Ultra-Low-Dose Pre-Metallation Strategy Served for Commercial Metal-Ion Capacitors
Corresponding Author: Guoqiang Zou
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 53
Abstract
Sacrificial pre-metallation strategy could compensate for the irreversible consumption of metal ions and reduce the potential of anode, thereby elevating the cycle performance as well as open-circuit voltage for full metal ion capacitors (MICs). However, suffered from massive-dosage abuse, exorbitant decomposition potential, and side effects of decomposition residue, the wide application of sacrificial approach was restricted. Herein, assisted with density functional theory calculations, strongly coupled interface (M–O–C, M = Li/Na/K) and electron donating group have been put forward to regulate the band gap and highest occupied molecular orbital level of metal oxalate (M2C2O4), reducing polarization phenomenon and Gibbs free energy required for decomposition, which eventually decrease the practical decomposition potential from 4.50 to 3.95 V. Remarkably, full sodium ion capacitors constituted of commercial materials (activated carbon//hard carbon) could deliver a prominent energy density of 118.2 Wh kg−1 as well as excellent cycle stability under an ultra-low dosage pre-sodiation reagent of 15–30 wt% (far less than currently 100 wt%). Noteworthily, decomposition mechanism of sacrificial compound and the relative influence on the system of MICs after pre-metallation were initially revealed by in situ differential electrochemical mass spectrometry, offering in-depth insights for comprehending the function of cathode additives. In addition, this breakthrough has been successfully utilized in high performance lithium/potassium ion capacitors with Li2C2O4/K2C2O4 as pre-metallation reagent, which will convincingly promote the commercialization of MICs.
Highlights:
1 Interfacial bonding strategy has been successfully applied to address the high overpotential issue of sacrificial additives, which reduced the decompositon potential of Na2C2O4 from 4.50 to 3.95 V.
2 Ultra-low-dose technique assisted commercial sodium ion capacitor (AC//HC) could deliver a remarkable energy density of 118.2 Wh kg−1 as well as excellent cycle stability.
3 In-depth decomposition mechanism of sacrificial compound and the relative influence after pre-metallation were revealed by advanced in situ and ex situ characterization approaches.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Wang, C. Zhu, D. Chao, Q. Yan, H.J. Fan, Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 29(46), 1702093 (2017). https://doi.org/10.1002/adma.201702093
- J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 118(14), 6457–6498 (2018). https://doi.org/10.1021/acs.chemrev.8b00116
- B. Anothumakkool, S. Wiemers-Meyer, D. Guyomard, M. Winter, T. Brousse et al., Cascade-type prelithiation approach for li-ion capacitors. Adv. Energy Mater. 9(27), 1900078 (2019). https://doi.org/10.1002/aenm.201900078
- C. Yan, W. Li, X. Liu, M. Chen, X. Liu et al., Donor−π–acceptor heterosystem-functionalized porous hollow carbon microsphere for high-performance Li–S cathode materials with s up to 93 wt%. ACS Appl. Mater. Interfaces 13(41), 48872–48880 (2021). https://doi.org/10.1021/acsami.1c15133
- P. Cai, K. Zou, X. Deng, B. Wang, M. Zheng et al., Comprehensive understanding of sodium-ion capacitors: definition, mechanisms, configurations, materials, key technologies, and future developments. Adv. Energy Mater. 11(16), 2003804 (2021). https://doi.org/10.1002/aenm.202003804
