In Situ Formed Tribofilms as Efficient Organic/Inorganic Hybrid Interlayers for Stabilizing Lithium Metal Anodes
Corresponding Author: Libao Chen
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 235
Abstract
The practical application of Li metal anodes (LMAs) is limited by uncontrolled dendrite growth and side reactions. Herein, we propose a new friction-induced strategy to produce high-performance thin Li anode (Li@CFO). By virtue of the in situ friction reaction between fluoropolymer grease and Li strips during rolling, a robust organic/inorganic hybrid interlayer (lithiophilic LiF/LiC6 framework hybridized -CF2-O-CF2- chains) was formed atop Li metal. The derived interface contributes to reversible Li plating/stripping behaviors by mitigating side reactions and decreasing the solvation degree at the interface. The Li@CFO||Li@CFO symmetrical cell exhibits a remarkable lifespan for 5,600 h (1.0 mA cm−2 and 1.0 mAh cm−2) and 1,350 cycles even at a harsh condition (18.0 mA cm−2 and 3.0 mAh cm−2). When paired with high-loading LiFePO4 cathodes, the full cell lasts over 450 cycles at 1C with a high-capacity retention of 99.9%. This work provides a new friction-induced strategy for producing high-performance thin LMAs.
Highlights:
1 The robust organic/inorganic hybrid interlayer derived from in situ formed tribofilms were fabricated by using a scalable rolling method.
2 The interlayer facilitates dendrite-free lithium metal anodes by building local de-solvation environments near the interface and inhibiting both dendrite growth and electrolytes corrosion.
3 The symmetrical cell exhibits a remarkable lifespan of 5,600 h (1.0 mA cm-2 and 1.0 mAh cm-2) and 1,350 cycles even at a harsh condition (18.0 mA cm-2 and 3.0 mAh cm-2).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Zhao, Y. Deng, N.W. Utomo, J. Zheng, P. Biswal et al., On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity. Nat. Commun. 12(1), 6034 (2021). https://doi.org/10.1038/s41467-021-26143-9
- D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12(3), 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
- X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117(15), 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
- Z. Hai, W. Yuxuan, D. Fei, S. Lin, M. Yaohua, An artificial li-al interphase layer on Li-B alloy for stable lithium-metal anode Electrochim. Acta 304(255), 262 (2019). https://doi.org/10.1016/j.electacta.2019.03.009
- J.L. Gao, C.J. Chen, Q. Dong, J.Q. Dai, Y.G. Yao et al., Stamping flexible li alloy anodes. Adv. Mater. 33(11), e2005305 (2021). https://doi.org/10.1002/adma.202005305
- Z. Zehua, L. Bin, Multi-storey corridor structured host for a large area capacity and high rate metallic lithium anode. Electrochim. Acta 365, 137341 (2021). https://doi.org/10.1016/j.electacta.2020.137341
- L. Ye, M. Liao, X. Cheng, X. Zhou, Y. Zhao et al., Lithium-metal anodes working at 60 mA cm(-2) and 60 mAh cm(-2) through nanoscale lithium-ion adsorbing. Angew. Chem. Int. Ed. 60(32), 17419–17425 (2021). https://doi.org/10.1002/anie.202106047
- Z. Luo, S. Li, L. Yang, Y. Tian, L. Xu et al., Interfacially redistributed charge for robust lithium metal anode. Nano Energy 87, 106212 (2021). https://doi.org/10.1016/j.nanoen.2021.106212
