Aerophilic Triphase Interface Tuned by Carbon Dots Driving Durable and Flexible Rechargeable Zn-Air Batteries
Corresponding Author: Hongshuai Hou
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 28
Abstract
Efficient bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are vital for rechargeable Zn-air batteries (ZABs). Herein, an oxygen-respirable sponge-like Co@C–O–Cs catalyst with oxygen-rich active sites was designed and constructed for both ORR and OER by a facile carbon dot-assisted strategy. The aerophilic triphase interface of Co@C–O–Cs cathode efficiently boosts oxygen diffusion and transfer. The theoretical calculations and experimental studies revealed that the Co–C–COC active sites can redistribute the local charge density and lower the reaction energy barrier. The Co@C–O–Cs catalyst displays superior bifunctional catalytic activities with a half-wave potential of 0.82 V for ORR and an ultralow overpotential of 294 mV at 10 mA cm−2 for OER. Moreover, it can drive the liquid ZABs with high peak power density (106.4 mW cm−2), specific capacity (720.7 mAh g−1), outstanding long-term cycle stability (over 750 cycles at 10 mA cm−2), and exhibits excellent feasibility in flexible all-solid-state ZABs. These findings provide new insights into the rational design of efficient bifunctional oxygen catalysts in rechargeable metal-air batteries.
Highlights:
1 Oxygen-respirable sponge was constructed by carbon dots-assisted synthesis strategy.
2 The hydrophilicity and aerophilicity of Co@C–O–Cs active sites boost oxygen diffusion and the bifunctional oxygen reduction reaction and oxygen evolution reaction activities.
3 Co@C–O–Cs-based Zn-air battery (ZAB) displays excellent specific capacity and stability, and the all-solid-state Co@C–O–Cs-based ZAB exhibits excellent flexibility.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Wu, L. Zhang, Y. Yuan, L. Zhong, Z. Chen et al., An iron-decorated carbon aerogel for rechargeable flow and flexible Zn-air batteries. Adv. Mater. 32(32), 2002292 (2020). https://doi.org/10.1002/adma.202002292
- H. Zhang, Z. Qu, H. Tang, X. Wang, R. Koehler et al., On-chip integration of a covalent organic framework-based catalyst into a miniaturized Zn-air battery with high energy density. ACS Energy Lett. 6(7), 2491–2498 (2021). https://doi.org/10.1021/acsenergylett.1c00768
- Y. Zhang, Y.P. Deng, J. Wang, Y. Jiang, G. Cui et al., Recent progress on flexible Zn-air batteries. Energy Storage Mater. 35, 538–549 (2021). https://doi.org/10.1016/j.ensm.2020.09.008
- F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J. Am. Chem. Soc. 138(32), 10226–10231 (2016). https://doi.org/10.1021/jacs.6b05046
- H. Zhang, M. Zhao, H. Liu, S. Shi, Z. Wang et al., Ultrastable FeCo bifunctional electrocatalyst on Se-doped CNTs for liquid and flexible all-solid-state rechargeable Zn-air batteries. Nano Lett. 21(5), 2255–2264 (2021). https://doi.org/10.1021/acs.nanolett.1c00077
- D. Lyu, S. Yao, A. Ali, Z.Q. Tian, P. Tsiakaras et al., N, S codoped carbon matrix-encapsulated Co9S8 nanops as a highly efficient and durable bifunctional oxygen redox electrocatalyst for rechargeable Zn-air batteries. Adv. Energy Mater. 11(28), 2101249 (2021). https://doi.org/10.1002/aenm.202101249
- Y. Tian, L. Xu, M. Li, D. Yuan, X. Liu et al., Interface engineering of CoS/CoO@N-doped graphene nanocomposite for high-performance rechargeable Zn-air batteries. Nano-Micro Lett. 13, 3 (2021). https://doi.org/10.1007/s40820-020-00526-x
- J.H. Park, C.H. Lee, J.M. Ju, J.H. Lee, J. Seol et al., Bifunctional covalent organic framework-derived electrocatalysts with modulated p-band centers for rechargeable Zn-air batteries. Adv. Funct. Mater. 31(25), 2101727 (2021). https://doi.org/10.1002/adfm.202101727
- Y. Niu, X. Teng, S. Gong, M. Xu, S.G. Sun et al., Engineering two-phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn-air batteries. Nano-Micro Lett. 13, 126 (2021). https://doi.org/10.1007/s40820-021-00650-2
- J. Song, S. Qiu, F. Hu, Y. Ding, S. Han et al., Sub-2 nm thiophosphate nanosheets with heteroatom doping for enhanced oxygen electrocatalysis. Adv. Funct. Mater. 31(19), 2100618 (2021). https://doi.org/10.1002/adfm.202100618
- Y. Tan, W. Zhu, Z. Zhang, W. Wu, R. Chen et al., Electronic tuning of confined sub-nanometer cobalt oxide clusters boosting oxygen catalysis and rechargeable Zn-air batteries. Nano Energy 83, 105813 (2021). https://doi.org/10.1016/j.nanoen.2021.105813
- X. Zhang, Z. Zhu, Y. Tan, K. Qin, F.X. Ma et al., Co, Fe codoped holey carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Chem. Commun. 57(16), 2049–2052 (2021). https://doi.org/10.1039/d0cc07767d