- J. Zheng, G. Xing, L. Zhang, Y. Lu, L. Jin et al., A minireview on high-performance anodes for lithium-ion capacitors. Batter. Supercaps 4(6), 897–908 (2021). https://doi.org/10.1002/batt.202000292
- H. Wang, Q. Gao, J. Hu, High hydrogen storage capacity of porous carbons prepared by using activated carbon. J. Am. Chem. Soc. 131(20), 7016–7022 (2009). https://doi.org/10.1021/ja8083225
- H. Liu, W. Zhang, Y. Song, L. Li, C. Zhang et al., Superior rate mesoporous carbon sphere array composite via intercalation and conversion coupling mechanisms for potassium-ion capacitors. Adv. Funct. Mater. 31(50), 2107728 (2021). https://doi.org/10.1002/adfm.202107728
- X. Liu, Z. Xu, A. Iqbal, M. Chen, N. Ali et al., Chemical coupled PEDOT:PSS/Si electrode: suppressed electrolyte consumption enables long-term stability. Nano-Micro Lett. 13, 54 (2021). https://doi.org/10.1007/s40820-020-00564-5
- H. Wang, D. Xu, G. Jia, Z. Mao, Y. Gong et al., Integration of flexibility, cyclability and high-capacity into one electrode for sodium-ion hybrid capacitors with low self-discharge rate. Energy Storage Mater. 25, 114–123 (2020). https://doi.org/10.1016/j.ensm.2019.10.024
- J. Zhao, Z. Lu, H. Wang, W. Liu, H.W. Lee et al., Artificial solid electrolyte interphase-protected LixSi nanoparticles: an efficient and stable prelithiation reagent for lithium-ion batteries. J. Am. Chem. Soc. 137(26), 8372–8375 (2015). https://doi.org/10.1021/jacs.5b04526
- X. Liu, Y. Tan, W. Wang, C. Li, Z.W. She et al., Conformal prelithiation nanoshell on LiCoO2 enabling high-energy lithium-ion batteries. Nano Lett. 20(6), 4558–4565 (2020). https://doi.org/10.1021/acs.nanolett.0c01413
- W.J. Cao, J.P. Zheng, Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes. J. Power Sour. 213, 180–185 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.033
- D. Dewar, A.M. Glushenkov, Optimisation of sodium-based energy storage cells using pre-sodiation: a perspective on the emerging field. Energy Environ. Sci. 14(3), 1380–1401 (2021). https://doi.org/10.1039/d0ee02782k
- M.S. Park, Y.G. Lim, J.W. Park, J.S. Kim, J.W. Lee et al., Li2RuO3 as an additive for high-energy lithium-ion capacitors. J. Phys. Chem. C 117(22), 11471–11478 (2013). https://doi.org/10.1021/jp4005828
- C. Liu, T. Li, H. Zhang, Z. Song, C. Qu et al., DMF stabilized Li3N slurry for manufacturing self-prelithiatable lithium-ion capacitors. Sci. Bull. 65(6), 434–442 (2020). https://doi.org/10.1016/j.scib.2019.11.014
- K. Zou, W. Deng, P. Cai, X. Deng, B. Wang et al., Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: concepts, applications, and perspectives. Adv. Funct. Mater. 31(5), 2005581 (2021). https://doi.org/10.1002/adfm.202005581
- R. Zhan, X. Wang, Z. Chen, Z.W. Seh, L. Wang et al., Promises and challenges of the practical implementation of prelithiation in lithium-ion batteries. Adv. Energy Mater. 11(35), 2101565 (2021). https://doi.org/10.1002/aenm.202101565
- L. Jin, C. Shen, Q. Wu, A. Shellikeri, J. Zheng et al., Pre-lithiation strategies for next-generation practical lithium-ion batteries. Adv. Sci. 8(12), 2005031 (2021). https://doi.org/10.1002/advs.202005031
- F. Wang, B. Wang, J. Li, B. Wang, Y. Zhou et al., Prelithiation: a crucial strategy for boosting the practical application of next-generation lithium ion battery. ACS Nano 15(2), 2197–2218 (2021). https://doi.org/10.1021/acsnano.0c10664
- Z. Song, K. Zou, X. Xiao, X. Deng, S. Li et al., Presodiation strategies for the promotion of sodium-based energy storage systems. Chem. Eur. J. 27(65), 16082–16092 (2021). https://doi.org/10.1002/chem.202102433
- D.F. Yang, X.M. Sun, K. Lim, R.R. Gaddam, N.A. Kumar et al., Pre-sodiated nickel cobaltite for high-performance sodium-ion capacitors. J. Power Sour. 362, 358–365 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.053