- X.-B. Cheng, H.-J. Peng, J.-Q. Huang, R. Zhang, C.-Z. Zhao et al., Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium–sulfur batteries. ACS Nano 9(6), 6373–6382 (2015). https://doi.org/10.1021/acsnano.5b01990
- Y. Gao, X. Du, Z. Hou, X. Shen, Y.-W. Mai et al., Unraveling the mechanical origin of stable solid electrolyte interphase. Joule 5(7), 1860–1872 (2021). https://doi.org/10.1016/j.joule.2021.05.015
- Z. Wu, W. Kong Pang, L. Chen, B. Johannessen, Z. Guo, In situ synchrotron X-ray absorption spectroscopy studies of anode materials for rechargeable batteries. Batter. Supercaps. 4(10), 1547–1566 (2021). https://doi.org/10.1002/batt.202100006
- C. Wu, H.F. Huang, W.Y. Lu, Z.X. Wei, X.Y. Ni et al., Mg doped li–lib alloy with in situ formed lithiophilic lib skeleton for lithium metal batteries. Adv. Sci. 7(6), 1902643 (2020). https://doi.org/10.1002/advs.201902643
- H. Liu, J. Di, P. Wang, R. Gao, H. Tian et al., A novel design of 3d carbon host for stable lithium metal anode. Carbon Energy 4(4), 654–664 (2022). https://doi.org/10.1002/cey2.193
- H. Ye, S. Xin, Y.X. Yin, J.Y. Li, Y.G. Guo et al., Stable li plating/stripping electrochemistry realized by a hybrid li reservoir in spherical carbon granules with 3d conducting skeletons. J. Am. Chem. Soc. 139(16), 5916–5922 (2017). https://doi.org/10.1021/jacs.7b01763
- U. Makoto, U. Kohei, Recent progress in liquid electrolytes for lithium metal batteries. Curr. Opinion Electrochem. 17, 106–113 (2019). https://doi.org/10.1016/j.coelec.2019.05.001
- F. Zhao, P. Zhai, Y. Wei, Z. Yang, Q. Chen et al., Constructing artificial sei layer on lithiophilic mxene surface for high-performance lithium metal anodes. Adv. Sci. 9(6), e2103930 (2022). https://doi.org/10.1002/advs.202103930
- D. Shin, J.E. Bachman, M.K. Taylor, J. Kamcev, J.G. Park, A single-ion conducting borate network polymer as a viable quasi-solid electrolyte for lithium metal batteries. Adv. Mater. 32(10), e1905771 (2020). https://doi.org/10.1002/adma.201905771
- X.B. Cheng, T.Z. Hou, R. Zhang, H.J. Peng, C.Z. Zhao et al., Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 28(15), 2888–2895 (2016). https://doi.org/10.1002/adma.201506124
- F. Wu, S. Fang, M. Kuenzel, A. Mullaliu, J.-K. Kim et al., Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries. Joule 5(8), 2177–2194 (2021). https://doi.org/10.1016/j.joule.2021.06.014
- Y. Liu, X. Xu, O.O. Kapitanova, P.V. Evdokimov, Z. Song et al., Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Adv. Energy Mater. 12(9), 2103589 (2022). https://doi.org/10.1002/aenm.202103589
- J. Ryu, D.-Y. Han, D. Hong, S. Park, A polymeric separator membrane with chemoresistance and high li-ion flux for high-energy-density lithium metal batteries. Energy Storage Mater. 45, 941–951 (2022). https://doi.org/10.1016/j.ensm.2021.12.046
- L. Xiao, Z. Zeng, X. Liu, Y. Fang, X. Jiang et al., Stable li metal anode with “ion–solvent-coordinated” nonflammable electrolyte for safe Li metal batteries. ACS Energy Lett. 4(2), 483–488 (2019). https://doi.org/10.1021/acsenergylett.8b02527
- Y. Gao, Y. Zhao, Y.C. Li, Q. Huang, T.E. Mallouk et al., Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries. J. Am. Chem. Soc. 139(43), 15288–15291 (2017). https://doi.org/10.1021/jacs.7b06437