- Z. Liang, N. Kong, C. Yang, W. Zhang, H. Zheng et al., Highly curved nanostructure-coated Co, N-doped carbon materials for oxygen electrocatalysis. Angew. Chem. Int. Ed. 133(23), 12869–12874 (2021). https://doi.org/10.1002/anie.202101562
- F. Dong, M. Wu, Z. Chen, X. Liu, G. Zhang et al., Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: recent advances and future perspectives. Nano-Micro Lett. 14, 36 (2021). https://doi.org/10.1007/s40820-021-00768-3
- M. Wu, G. Zhang, H. Tong, X. Liu, L. Du et al., Cobalt (II) oxide nanosheets with rich oxygen vacancies as highly efficient bifunctional catalysts for ultra-stable rechargeable Zn-air flow battery. Nano Energy 79, 105409 (2021). https://doi.org/10.1016/j.nanoen.2020.105409
- P. Liu, J. Ran, B. Xia, S. Xi, D. Gao et al., Bifunctional oxygen electrocatalyst of mesoporous Ni/NiO nanosheets for flexible rechargeable Zn-air batteries. Nano-Micro Lett. 12, 68 (2020). https://doi.org/10.1007/s40820-020-0406-6
- C. Xiao, J. Luo, M. Tan, Y. Xiao, B. Gao et al., Co/CoNx decorated nitrogen-doped porous carbon derived from melamine sponge as highly active oxygen electrocatalysts for zinc-air batteries. J. Power Sources 453, 227900 (2020). https://doi.org/10.1016/j.jpowsour.2020.227900
- Y. Wang, M. Wu, J. Li, H. Huang, J. Qiao, In-situ growth of CoP nanops anchored on (N, P) co-doped porous carbon engineered by MOFs as advanced bifunctional oxygen catalyst for rechargeable Zn-air battery. J. Mater. Chem. A 8(36), 19043–19049 (2020). https://doi.org/10.1039/D0TA06435A
- K. Ding, J. Hu, W. Jin, L. Zhao, Y. Liu et al., Dianion induced electron delocalization of trifunctional electrocatalysts for rechargeable Zn-air batteries and self-powered water splitting. Adv. Funct. Mater. 32(29), 2201944 (2022). https://doi.org/10.1002/adfm.202201944
- Z. Qian, Y. Chen, Z. Tang, Z. Liu, X. Wang et al., Hollow nanocages of NixCo1-xSe for efficient zinc-air batteries and overall water splitting. Nano-Micro Lett. 11, 28 (2019). https://doi.org/10.1007/s40820-019-0258-0
- K. Ding, J. Hu, J. Luo, W. Jin, L. Zhao et al., Confined N-CoSe2 active sites boost bifunctional oxygen electrocatalysis for rechargeable Zn-air batteries. Nano Energy 91, 106675 (2022). https://doi.org/10.1016/j.nanoen.2021.106675
- W. Zhang, C.H. Xu, H. Zheng, R. Li, K. Zhou, Oxygen-rich cobalt-nitrogen-carbon porous nanosheets for bifunctional oxygen electrocatalysis. Adv. Funct. Mater. 32(23), 2200763 (2022). https://doi.org/10.1002/adfm.202200763
- K.R. Yoon, C.K. Hwang, S.H. Kim, J.W. Jung, J.E. Chae et al., Hierarchically assembled cobalt oxynitride nanorods and N-doped carbon nanofibers for efficient bifunctional oxygen electrocatalysis with exceptional regenerative efficiency. ACS Nano 15(7), 11218–11230 (2021). https://doi.org/10.1021/acsnano.0c09905
- R. Wang, B. Liu, S. You, Y. Li, Y. Zhang et al., Three-dimensional Ni3Se4 flowers integrated with ultrathin carbon layer with strong electronic interactions for boosting oxygen reduction/evolution reactions. Chem. Eng. J. 430, 132720 (2022). https://doi.org/10.1016/j.cej.2021.132720
- K. Kordek, L. Jiang, K. Fan, Z. Zhu, L. Xu et al., Two-step activated carbon cloth with oxygen-rich functional groups as a high-performance additive-free air electrode for flexible zinc-air batteries. Adv. Energy Mater. 9(4), 1802936 (2019). https://doi.org/10.1002/aenm.201802936
- X. Lu, W.L. Yim, B.H. Suryanto, C. Zhao, Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J. Am. Chem. Soc. 137(8), 2901–2907 (2015). https://doi.org/10.1021/ja509879r
- L. Wei, J. Wang, Z. Zhao, X. Yang, S. Jiao et al., Co/Co3O4 nanops embedded into thin O-doped graphitic layer as bifunctional oxygen electrocatalysts for Zn-air batteries. Chem. Eng. J. 427, 130931 (2022). https://doi.org/10.1016/j.cej.2021.130931
- T. Zhou, N. Zhang, C. Wu, Y. Xie, Surface/interface nanoengineering for rechargeable Zn-air batteries. Energy Environ. Sci. 13(4), 1132–1153 (2020). https://doi.org/10.1039/c9ee03634b
- Z. Hou, Z. Sun, C. Cui, D. Zhu, Y. Yang et al., Ru coordinated ZnIn2S4 triggers local lattice-strain engineering to endow high-efficiency electrocatalyst for advanced Zn-air batteries. Adv. Funct. Mater. 32(19), 2110572 (2022). https://doi.org/10.1002/adfm.202110572
- T. Liu, J. Mou, Z. Wu, C. Lv, J. Huang et al., A facile and scalable strategy for fabrication of superior bifunctional freestanding air electrodes for flexible zinc-air batteries. Adv. Funct. Mater. 30(36), 2003407 (2020). https://doi.org/10.1002/adfm.202003407