- H. Xu, S. Li, C. Zhang, X. Chen, W. Liu et al., Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries. Energy Environ. Sci. 12(10), 2991–3000 (2019). https://doi.org/10.1039/c9ee01404g
- Y. Cao, T.Q. Zhang, X.G. Zhong, T.Y. Zhai, H.Q. Li, A safe, convenient liquid phase pre-sodiation method for titanium-based SIB materials. Chem. Commun. 55(98), 14761–14764 (2019). https://doi.org/10.1039/c9cc06581d
- X.X. Liu, Y.C. Tan, T.C. Liu, W.Y. Wang, C.H. Li et al., A simple electrode-level chemical presodiation route by solution spraying to improve the energy density of sodium-ion batteries. Adv. Funct. Mater. 29(50), 1903795 (2019). https://doi.org/10.1002/adfm.201903795
- M.C. Liu, J.Y. Zhang, S.H. Guo, B. Wang, Y.F. Shen et al., Chemically presodiated hard carbon anodes with enhanced initial coulombic efficiencies for high-energy sodium ion batteries. ACS Appl. Mater. Interfaces 12(15), 17620–17627 (2020). https://doi.org/10.1021/acsami.0c02230
- J. Du, W. Wang, A.Y.S. Eng, X. Liu, M. Wan et al., Metal/LiF/Li2O nanocomposite for battery cathode prelithiation: trade-off between capacity and stability. Nano Lett. 20(1), 546–552 (2020). https://doi.org/10.1021/acs.nanolett.9b04278
- H. Li, J. Lang, S. Lei, J. Chen, K. Wang et al., A high-performance sodium-ion hybrid capacitor constructed by metal-organic framework-derived anode and cathode materials. Adv. Funct. Mater. 28(30), 1800757 (2018). https://doi.org/10.1002/adfm.201800757
- X.X. Pan, A. Chojnacka, P. Jezowski, F. Beguin, Na2S sacrificial cathodic material for high performance sodium-ion capacitors. Electrochim. Acta 318, 471–478 (2019). https://doi.org/10.1016/j.electacta.2019.06.086
- P. Jezowski, A. Chojnacka, X. Pan, F. Beguin, Sodium amide as a “zero dead mass” sacrificial material for the pre-sodiation of the negative electrode in sodium-ion capacitors. Electrochim. Acta 375, 137980 (2021). https://doi.org/10.1016/j.electacta.2021.137980
- M. Arnaiz, D. Shanmukaraj, D. Carriazo, D. Bhattacharjya, A. Villaverde et al., A transversal low-cost pre-metallation strategy enabling ultrafast and stable metal ion capacitor technologies. Energy Environ. Sci. 13(8), 2441–2449 (2020). https://doi.org/10.1039/d0ee00351d
- X. Pan, A. Chojnacka, F. Beguin, Advantageous carbon deposition during the irreversible electrochemical oxidation of Na2C4O4 used as a presodiation source for the anode of sodium-ion systems. Energy Storage Mater. 40, 22–30 (2021). https://doi.org/10.1016/j.ensm.2021.04.048
- K.Y. Zou, P. Cai, Y. Tian, J.Y. Li, C. Liu et al., Voltage-induced high-efficient in situ presodiation strategy for sodium ion capacitors. Small Methods 4(3), 1900763 (2020). https://doi.org/10.1002/smtd.201900763
- Y.B. Niu, Y.J. Guo, Y.X. Yin, S.Y. Zhang, T. Wang et al., High-efficiency cathode sodium compensation for sodium-ion batteries. Adv. Mater. 32(33), 2001419 (2020). https://doi.org/10.1002/adma.202001419
- C. Sun, X. Zhang, C. Li, K. Wang, X. Sun et al., A safe, low-cost and high-efficiency presodiation strategy for pouch-type sodium-ion capacitors with high energy density. J. Energy Chem. 64, 442–450 (2022). https://doi.org/10.1016/j.jechem.2021.05.010
- C. Sun, X. Zhang, C. Li, K. Wang, X. Sun et al., High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance. Energy Storage Mater. 24, 160–166 (2020). https://doi.org/10.1016/j.ensm.2019.08.023
- H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 27(47), 7861–7866 (2015). https://doi.org/10.1002/adma.201503816