- G. Liu, W. Lu, A model of concurrent lithium dendrite growth, sei growth, sei penetration and regrowth. J. Electrochem. Soc. 164(9), A1826–A1833 (2017). https://doi.org/10.1149/2.0381709jes
- C. Cui, C. Yang, N. Eidson, J. Chen, F. Han, A highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride-enriched interphase. Adv. Mater. 32(12), e1906427 (2020). https://doi.org/10.1002/adma.201906427
- R.H. Wang, W.S. Cui, F.L. Chu, F.X. Wu, Lithium metal anodes: Present and future. J. Energy Chem. 48(2020), 145–159 (2020). https://doi.org/10.1016/j.jechem.2019.12.024
- X. Shuixin, Z. Xun, L. Chao, Y. Yi, L. Wei, Stabilized lithium metal anode by an efficient coating for high-performance Li–S batteries. Energy Storage Mater. 24(2020), 329–335 (2020). https://doi.org/10.1016/j.ensm.2019.07.042
- X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu et al., Synergistic coupling between Li(6.75)La(3)Zr(1.75)Ta(0.25)O(12) and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 139(39), 13779–13785 (2017). https://doi.org/10.1021/jacs.7b06364
- C. Szczuka, B. Karasulu, M.F. Groh, F.N. Sayed, T.J. Sherman et al., Forced disorder in the solid solution Li3P-Li2S: A new class of fully reduced solid electrolytes for lithium metal anodes. J. Am. Chem. Soc. 144(36), 16350–16365 (2022). https://doi.org/10.1021/jacs.2c01913
- Y. Yu, G. Huang, J.Z. Wang, K. Li, J.L. Ma et al., In situ designing a gradient li(+) capture and quasi-spontaneous diffusion anode protection layer toward long-life Li-O(2) batteries. Adv. Mater. 32(38), e2004157 (2020). https://doi.org/10.1002/adma.202004157
- J. Lang, Y. Long, J. Qu, X. Luo, H. Wei et al., One-pot solution coating of high quality lif layer to stabilize li metal anode. Energy Storage Mater. 16, 85–90 (2019). https://doi.org/10.1016/j.ensm.2018.04.024
- D. Wang, H. Liu, F. Liu, G. Ma, J. Yang et al., Phase-separation-induced porous lithiophilic polymer coating for high-efficiency lithium metal batteries. Nano Lett. 21(11), 4757–4764 (2021). https://doi.org/10.1021/acs.nanolett.1c01241
- Q. Yang, J. Hu, J. Meng, C. Li, C–f-rich oil drop as a non-expendable fluid interface modifier with low surface energy to stabilize a Li metal anode. Energy Environ. Sci. 14(6), 3621–3631 (2021). https://doi.org/10.1039/d0ee03952g
- Y.K. Lee, K.Y. Cho, S. Lee, J. Choi, G. Lee et al., Construction of hierarchical surface on carbon fiber paper for lithium metal batteries with superior stability. Adv. Energy Mater. 13(9), 2203770 (2023). https://doi.org/10.1002/aenm.202203770
- Y. Hu, Z. Li, Z. Wang, X. Wang, W. Chen et al., Suppressing local dendrite hotspots via current density redistribution using a superlithiophilic membrane for stable lithium metal anode. Adv. Sci. 10(12), e2206995 (2023). https://doi.org/10.1002/advs.202206995
- Y.-X. Song, W.-Y. Lu, Y.-J. Chen, H. Yang, C. Wu et al., Coating highly lithiophilic Zn on Cu foil for high-performance lithium metal batteries. Rare Met. 41(4), 1255–1264 (2021). https://doi.org/10.1007/s12598-021-01811-3
- H.-F. Huang, Y.-N. Gui, F. Sun, Z.-J. Liu, H.-L. Ning et al., In situ formed three-dimensional (3d) lithium–boron (Li–B) alloy as a potential anode for next-generation lithium batteries. Rare Met. 40(12), 3494–3500 (2021). https://doi.org/10.1007/s12598-021-01708-1