- C.C. Weng, J.T. Ren, H.Y. Wang, X.W. Lv, Y.J. Song et al., Triple-phase oxygen electrocatalysis of hollow spherical structures for rechargeable Zn-Air batteries. Appl. Catal. B 307, 121190 (2022). https://doi.org/10.1016/j.apcatb.2022.121190
- W.W. Tian, J.T. Ren, X.W. Lv, Z.Y. Yuan, A “gas-breathing” integrated air diffusion electrode design with improved oxygen utilization efficiency for high-performance Zn-air batteries. Chem. Eng. J. 431, 133210 (2022). https://doi.org/10.1016/j.cej.2021.133210
- S. Zeng, X. Tong, S. Zhou, B. Lv, J. Qiao et al., All-in-one bifunctional oxygen electrode films for flexible Zn-air batteries. Small 14(48), 1803409 (2018). https://doi.org/10.1002/smll.201803409
- L. Li, Y. Li, Y. Ye, R. Guo, A. Wang et al., Kilogram-scale synthesis and functionalization of carbon dots for superior electrochemical potassium storage. ACS Nano 15(4), 6872–6885 (2021). https://doi.org/10.1021/acsnano.0c10624
- W.T. Hong, M. Risch, K.A. Stoerzinger, A. Grimaud, J. Suntivich et al., Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8(5), 1404–1427 (2015). https://doi.org/10.1039/c4ee03869j
- J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson et al., Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46(11), 6671 (1992). https://doi.org/10.1103/PhysRevB.46.6671
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- J. Hafner, Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 29(13), 2044–2078 (2008). https://doi.org/10.1002/jcc.21057
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- J.K. Nørskov, T. Bligaard, A. Logadottir, J. Kitchin, J.G. Chen et al., Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152(3), J23 (2005). https://doi.org/10.1149/1.1856988
- S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
- Z. Chen, Y. Song, J. Cai, X. Zheng, D. Han et al., Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angew. Chem. Int. Ed. 130(18), 5170–5174 (2018). https://doi.org/10.1002/ange.201801834
- J.K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. 108(3), 937–943 (2011). https://doi.org/10.1073/pnas.1006652108
- M. Tong, F. Sun, Y. Xie, Y. Wang, Y. Yang et al., Operando cooperated catalytic mechanism of atomically dispersed Cu-N4 and Zn-N4 for promoting oxygen reduction reaction. Angew. Chem. Int. Ed. 60(25), 14005–14012 (2021). https://doi.org/10.1002/anie.202102053
- M. Xiao, J. Zhu, G. Li, N. Li, S. Li et al., A single-atom iridium heterogeneous catalyst in oxygen reduction reaction. Angew. Chem. Int. Ed. 58(28), 9640–9645 (2019). https://doi.org/10.1002/anie.201905241
- X. Han, W. Zhang, X. Ma, C. Zhong, N. Zhao et al., Identifying the activation of bimetallic sites in NiCo2S4@g-C3N4-CNT hybrid electrocatalysts for synergistic oxygen reduction and evolution. Adv. Mater. 31(18), 1808281 (2019). https://doi.org/10.1002/adma.201808281
- C. Zhang, J. Sha, H. Fei, M. Liu, S. Yazdi et al., Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium. ACS Nano 11(7), 6930–6941 (2017). https://doi.org/10.1021/acsnano.7b02148
- H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 27(47), 7861–7866 (2015). https://doi.org/10.1002/adma.201503816
- C. Xia, L. Huang, D. Yan, A.I. Douka, W. Guo et al., Electrospinning synthesis of self-standing cobalt/nanocarbon hybrid membrane for long-life rechargeable zinc-air batteries. Adv. Funct. Mater. 31(43), 2105021 (2021). https://doi.org/10.1002/adfm.202105021
- T. Wang, Y. He, Y. Liu, F. Guo, X. Li et al., A ZIF-triggered rapid polymerization of dopamine renders Co/N-codoped cage-in-cage porous carbon for highly efficient oxygen reduction and evolution. Nano Energy 79, 105487 (2021). https://doi.org/10.1016/j.nanoen.2020.105487
- A. Wang, C. Zhao, M. Yu, W. Wang, Trifunctional Co nanop confined in defect-rich nitrogen-doped graphene for rechargeable Zn-air battery with a long lifetime. Appl. Catal. B 281, 119514 (2021). https://doi.org/10.1016/j.apcatb.2020.119514
- Q. Liu, Q. Shi, Y. Ma, Z. Fang, Z. Zhou et al., ZIF-derived two-dimensional Co@carbon hybrid: toward highly efficient trifunctional electrocatalysts. Chem. Eng. J. 423, 130313 (2021). https://doi.org/10.1016/j.cej.2021.130313
- K. Ding, J. Hu, J. Luo, L. Zhao, W. Jin et al., Robust electronic correlation of Co-CoN4 hybrid active sites for durable rechargeable Zn-air batteries. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202207331
- L. Liu, Y. Wang, F. Yan, C. Zhu, B. Geng et al., Cobalt-encapsulated nitrogen-doped carbon nanotube arrays for flexible zinc-air batteries. Small Methods 4(1), 1900571 (2019). https://doi.org/10.1002/smtd.201900571