- K. Zou, P. Cai, X. Deng, B. Wang, C. Liu et al., Correction: highly stable zinc metal anode enabled by oxygen functional groups for advanced Zn-ion supercapacitors. Chem. Commun. 57(20), 2571–2572 (2021). https://doi.org/10.1039/D1CC90077C
- P. Jeżowski, K. Fic, O. Crosnier, T. Brousse, F. Béguin, Lithium rhenium(vii) oxide as a novel material for graphite pre-lithiation in high performance lithium-ion capacitors. J. Mater. Chem. A 4(32), 12609–12615 (2016). https://doi.org/10.1039/C6TA03810G
- H. Wang, Y. Zhang, H. Ang, Y. Zhang, H.T. Tan et al., A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv. Funct. Mater. 26(18), 3082–3093 (2016). https://doi.org/10.1002/adfm.201505240
- Y. Jiang, Y. Yang, R. Xu, X. Cheng, H. Huang et al., Ultrafast potassium storage in F-induced ultra-high edge-defective carbon nanosheets. ACS Nano 15(6), 10217–10227 (2021). https://doi.org/10.1021/acsnano.1c02275
- W. Liu, X. Chen, C. Zhang, H. Xu, X. Sun et al., Gassing in Sn-anode sodium-ion batteries and its remedy by metallurgically prealloying Na. ACS Appl. Mater. Interfaces 11(26), 23207–23212 (2019). https://doi.org/10.1021/acsami.9b05005
- S.S. Chi, X.G. Qi, Y.S. Hu, L.Z. Fan, 3D flexible carbon felt host for highly stable sodium metal anodes. Adv. Energy Mater. 8(15), 1702764 (2018). https://doi.org/10.1002/aenm.201702764
References
H. Wang, C. Zhu, D. Chao, Q. Yan, H.J. Fan, Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 29(46), 1702093 (2017). https://doi.org/10.1002/adma.201702093
J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 118(14), 6457–6498 (2018). https://doi.org/10.1021/acs.chemrev.8b00116
B. Anothumakkool, S. Wiemers-Meyer, D. Guyomard, M. Winter, T. Brousse et al., Cascade-type prelithiation approach for li-ion capacitors. Adv. Energy Mater. 9(27), 1900078 (2019). https://doi.org/10.1002/aenm.201900078
C. Yan, W. Li, X. Liu, M. Chen, X. Liu et al., Donor−π–acceptor heterosystem-functionalized porous hollow carbon microsphere for high-performance Li–S cathode materials with s up to 93 wt%. ACS Appl. Mater. Interfaces 13(41), 48872–48880 (2021). https://doi.org/10.1021/acsami.1c15133
P. Cai, K. Zou, X. Deng, B. Wang, M. Zheng et al., Comprehensive understanding of sodium-ion capacitors: definition, mechanisms, configurations, materials, key technologies, and future developments. Adv. Energy Mater. 11(16), 2003804 (2021). https://doi.org/10.1002/aenm.202003804
J. Zheng, G. Xing, L. Zhang, Y. Lu, L. Jin et al., A minireview on high-performance anodes for lithium-ion capacitors. Batter. Supercaps 4(6), 897–908 (2021). https://doi.org/10.1002/batt.202000292
H. Wang, Q. Gao, J. Hu, High hydrogen storage capacity of porous carbons prepared by using activated carbon. J. Am. Chem. Soc. 131(20), 7016–7022 (2009). https://doi.org/10.1021/ja8083225
H. Liu, W. Zhang, Y. Song, L. Li, C. Zhang et al., Superior rate mesoporous carbon sphere array composite via intercalation and conversion coupling mechanisms for potassium-ion capacitors. Adv. Funct. Mater. 31(50), 2107728 (2021). https://doi.org/10.1002/adfm.202107728
X. Liu, Z. Xu, A. Iqbal, M. Chen, N. Ali et al., Chemical coupled PEDOT:PSS/Si electrode: suppressed electrolyte consumption enables long-term stability. Nano-Micro Lett. 13, 54 (2021). https://doi.org/10.1007/s40820-020-00564-5
H. Wang, D. Xu, G. Jia, Z. Mao, Y. Gong et al., Integration of flexibility, cyclability and high-capacity into one electrode for sodium-ion hybrid capacitors with low self-discharge rate. Energy Storage Mater. 25, 114–123 (2020). https://doi.org/10.1016/j.ensm.2019.10.024