- Y.-S. Hu, Y. Lu, The mystery of electrolyte concentration: From superhigh to ultralow. ACS Energy Lett. 5(11), 3633–3636 (2020). https://doi.org/10.1021/acsenergylett.0c02234
- Z. Wang, Z. Sun, J. Li, Y. Shi, C. Sun et al., Insights into the deposition chemistry of li ions in nonaqueous electrolyte for stable li anodes. Chem. Soc. Rev. 50(5), 3178–3210 (2021). https://doi.org/10.1039/d0cs01017k
- A. Kusumi, Y. Sako, M. Yamamoto, Confined lateral diffusion of membrane receptors as studied by single p tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65, 2021–2040 (1993). https://doi.org/10.1016/S0006-3495(93)81253-0
- H. Ji, Z. Wang, Y. Sun, Y. Zhou, S. Li et al., Weakening Li+ de-solvation barrier for cryogenic Li-S pouch cells. Adv. Mater. 35(9), e2208590 (2023). https://doi.org/10.1002/adma.202208590
- J. Park, S. Ha, J.Y. Jung, J.H. Hyun, S.H. Yu et al., Understanding the effects of interfacial lithium ion concentration on lithium metal anode. Adv. Sci. 9(6), e2104145 (2022). https://doi.org/10.1002/advs.202104145
- X. Liu, J. Liu, T. Qian, H. Chen, C. Yan, Novel organophosphate-derived dual-layered interface enabling air-stable and dendrite-free lithium metal anode. Adv. Mater. 32(2), e1902724 (2019). https://doi.org/10.1002/adma.201902724
- X.X. Ma, X. Chen, Y.K. Bai, X. Shen, R. Zhang et al., The defect chemistry of carbon frameworks for regulating the lithium nucleation and growth behaviors in lithium metal anodes. Small 17(48), e2007142 (2021). https://doi.org/10.1002/smll.202007142
- P. Shi, L.-P. Hou, C.-B. Jin, Y. Xiao, Y.-X. Yao et al., A successive conversion–deintercalation delithiation mechanism for practical composite lithium anodes. J. Am. Chem. Soc. 144(1), 212–218 (2021). https://doi.org/10.1021/jacs.1c08606
- H. Wang, Y. Chen, H. Yu, W. Liu, G. Kuang et al., A multifunctional artificial interphase with fluorine-doped amorphous carbon layer for ultra-stable Zn anode. Adv. Funct. Mater. 32(43), 2205600 (2022). https://doi.org/10.1002/adfm.202205600
- S. Ye, X. Chen, R. Zhang, Y. Jiang, F. Huang et al., Revisiting the role of physical confinement and chemical regulation of 3d hosts for dendrite-free li metal anode. Nano-Micro Lett. 14(1), 187 (2022). https://doi.org/10.1007/s40820-022-00932-3
- L.-P. Hou, X.-Q. Zhang, B.-Q. Li, Q. Zhang, Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium–sulfur batteries. Mater. Today 45, 62–76 (2021). https://doi.org/10.1016/j.mattod.2020.10.021
- C. Qin, D. Wang, Y. Liu, P. Yang, T. Xie et al., Tribo-electrochemistry induced artificial solid electrolyte interface by self-catalysis. Nat. Commun. 12(1), 7184 (2021). https://doi.org/10.1038/s41467-021-27494-z
References
Q. Zhao, Y. Deng, N.W. Utomo, J. Zheng, P. Biswal et al., On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity. Nat. Commun. 12(1), 6034 (2021). https://doi.org/10.1038/s41467-021-26143-9
D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12(3), 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117(15), 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
Z. Hai, W. Yuxuan, D. Fei, S. Lin, M. Yaohua, An artificial li-al interphase layer on Li-B alloy for stable lithium-metal anode Electrochim. Acta 304(255), 262 (2019). https://doi.org/10.1016/j.electacta.2019.03.009