- Y. Xue, Y. Guo, Q. Zhang, Z. Xie, J. Wei et al., MOF-derived Co and Fe species loaded on N-doped carbon networks as efficient oxygen electrocatalysts for Zn-air batteries. Nano-Micro Lett. 14, 162 (2022). https://doi.org/10.1007/s40820-022-00890-w
- S. Li, W. Chen, H. Pan, Y. Cao, Z. Jiang et al., FeCo alloy nanops coated by an ultrathin N-doped carbon layer and encapsulated in carbon nanotubes as a highly efficient bifunctional air electrode for rechargeable Zn-air batteries. ACS Sustain. Chem. Eng. 7(9), 8530–8541 (2019). https://doi.org/10.1021/acssuschemeng.9b00307
- Z. Wu, H. Wu, T. Niu, S. Wang, G. Fu et al., Sulfurated metal-organic framework-derived nanocomposites for efficient bifunctional oxygen electrocatalysis and rechargeable Zn-air battery. ACS Sustain. Chem. Eng. 8(24), 9226–9234 (2020). https://doi.org/10.1021/acssuschemeng.0c03570
- Y. Jiang, G. Zou, H. Hou, J. Li, C. Liu et al., Composition engineering boosts voltage windows for advanced sodium-ion batteries. ACS Nano 13(9), 10787–10797 (2019). https://doi.org/10.1021/acsnano.9b05614
- Q. Zhou, Z. Zhang, J. Cai, B. Liu, Y. Zhang et al., Template-guided synthesis of Co nanops embedded in hollow nitrogen doped carbon tubes as a highly efficient catalyst for rechargeable Zn-air batteries. Nano Energy 71, 104592 (2020). https://doi.org/10.1016/j.nanoen.2020.104592
- H. Lei, L. Ma, Q. Wan, Z. Huangfu, S. Tan et al., Porous carbon nanofibers confined NiFe alloy nanops as efficient bifunctional electrocatalysts for Zn-air batteries. Nano Energy 104, 107941 (2022). https://doi.org/10.1016/j.nanoen.2022.107941
- Y. Dong, M. Zhou, W. Tu, E. Zhu, Y. Chen et al., Hollow loofah-like N, O-co-doped carbon tube for electrocatalysis of oxygen reduction. Adv. Funct. Mater. 29(18), 1900015 (2019). https://doi.org/10.1002/adfm.201900015
- M. Qiao, M.M. Titirici, Engineering the interface of carbon electrocatalysts at the triple point for enhanced oxygen reduction reaction. Chem. Eur. J 24(69), 18374–18384 (2018). https://doi.org/10.1002/chem.201804610
- M. Liu, S. Wang, Z. Wei, Y. Song, L. Jiang, Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv. Mater. 21(6), 665–669 (2009). https://doi.org/10.1002/adma.200801782
- Z. Zhao, L. Duan, Y. Zhao, L. Wang, J. Zhang et al., Constructing unique mesoporous carbon superstructures via monomicelle interface confined assembly. J. Am. Chem. Soc. 144(26), 11767–11777 (2022). https://doi.org/10.1021/jacs.2c03814
- Y. Ye, H. Wang, H. Liu, Y. Xiang, L. Liu et al., Carbon dots-regulated pomegranate-like metal oxide composites: from growth mechanism to lithium storage. Small Methods 6(6), 2200245 (2022). https://doi.org/10.1002/smtd.202200245
- X. Zhang, K. Ding, B. Weng, S. Liu, W. Jin et al., Coral-like carbon-wrapped NiCo alloys derived by emulsion aggregation strategy for efficient oxygen evolution reaction. J. Colloid Interface Sci. 573, 96–104 (2020). https://doi.org/10.1016/j.jcis.2020.03.124
- J. Wang, Y. Liu, N. Li, F. Qin, F. Xu et al., Petal-like N, O-codoped carbon nanosheets as Mott-Schottky nanoreactors in electrodes of Zn-Air batteries and supercapacitors. Carbon 178, 581–593 (2021). https://doi.org/10.1016/j.carbon.2021.03.015
- W. Xie, J. Li, Y. Song, S. Li, J. Li et al., Hierarchical carbon microtube@nanotube core-shell structure for high-performance oxygen electrocatalysis and Zn-air battery. Nano-Micro Lett. 12, 97 (2020). https://doi.org/10.1007/s40820-020-00435-z
- Z. Yang, C. Zhao, Y. Qu, H. Zhou, F. Zhou et al., Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal. Adv. Mater. 31(12), 1808043 (2019). https://doi.org/10.1002/adma.201808043
- P.S. Miedema, M.M. van Schooneveld, R. Bogerd, T.C. Rocha, M. Hävecker et al., Oxygen binding to cobalt and iron phthalocyanines as determined from in situ X-ray absorption spectroscopy. J. Phys. Chem. C 115(51), 25422–25428 (2011). https://doi.org/10.1021/jp209295f
- S. Chen, T. Luo, K. Chen, Y. Lin, J. Fu et al., Chemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxide. Angew. Chem. Int. Ed. 133(30), 16743–16750 (2021). https://doi.org/10.1002/ange.202104480
- Z. Lin, H. Huang, L. Cheng, W. Hu, P. Xu et al., Tuning the p-orbital electron structure of s-block metal Ca enables a high-performance electrocatalyst for oxygen reduction. Adv. Mater. 33(51), 2107103 (2021). https://doi.org/10.1002/adma.202107103
- D. Wang, P. Yang, H. Xu, J. Ma, L. Du et al., The dual-nitrogen-source strategy to modulate a bifunctional hybrid Co/Co-N-C catalyst in the reversible air cathode for Zn-air batteries. J. Power Sources 485, 229339 (2021). https://doi.org/10.1016/j.jpowsour.2020.229339
