019-01240-0
X. Li, J. Li, Y. Zhang, P. Zhao, R. Lei et al., The evolution in electrochemical performance of honeycomb-like Ni(OH)2 derived from MOF template with morphology as a high-performance electrode material for supercapacitors. Materials 13(21), 4870 (2020). https://doi.org/10.3390/ma13214870