J.L. Gao, C.J. Chen, Q. Dong, J.Q. Dai, Y.G. Yao et al., Stamping flexible li alloy anodes. Adv. Mater. 33(11), e2005305 (2021). https://doi.org/10.1002/adma.202005305
Z. Zehua, L. Bin, Multi-storey corridor structured host for a large area capacity and high rate metallic lithium anode. Electrochim. Acta 365, 137341 (2021). https://doi.org/10.1016/j.electacta.2020.137341
L. Ye, M. Liao, X. Cheng, X. Zhou, Y. Zhao et al., Lithium-metal anodes working at 60 mA cm(-2) and 60 mAh cm(-2) through nanoscale lithium-ion adsorbing. Angew. Chem. Int. Ed. 60(32), 17419–17425 (2021). https://doi.org/10.1002/anie.202106047
Z. Luo, S. Li, L. Yang, Y. Tian, L. Xu et al., Interfacially redistributed charge for robust lithium metal anode. Nano Energy 87, 106212 (2021). https://doi.org/10.1016/j.nanoen.2021.106212
X.-B. Cheng, H.-J. Peng, J.-Q. Huang, R. Zhang, C.-Z. Zhao et al., Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium–sulfur batteries. ACS Nano 9(6), 6373–6382 (2015). https://doi.org/10.1021/acsnano.5b01990
Y. Gao, X. Du, Z. Hou, X. Shen, Y.-W. Mai et al., Unraveling the mechanical origin of stable solid electrolyte interphase. Joule 5(7), 1860–1872 (2021). https://doi.org/10.1016/j.joule.2021.05.015
Z. Wu, W. Kong Pang, L. Chen, B. Johannessen, Z. Guo, In situ synchrotron X-ray absorption spectroscopy studies of anode materials for rechargeable batteries. Batter. Supercaps. 4(10), 1547–1566 (2021). https://doi.org/10.1002/batt.202100006
C. Wu, H.F. Huang, W.Y. Lu, Z.X. Wei, X.Y. Ni et al., Mg doped li–lib alloy with in situ formed lithiophilic lib skeleton for lithium metal batteries. Adv. Sci. 7(6), 1902643 (2020). https://doi.org/10.1002/advs.201902643
H. Liu, J. Di, P. Wang, R. Gao, H. Tian et al., A novel design of 3d carbon host for stable lithium metal anode. Carbon Energy 4(4), 654–664 (2022). https://doi.org/10.1002/cey2.193
H. Ye, S. Xin, Y.X. Yin, J.Y. Li, Y.G. Guo et al., Stable li plating/stripping electrochemistry realized by a hybrid li reservoir in spherical carbon granules with 3d conducting skeletons. J. Am. Chem. Soc. 139(16), 5916–5922 (2017). https://doi.org/10.1021/jacs.7b01763
U. Makoto, U. Kohei, Recent progress in liquid electrolytes for lithium metal batteries. Curr. Opinion Electrochem. 17, 106–113 (2019). https://doi.org/10.1016/j.coelec.2019.05.001
F. Zhao, P. Zhai, Y. Wei, Z. Yang, Q. Chen et al., Constructing artificial sei layer on lithiophilic mxene surface for high-performance lithium metal anodes. Adv. Sci. 9(6), e2103930 (2022). https://doi.org/10.1002/advs.202103930
D. Shin, J.E. Bachman, M.K. Taylor, J. Kamcev, J.G. Park, A single-ion conducting borate network polymer as a viable quasi-solid electrolyte for lithium metal batteries. Adv. Mater. 32(10), e1905771 (2020). https://doi.org/10.1002/adma.201905771
X.B. Cheng, T.Z. Hou, R. Zhang, H.J. Peng, C.Z. Zhao et al., Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 28(15), 2888–2895 (2016). https://doi.org/10.1002/adma.201506124
F. Wu, S. Fang, M. Kuenzel, A. Mullaliu, J.-K. Kim et al., Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries. Joule 5(8), 2177–2194 (2021). https://doi.org/10.1016/j.joule.2021.06.014
Y. Liu, X. Xu, O.O. Kapitanova, P.V. Evdokimov, Z. Song et al., Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Adv. Energy Mater. 12(9), 2103589 (2022). https://doi.org/10.1002/aenm.202103589