- X. Zheng, X. Cao, Z. Sun, K. Zeng, J. Yan et al., Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries. Appl. Catal. B 272, 118967 (2020). https://doi.org/10.1016/j.apcatb.2020.118967
- P. Yu, L. Wang, F. Sun, Y. Xie, X. Liu et al., Co nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn-air batteries. Adv. Mater. 31(30), 1901666 (2019). https://doi.org/10.1002/adma.201901666
- Y. Tian, X. Liu, L. Xu, D. Yuan, Y. Dou et al., Engineering crystallinity and oxygen vacancies of Co(II) oxide nanosheets for high performance and robust rechargeable Zn-air batteries. Adv. Funct. Mater. 31(20), 2101239 (2021). https://doi.org/10.1002/adfm.202101239
- M. Hao, H. Wang, X. Zhang, Y. Qu, C. Xuan et al., In situ construction of self-supporting Ni-Fe sulfide for high-efficiency oxygen evolution. New J. Chem. 46(17), 8250–8255 (2022). https://doi.org/10.1039/D2NJ00489E
- W. Zheng, M. Liu, L.Y.S. Lee, Electrochemical instability of metal-organic frameworks: in situ spectroelectrochemical investigation of the real active sites. ACS Catal. 10(1), 81–92 (2019). https://doi.org/10.1021/acscatal.9b03790
- K. Jayaramulu, J. Masa, D.M. Morales, O. Tomanec, V. Ranc et al., Ultrathin 2D cobalt zeolite-imidazole framework nanosheets for electrocatalytic oxygen evolution. Adv. Sci. 5(11), 1801029 (2018). https://doi.org/10.1002/advs.201801029
- Z. Liu, H. Liu, X. Gu, L. Feng, Oxygen evolution reaction efficiently catalyzed by a quasi-single-crystalline cobalt fluoride. Chem. Eng. J. 397, 125500 (2020). https://doi.org/10.1016/j.cej.2020.125500
- T. Wang, Z. Kou, S. Mu, J. Liu, D. He et al., 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries. Adv. Funct. Mater. 28(5), 1705048 (2018). https://doi.org/10.1002/adfm.201705048
References
K. Wu, L. Zhang, Y. Yuan, L. Zhong, Z. Chen et al., An iron-decorated carbon aerogel for rechargeable flow and flexible Zn-air batteries. Adv. Mater. 32(32), 2002292 (2020). https://doi.org/10.1002/adma.202002292
H. Zhang, Z. Qu, H. Tang, X. Wang, R. Koehler et al., On-chip integration of a covalent organic framework-based catalyst into a miniaturized Zn-air battery with high energy density. ACS Energy Lett. 6(7), 2491–2498 (2021). https://doi.org/10.1021/acsenergylett.1c00768
Y. Zhang, Y.P. Deng, J. Wang, Y. Jiang, G. Cui et al., Recent progress on flexible Zn-air batteries. Energy Storage Mater. 35, 538–549 (2021). https://doi.org/10.1016/j.ensm.2020.09.008
F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J. Am. Chem. Soc. 138(32), 10226–10231 (2016). https://doi.org/10.1021/jacs.6b05046
H. Zhang, M. Zhao, H. Liu, S. Shi, Z. Wang et al., Ultrastable FeCo bifunctional electrocatalyst on Se-doped CNTs for liquid and flexible all-solid-state rechargeable Zn-air batteries. Nano Lett. 21(5), 2255–2264 (2021). https://doi.org/10.1021/acs.nanolett.1c00077
D. Lyu, S. Yao, A. Ali, Z.Q. Tian, P. Tsiakaras et al., N, S codoped carbon matrix-encapsulated Co9S8 nanops as a highly efficient and durable bifunctional oxygen redox electrocatalyst for rechargeable Zn-air batteries. Adv. Energy Mater. 11(28), 2101249 (2021). https://doi.org/10.1002/aenm.202101249
Y. Tian, L. Xu, M. Li, D. Yuan, X. Liu et al., Interface engineering of CoS/CoO@N-doped graphene nanocomposite for high-performance rechargeable Zn-air batteries. Nano-Micro Lett. 13, 3 (2021). https://doi.org/10.1007/s40820-020-00526-x
J.H. Park, C.H. Lee, J.M. Ju, J.H. Lee, J. Seol et al., Bifunctional covalent organic framework-derived electrocatalysts with modulated p-band centers for rechargeable Zn-air batteries. Adv. Funct. Mater. 31(25), 2101727 (2021). https://doi.org/10.1002/adfm.202101727
Y. Niu, X. Teng, S. Gong, M. Xu, S.G. Sun et al., Engineering two-phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn-air batteries. Nano-Micro Lett. 13, 126 (2021). https://doi.org/10.1007/s40820-021-00650-2
J. Song, S. Qiu, F. Hu, Y. Ding, S. Han et al., Sub-2 nm thiophosphate nanosheets with heteroatom doping for enhanced oxygen electrocatalysis. Adv. Funct. Mater. 31(19), 2100618 (2021). https://doi.org/10.1002/adfm.202100618
Y. Tan, W. Zhu, Z. Zhang, W. Wu, R. Chen et al., Electronic tuning of confined sub-nanometer cobalt oxide clusters boosting oxygen catalysis and rechargeable Zn-air batteries. Nano Energy 83, 105813 (2021). https://doi.org/10.1016/j.nanoen.2021.105813
X. Zhang, Z. Zhu, Y. Tan, K. Qin, F.X. Ma et al., Co, Fe codoped holey carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Chem. Commun. 57(16), 2049–2052 (2021). https://doi.org/10.1039/d0cc07767d