J. Zhao, Z. Lu, H. Wang, W. Liu, H.W. Lee et al., Artificial solid electrolyte interphase-protected LixSi nanoparticles: an efficient and stable prelithiation reagent for lithium-ion batteries. J. Am. Chem. Soc. 137(26), 8372–8375 (2015). https://doi.org/10.1021/jacs.5b04526
X. Liu, Y. Tan, W. Wang, C. Li, Z.W. She et al., Conformal prelithiation nanoshell on LiCoO2 enabling high-energy lithium-ion batteries. Nano Lett. 20(6), 4558–4565 (2020). https://doi.org/10.1021/acs.nanolett.0c01413
W.J. Cao, J.P. Zheng, Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes. J. Power Sour. 213, 180–185 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.033
D. Dewar, A.M. Glushenkov, Optimisation of sodium-based energy storage cells using pre-sodiation: a perspective on the emerging field. Energy Environ. Sci. 14(3), 1380–1401 (2021). https://doi.org/10.1039/d0ee02782k
M.S. Park, Y.G. Lim, J.W. Park, J.S. Kim, J.W. Lee et al., Li2RuO3 as an additive for high-energy lithium-ion capacitors. J. Phys. Chem. C 117(22), 11471–11478 (2013). https://doi.org/10.1021/jp4005828
C. Liu, T. Li, H. Zhang, Z. Song, C. Qu et al., DMF stabilized Li3N slurry for manufacturing self-prelithiatable lithium-ion capacitors. Sci. Bull. 65(6), 434–442 (2020). https://doi.org/10.1016/j.scib.2019.11.014
K. Zou, W. Deng, P. Cai, X. Deng, B. Wang et al., Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: concepts, applications, and perspectives. Adv. Funct. Mater. 31(5), 2005581 (2021). https://doi.org/10.1002/adfm.202005581
R. Zhan, X. Wang, Z. Chen, Z.W. Seh, L. Wang et al., Promises and challenges of the practical implementation of prelithiation in lithium-ion batteries. Adv. Energy Mater. 11(35), 2101565 (2021). https://doi.org/10.1002/aenm.202101565
L. Jin, C. Shen, Q. Wu, A. Shellikeri, J. Zheng et al., Pre-lithiation strategies for next-generation practical lithium-ion batteries. Adv. Sci. 8(12), 2005031 (2021). https://doi.org/10.1002/advs.202005031
F. Wang, B. Wang, J. Li, B. Wang, Y. Zhou et al., Prelithiation: a crucial strategy for boosting the practical application of next-generation lithium ion battery. ACS Nano 15(2), 2197–2218 (2021). https://doi.org/10.1021/acsnano.0c10664
Z. Song, K. Zou, X. Xiao, X. Deng, S. Li et al., Presodiation strategies for the promotion of sodium-based energy storage systems. Chem. Eur. J. 27(65), 16082–16092 (2021). https://doi.org/10.1002/chem.202102433
D.F. Yang, X.M. Sun, K. Lim, R.R. Gaddam, N.A. Kumar et al., Pre-sodiated nickel cobaltite for high-performance sodium-ion capacitors. J. Power Sour. 362, 358–365 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.053
H. Xu, S. Li, C. Zhang, X. Chen, W. Liu et al., Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries. Energy Environ. Sci. 12(10), 2991–3000 (2019). https://doi.org/10.1039/c9ee01404g
Y. Cao, T.Q. Zhang, X.G. Zhong, T.Y. Zhai, H.Q. Li, A safe, convenient liquid phase pre-sodiation method for titanium-based SIB materials. Chem. Commun. 55(98), 14761–14764 (2019). https://doi.org/10.1039/c9cc06581d
X.X. Liu, Y.C. Tan, T.C. Liu, W.Y. Wang, C.H. Li et al., A simple electrode-level chemical presodiation route by solution spraying to improve the energy density of sodium-ion batteries. Adv. Funct. Mater. 29(50), 1903795 (2019). https://doi.org/10.1002/adfm.201903795
M.C. Liu, J.Y. Zhang, S.H. Guo, B. Wang, Y.F. Shen et al., Chemically presodiated hard carbon anodes with enhanced initial coulombic efficiencies for high-energy sodium ion batteries. ACS Appl. Mater. Interfaces 12(15), 17620–17627 (2020). https://doi.org/10.1021/acsami.0c02230
J. Du, W. Wang, A.Y.S. Eng, X. Liu, M. Wan et al., Metal/LiF/Li2O nanocomposite for battery cathode prelithiation: trade-off between capacity and stability. Nano Lett. 20(1), 546–552 (2020). https://doi.org/10.1021/acs.nanolett.9b04278