J. Ryu, D.-Y. Han, D. Hong, S. Park, A polymeric separator membrane with chemoresistance and high li-ion flux for high-energy-density lithium metal batteries. Energy Storage Mater. 45, 941–951 (2022). https://doi.org/10.1016/j.ensm.2021.12.046
L. Xiao, Z. Zeng, X. Liu, Y. Fang, X. Jiang et al., Stable li metal anode with “ion–solvent-coordinated” nonflammable electrolyte for safe Li metal batteries. ACS Energy Lett. 4(2), 483–488 (2019). https://doi.org/10.1021/acsenergylett.8b02527
Y. Gao, Y. Zhao, Y.C. Li, Q. Huang, T.E. Mallouk et al., Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries. J. Am. Chem. Soc. 139(43), 15288–15291 (2017). https://doi.org/10.1021/jacs.7b06437
G. Liu, W. Lu, A model of concurrent lithium dendrite growth, sei growth, sei penetration and regrowth. J. Electrochem. Soc. 164(9), A1826–A1833 (2017). https://doi.org/10.1149/2.0381709jes
C. Cui, C. Yang, N. Eidson, J. Chen, F. Han, A highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride-enriched interphase. Adv. Mater. 32(12), e1906427 (2020). https://doi.org/10.1002/adma.201906427
R.H. Wang, W.S. Cui, F.L. Chu, F.X. Wu, Lithium metal anodes: Present and future. J. Energy Chem. 48(2020), 145–159 (2020). https://doi.org/10.1016/j.jechem.2019.12.024
X. Shuixin, Z. Xun, L. Chao, Y. Yi, L. Wei, Stabilized lithium metal anode by an efficient coating for high-performance Li–S batteries. Energy Storage Mater. 24(2020), 329–335 (2020). https://doi.org/10.1016/j.ensm.2019.07.042
X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu et al., Synergistic coupling between Li(6.75)La(3)Zr(1.75)Ta(0.25)O(12) and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 139(39), 13779–13785 (2017). https://doi.org/10.1021/jacs.7b06364
C. Szczuka, B. Karasulu, M.F. Groh, F.N. Sayed, T.J. Sherman et al., Forced disorder in the solid solution Li3P-Li2S: A new class of fully reduced solid electrolytes for lithium metal anodes. J. Am. Chem. Soc. 144(36), 16350–16365 (2022). https://doi.org/10.1021/jacs.2c01913
Y. Yu, G. Huang, J.Z. Wang, K. Li, J.L. Ma et al., In situ designing a gradient li(+) capture and quasi-spontaneous diffusion anode protection layer toward long-life Li-O(2) batteries. Adv. Mater. 32(38), e2004157 (2020). https://doi.org/10.1002/adma.202004157
J. Lang, Y. Long, J. Qu, X. Luo, H. Wei et al., One-pot solution coating of high quality lif layer to stabilize li metal anode. Energy Storage Mater. 16, 85–90 (2019). https://doi.org/10.1016/j.ensm.2018.04.024
D. Wang, H. Liu, F. Liu, G. Ma, J. Yang et al., Phase-separation-induced porous lithiophilic polymer coating for high-efficiency lithium metal batteries. Nano Lett. 21(11), 4757–4764 (2021). https://doi.org/10.1021/acs.nanolett.1c01241
Q. Yang, J. Hu, J. Meng, C. Li, C–f-rich oil drop as a non-expendable fluid interface modifier with low surface energy to stabilize a Li metal anode. Energy Environ. Sci. 14(6), 3621–3631 (2021). https://doi.org/10.1039/d0ee03952g
Y.K. Lee, K.Y. Cho, S. Lee, J. Choi, G. Lee et al., Construction of hierarchical surface on carbon fiber paper for lithium metal batteries with superior stability. Adv. Energy Mater. 13(9), 2203770 (2023). https://doi.org/10.1002/aenm.202203770