Z. Liang, N. Kong, C. Yang, W. Zhang, H. Zheng et al., Highly curved nanostructure-coated Co, N-doped carbon materials for oxygen electrocatalysis. Angew. Chem. Int. Ed. 133(23), 12869–12874 (2021). https://doi.org/10.1002/anie.202101562
F. Dong, M. Wu, Z. Chen, X. Liu, G. Zhang et al., Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: recent advances and future perspectives. Nano-Micro Lett. 14, 36 (2021). https://doi.org/10.1007/s40820-021-00768-3
M. Wu, G. Zhang, H. Tong, X. Liu, L. Du et al., Cobalt (II) oxide nanosheets with rich oxygen vacancies as highly efficient bifunctional catalysts for ultra-stable rechargeable Zn-air flow battery. Nano Energy 79, 105409 (2021). https://doi.org/10.1016/j.nanoen.2020.105409
P. Liu, J. Ran, B. Xia, S. Xi, D. Gao et al., Bifunctional oxygen electrocatalyst of mesoporous Ni/NiO nanosheets for flexible rechargeable Zn-air batteries. Nano-Micro Lett. 12, 68 (2020). https://doi.org/10.1007/s40820-020-0406-6
C. Xiao, J. Luo, M. Tan, Y. Xiao, B. Gao et al., Co/CoNx decorated nitrogen-doped porous carbon derived from melamine sponge as highly active oxygen electrocatalysts for zinc-air batteries. J. Power Sources 453, 227900 (2020). https://doi.org/10.1016/j.jpowsour.2020.227900
Y. Wang, M. Wu, J. Li, H. Huang, J. Qiao, In-situ growth of CoP nanops anchored on (N, P) co-doped porous carbon engineered by MOFs as advanced bifunctional oxygen catalyst for rechargeable Zn-air battery. J. Mater. Chem. A 8(36), 19043–19049 (2020). https://doi.org/10.1039/D0TA06435A
K. Ding, J. Hu, W. Jin, L. Zhao, Y. Liu et al., Dianion induced electron delocalization of trifunctional electrocatalysts for rechargeable Zn-air batteries and self-powered water splitting. Adv. Funct. Mater. 32(29), 2201944 (2022). https://doi.org/10.1002/adfm.202201944
Z. Qian, Y. Chen, Z. Tang, Z. Liu, X. Wang et al., Hollow nanocages of NixCo1-xSe for efficient zinc-air batteries and overall water splitting. Nano-Micro Lett. 11, 28 (2019). https://doi.org/10.1007/s40820-019-0258-0
K. Ding, J. Hu, J. Luo, W. Jin, L. Zhao et al., Confined N-CoSe2 active sites boost bifunctional oxygen electrocatalysis for rechargeable Zn-air batteries. Nano Energy 91, 106675 (2022). https://doi.org/10.1016/j.nanoen.2021.106675
W. Zhang, C.H. Xu, H. Zheng, R. Li, K. Zhou, Oxygen-rich cobalt-nitrogen-carbon porous nanosheets for bifunctional oxygen electrocatalysis. Adv. Funct. Mater. 32(23), 2200763 (2022). https://doi.org/10.1002/adfm.202200763
K.R. Yoon, C.K. Hwang, S.H. Kim, J.W. Jung, J.E. Chae et al., Hierarchically assembled cobalt oxynitride nanorods and N-doped carbon nanofibers for efficient bifunctional oxygen electrocatalysis with exceptional regenerative efficiency. ACS Nano 15(7), 11218–11230 (2021). https://doi.org/10.1021/acsnano.0c09905
R. Wang, B. Liu, S. You, Y. Li, Y. Zhang et al., Three-dimensional Ni3Se4 flowers integrated with ultrathin carbon layer with strong electronic interactions for boosting oxygen reduction/evolution reactions. Chem. Eng. J. 430, 132720 (2022). https://doi.org/10.1016/j.cej.2021.132720
K. Kordek, L. Jiang, K. Fan, Z. Zhu, L. Xu et al., Two-step activated carbon cloth with oxygen-rich functional groups as a high-performance additive-free air electrode for flexible zinc-air batteries. Adv. Energy Mater. 9(4), 1802936 (2019). https://doi.org/10.1002/aenm.201802936
X. Lu, W.L. Yim, B.H. Suryanto, C. Zhao, Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J. Am. Chem. Soc. 137(8), 2901–2907 (2015). https://doi.org/10.1021/ja509879r
L. Wei, J. Wang, Z. Zhao, X. Yang, S. Jiao et al., Co/Co3O4 nanops embedded into thin O-doped graphitic layer as bifunctional oxygen electrocatalysts for Zn-air batteries. Chem. Eng. J. 427, 130931 (2022). https://doi.org/10.1016/j.cej.2021.130931
T. Zhou, N. Zhang, C. Wu, Y. Xie, Surface/interface nanoengineering for rechargeable Zn-air batteries. Energy Environ. Sci. 13(4), 1132–1153 (2020). https://doi.org/10.1039/c9ee03634b
Z. Hou, Z. Sun, C. Cui, D. Zhu, Y. Yang et al., Ru coordinated ZnIn2S4 triggers local lattice-strain engineering to endow high-efficiency electrocatalyst for advanced Zn-air batteries. Adv. Funct. Mater. 32(19), 2110572 (2022). https://doi.org/10.1002/adfm.202110572
T. Liu, J. Mou, Z. Wu, C. Lv, J. Huang et al., A facile and scalable strategy for fabrication of superior bifunctional freestanding air electrodes for flexible zinc-air batteries. Adv. Funct. Mater. 30(36), 2003407 (2020). https://doi.org/10.1002/adfm.202003407