H. Li, J. Lang, S. Lei, J. Chen, K. Wang et al., A high-performance sodium-ion hybrid capacitor constructed by metal-organic framework-derived anode and cathode materials. Adv. Funct. Mater. 28(30), 1800757 (2018). https://doi.org/10.1002/adfm.201800757
X.X. Pan, A. Chojnacka, P. Jezowski, F. Beguin, Na2S sacrificial cathodic material for high performance sodium-ion capacitors. Electrochim. Acta 318, 471–478 (2019). https://doi.org/10.1016/j.electacta.2019.06.086
P. Jezowski, A. Chojnacka, X. Pan, F. Beguin, Sodium amide as a “zero dead mass” sacrificial material for the pre-sodiation of the negative electrode in sodium-ion capacitors. Electrochim. Acta 375, 137980 (2021). https://doi.org/10.1016/j.electacta.2021.137980
M. Arnaiz, D. Shanmukaraj, D. Carriazo, D. Bhattacharjya, A. Villaverde et al., A transversal low-cost pre-metallation strategy enabling ultrafast and stable metal ion capacitor technologies. Energy Environ. Sci. 13(8), 2441–2449 (2020). https://doi.org/10.1039/d0ee00351d
X. Pan, A. Chojnacka, F. Beguin, Advantageous carbon deposition during the irreversible electrochemical oxidation of Na2C4O4 used as a presodiation source for the anode of sodium-ion systems. Energy Storage Mater. 40, 22–30 (2021). https://doi.org/10.1016/j.ensm.2021.04.048
K.Y. Zou, P. Cai, Y. Tian, J.Y. Li, C. Liu et al., Voltage-induced high-efficient in situ presodiation strategy for sodium ion capacitors. Small Methods 4(3), 1900763 (2020). https://doi.org/10.1002/smtd.201900763
Y.B. Niu, Y.J. Guo, Y.X. Yin, S.Y. Zhang, T. Wang et al., High-efficiency cathode sodium compensation for sodium-ion batteries. Adv. Mater. 32(33), 2001419 (2020). https://doi.org/10.1002/adma.202001419
C. Sun, X. Zhang, C. Li, K. Wang, X. Sun et al., A safe, low-cost and high-efficiency presodiation strategy for pouch-type sodium-ion capacitors with high energy density. J. Energy Chem. 64, 442–450 (2022). https://doi.org/10.1016/j.jechem.2021.05.010
C. Sun, X. Zhang, C. Li, K. Wang, X. Sun et al., High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance. Energy Storage Mater. 24, 160–166 (2020). https://doi.org/10.1016/j.ensm.2019.08.023
H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 27(47), 7861–7866 (2015). https://doi.org/10.1002/adma.201503816
K. Zou, P. Cai, X. Deng, B. Wang, C. Liu et al., Correction: highly stable zinc metal anode enabled by oxygen functional groups for advanced Zn-ion supercapacitors. Chem. Commun. 57(20), 2571–2572 (2021). https://doi.org/10.1039/D1CC90077C
P. Jeżowski, K. Fic, O. Crosnier, T. Brousse, F. Béguin, Lithium rhenium(vii) oxide as a novel material for graphite pre-lithiation in high performance lithium-ion capacitors. J. Mater. Chem. A 4(32), 12609–12615 (2016). https://doi.org/10.1039/C6TA03810G
H. Wang, Y. Zhang, H. Ang, Y. Zhang, H.T. Tan et al., A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv. Funct. Mater. 26(18), 3082–3093 (2016). https://doi.org/10.1002/adfm.201505240
Y. Jiang, Y. Yang, R. Xu, X. Cheng, H. Huang et al., Ultrafast potassium storage in F-induced ultra-high edge-defective carbon nanosheets. ACS Nano 15(6), 10217–10227 (2021). https://doi.org/10.1021/acsnano.1c02275
W. Liu, X. Chen, C. Zhang, H. Xu, X. Sun et al., Gassing in Sn-anode sodium-ion batteries and its remedy by metallurgically prealloying Na. ACS Appl. Mater. Interfaces 11(26), 23207–23212 (2019). https://doi.org/10.1021/acsami.9b05005
S.S. Chi, X.G. Qi, Y.S. Hu, L.Z. Fan, 3D flexible carbon felt host for highly stable sodium metal anodes. Adv. Energy Mater. 8(15), 1702764 (2018). https://doi.org/10.1002/aenm.201702764