Y. Hu, Z. Li, Z. Wang, X. Wang, W. Chen et al., Suppressing local dendrite hotspots via current density redistribution using a superlithiophilic membrane for stable lithium metal anode. Adv. Sci. 10(12), e2206995 (2023). https://doi.org/10.1002/advs.202206995
Y.-X. Song, W.-Y. Lu, Y.-J. Chen, H. Yang, C. Wu et al., Coating highly lithiophilic Zn on Cu foil for high-performance lithium metal batteries. Rare Met. 41(4), 1255–1264 (2021). https://doi.org/10.1007/s12598-021-01811-3
H.-F. Huang, Y.-N. Gui, F. Sun, Z.-J. Liu, H.-L. Ning et al., In situ formed three-dimensional (3d) lithium–boron (Li–B) alloy as a potential anode for next-generation lithium batteries. Rare Met. 40(12), 3494–3500 (2021). https://doi.org/10.1007/s12598-021-01708-1
Y.-S. Hu, Y. Lu, The mystery of electrolyte concentration: From superhigh to ultralow. ACS Energy Lett. 5(11), 3633–3636 (2020). https://doi.org/10.1021/acsenergylett.0c02234
Z. Wang, Z. Sun, J. Li, Y. Shi, C. Sun et al., Insights into the deposition chemistry of li ions in nonaqueous electrolyte for stable li anodes. Chem. Soc. Rev. 50(5), 3178–3210 (2021). https://doi.org/10.1039/d0cs01017k
A. Kusumi, Y. Sako, M. Yamamoto, Confined lateral diffusion of membrane receptors as studied by single p tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65, 2021–2040 (1993). https://doi.org/10.1016/S0006-3495(93)81253-0
H. Ji, Z. Wang, Y. Sun, Y. Zhou, S. Li et al., Weakening Li+ de-solvation barrier for cryogenic Li-S pouch cells. Adv. Mater. 35(9), e2208590 (2023). https://doi.org/10.1002/adma.202208590
J. Park, S. Ha, J.Y. Jung, J.H. Hyun, S.H. Yu et al., Understanding the effects of interfacial lithium ion concentration on lithium metal anode. Adv. Sci. 9(6), e2104145 (2022). https://doi.org/10.1002/advs.202104145
X. Liu, J. Liu, T. Qian, H. Chen, C. Yan, Novel organophosphate-derived dual-layered interface enabling air-stable and dendrite-free lithium metal anode. Adv. Mater. 32(2), e1902724 (2019). https://doi.org/10.1002/adma.201902724
X.X. Ma, X. Chen, Y.K. Bai, X. Shen, R. Zhang et al., The defect chemistry of carbon frameworks for regulating the lithium nucleation and growth behaviors in lithium metal anodes. Small 17(48), e2007142 (2021). https://doi.org/10.1002/smll.202007142
P. Shi, L.-P. Hou, C.-B. Jin, Y. Xiao, Y.-X. Yao et al., A successive conversion–deintercalation delithiation mechanism for practical composite lithium anodes. J. Am. Chem. Soc. 144(1), 212–218 (2021). https://doi.org/10.1021/jacs.1c08606
H. Wang, Y. Chen, H. Yu, W. Liu, G. Kuang et al., A multifunctional artificial interphase with fluorine-doped amorphous carbon layer for ultra-stable Zn anode. Adv. Funct. Mater. 32(43), 2205600 (2022). https://doi.org/10.1002/adfm.202205600
S. Ye, X. Chen, R. Zhang, Y. Jiang, F. Huang et al., Revisiting the role of physical confinement and chemical regulation of 3d hosts for dendrite-free li metal anode. Nano-Micro Lett. 14(1), 187 (2022). https://doi.org/10.1007/s40820-022-00932-3
L.-P. Hou, X.-Q. Zhang, B.-Q. Li, Q. Zhang, Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium–sulfur batteries. Mater. Today 45, 62–76 (2021). https://doi.org/10.1016/j.mattod.2020.10.021
C. Qin, D. Wang, Y. Liu, P. Yang, T. Xie et al., Tribo-electrochemistry induced artificial solid electrolyte interface by self-catalysis. Nat. Commun. 12(1), 7184 (2021). https://doi.org/10.1038/s41467-021-27494-z