C.C. Weng, J.T. Ren, H.Y. Wang, X.W. Lv, Y.J. Song et al., Triple-phase oxygen electrocatalysis of hollow spherical structures for rechargeable Zn-Air batteries. Appl. Catal. B 307, 121190 (2022). https://doi.org/10.1016/j.apcatb.2022.121190
W.W. Tian, J.T. Ren, X.W. Lv, Z.Y. Yuan, A “gas-breathing” integrated air diffusion electrode design with improved oxygen utilization efficiency for high-performance Zn-air batteries. Chem. Eng. J. 431, 133210 (2022). https://doi.org/10.1016/j.cej.2021.133210
S. Zeng, X. Tong, S. Zhou, B. Lv, J. Qiao et al., All-in-one bifunctional oxygen electrode films for flexible Zn-air batteries. Small 14(48), 1803409 (2018). https://doi.org/10.1002/smll.201803409
L. Li, Y. Li, Y. Ye, R. Guo, A. Wang et al., Kilogram-scale synthesis and functionalization of carbon dots for superior electrochemical potassium storage. ACS Nano 15(4), 6872–6885 (2021). https://doi.org/10.1021/acsnano.0c10624
W.T. Hong, M. Risch, K.A. Stoerzinger, A. Grimaud, J. Suntivich et al., Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8(5), 1404–1427 (2015). https://doi.org/10.1039/c4ee03869j
J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson et al., Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46(11), 6671 (1992). https://doi.org/10.1103/PhysRevB.46.6671
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
J. Hafner, Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 29(13), 2044–2078 (2008). https://doi.org/10.1002/jcc.21057
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
J.K. Nørskov, T. Bligaard, A. Logadottir, J. Kitchin, J.G. Chen et al., Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152(3), J23 (2005). https://doi.org/10.1149/1.1856988
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
Z. Chen, Y. Song, J. Cai, X. Zheng, D. Han et al., Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angew. Chem. Int. Ed. 130(18), 5170–5174 (2018). https://doi.org/10.1002/ange.201801834
J.K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. 108(3), 937–943 (2011). https://doi.org/10.1073/pnas.1006652108
M. Tong, F. Sun, Y. Xie, Y. Wang, Y. Yang et al., Operando cooperated catalytic mechanism of atomically dispersed Cu-N4 and Zn-N4 for promoting oxygen reduction reaction. Angew. Chem. Int. Ed. 60(25), 14005–14012 (2021). https://doi.org/10.1002/anie.202102053
M. Xiao, J. Zhu, G. Li, N. Li, S. Li et al., A single-atom iridium heterogeneous catalyst in oxygen reduction reaction. Angew. Chem. Int. Ed. 58(28), 9640–9645 (2019). https://doi.org/10.1002/anie.201905241
X. Han, W. Zhang, X. Ma, C. Zhong, N. Zhao et al., Identifying the activation of bimetallic sites in NiCo2S4@g-C3N4-CNT hybrid electrocatalysts for synergistic oxygen reduction and evolution. Adv. Mater. 31(18), 1808281 (2019). https://doi.org/10.1002/adma.201808281
C. Zhang, J. Sha, H. Fei, M. Liu, S. Yazdi et al., Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium. ACS Nano 11(7), 6930–6941 (2017). https://doi.org/10.1021/acsnano.7b02148
H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 27(47), 7861–7866 (2015). https://doi.org/10.1002/adma.201503816
C. Xia, L. Huang, D. Yan, A.I. Douka, W. Guo et al., Electrospinning synthesis of self-standing cobalt/nanocarbon hybrid membrane for long-life rechargeable zinc-air batteries. Adv. Funct. Mater. 31(43), 2105021 (2021). https://doi.org/10.1002/adfm.202105021
T. Wang, Y. He, Y. Liu, F. Guo, X. Li et al., A ZIF-triggered rapid polymerization of dopamine renders Co/N-codoped cage-in-cage porous carbon for highly efficient oxygen reduction and evolution. Nano Energy 79, 105487 (2021). https://doi.org/10.1016/j.nanoen.2020.105487
A. Wang, C. Zhao, M. Yu, W. Wang, Trifunctional Co nanop confined in defect-rich nitrogen-doped graphene for rechargeable Zn-air battery with a long lifetime. Appl. Catal. B 281, 119514 (2021). https://doi.org/10.1016/j.apcatb.2020.119514
Q. Liu, Q. Shi, Y. Ma, Z. Fang, Z. Zhou et al., ZIF-derived two-dimensional Co@carbon hybrid: toward highly efficient trifunctional electrocatalysts. Chem. Eng. J. 423, 130313 (2021). https://doi.org/10.1016/j.cej.2021.130313
K. Ding, J. Hu, J. Luo, L. Zhao, W. Jin et al., Robust electronic correlation of Co-CoN4 hybrid active sites for durable rechargeable Zn-air batteries. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202207331
L. Liu, Y. Wang, F. Yan, C. Zhu, B. Geng et al., Cobalt-encapsulated nitrogen-doped carbon nanotube arrays for flexible zinc-air batteries. Small Methods 4(1), 1900571 (2019). https://doi.org/10.1002/smtd.201900571
Y. Xue, Y. Guo, Q. Zhang, Z. Xie, J. Wei et al., MOF-derived Co and Fe species loaded on N-doped carbon networks as efficient oxygen electrocatalysts for Zn-air batteries. Nano-Micro Lett. 14, 162 (2022). https://doi.org/10.1007/s40820-022-00890-w
S. Li, W. Chen, H. Pan, Y. Cao, Z. Jiang et al., FeCo alloy nanops coated by an ultrathin N-doped carbon layer and encapsulated in carbon nanotubes as a highly efficient bifunctional air electrode for rechargeable Zn-air batteries. ACS Sustain. Chem. Eng. 7(9), 8530–8541 (2019). https://doi.org/10.1021/acssuschemeng.9b00307
Z. Wu, H. Wu, T. Niu, S. Wang, G. Fu et al., Sulfurated metal-organic framework-derived nanocomposites for efficient bifunctional oxygen electrocatalysis and rechargeable Zn-air battery. ACS Sustain. Chem. Eng. 8(24), 9226–9234 (2020). https://doi.org/10.1021/acssuschemeng.0c03570
Y. Jiang, G. Zou, H. Hou, J. Li, C. Liu et al., Composition engineering boosts voltage windows for advanced sodium-ion batteries. ACS Nano 13(9), 10787–10797 (2019). https://doi.org/10.1021/acsnano.9b05614
Q. Zhou, Z. Zhang, J. Cai, B. Liu, Y. Zhang et al., Template-guided synthesis of Co nanops embedded in hollow nitrogen doped carbon tubes as a highly efficient catalyst for rechargeable Zn-air batteries. Nano Energy 71, 104592 (2020). https://doi.org/10.1016/j.nanoen.2020.104592
H. Lei, L. Ma, Q. Wan, Z. Huangfu, S. Tan et al., Porous carbon nanofibers confined NiFe alloy nanops as efficient bifunctional electrocatalysts for Zn-air batteries. Nano Energy 104, 107941 (2022). https://doi.org/10.1016/j.nanoen.2022.107941
Y. Dong, M. Zhou, W. Tu, E. Zhu, Y. Chen et al., Hollow loofah-like N, O-co-doped carbon tube for electrocatalysis of oxygen reduction. Adv. Funct. Mater. 29(18), 1900015 (2019). https://doi.org/10.1002/adfm.201900015
M. Qiao, M.M. Titirici, Engineering the interface of carbon electrocatalysts at the triple point for enhanced oxygen reduction reaction. Chem. Eur. J 24(69), 18374–18384 (2018). https://doi.org/10.1002/chem.201804610
M. Liu, S. Wang, Z. Wei, Y. Song, L. Jiang, Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv. Mater. 21(6), 665–669 (2009). https://doi.org/10.1002/adma.200801782
Z. Zhao, L. Duan, Y. Zhao, L. Wang, J. Zhang et al., Constructing unique mesoporous carbon superstructures via monomicelle interface confined assembly. J. Am. Chem. Soc. 144(26), 11767–11777 (2022). https://doi.org/10.1021/jacs.2c03814
Y. Ye, H. Wang, H. Liu, Y. Xiang, L. Liu et al., Carbon dots-regulated pomegranate-like metal oxide composites: from growth mechanism to lithium storage. Small Methods 6(6), 2200245 (2022). https://doi.org/10.1002/smtd.202200245
X. Zhang, K. Ding, B. Weng, S. Liu, W. Jin et al., Coral-like carbon-wrapped NiCo alloys derived by emulsion aggregation strategy for efficient oxygen evolution reaction. J. Colloid Interface Sci. 573, 96–104 (2020). https://doi.org/10.1016/j.jcis.2020.03.124
J. Wang, Y. Liu, N. Li, F. Qin, F. Xu et al., Petal-like N, O-codoped carbon nanosheets as Mott-Schottky nanoreactors in electrodes of Zn-Air batteries and supercapacitors. Carbon 178, 581–593 (2021). https://doi.org/10.1016/j.carbon.2021.03.015
W. Xie, J. Li, Y. Song, S. Li, J. Li et al., Hierarchical carbon microtube@nanotube core-shell structure for high-performance oxygen electrocatalysis and Zn-air battery. Nano-Micro Lett. 12, 97 (2020). https://doi.org/10.1007/s40820-020-00435-z
Z. Yang, C. Zhao, Y. Qu, H. Zhou, F. Zhou et al., Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal. Adv. Mater. 31(12), 1808043 (2019). https://doi.org/10.1002/adma.201808043
P.S. Miedema, M.M. van Schooneveld, R. Bogerd, T.C. Rocha, M. Hävecker et al., Oxygen binding to cobalt and iron phthalocyanines as determined from in situ X-ray absorption spectroscopy. J. Phys. Chem. C 115(51), 25422–25428 (2011). https://doi.org/10.1021/jp209295f
S. Chen, T. Luo, K. Chen, Y. Lin, J. Fu et al., Chemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxide. Angew. Chem. Int. Ed. 133(30), 16743–16750 (2021). https://doi.org/10.1002/ange.202104480
Z. Lin, H. Huang, L. Cheng, W. Hu, P. Xu et al., Tuning the p-orbital electron structure of s-block metal Ca enables a high-performance electrocatalyst for oxygen reduction. Adv. Mater. 33(51), 2107103 (2021). https://doi.org/10.1002/adma.202107103
D. Wang, P. Yang, H. Xu, J. Ma, L. Du et al., The dual-nitrogen-source strategy to modulate a bifunctional hybrid Co/Co-N-C catalyst in the reversible air cathode for Zn-air batteries. J. Power Sources 485, 229339 (2021). https://doi.org/10.1016/j.jpowsour.2020.229339
X. Zheng, X. Cao, Z. Sun, K. Zeng, J. Yan et al., Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries. Appl. Catal. B 272, 118967 (2020). https://doi.org/10.1016/j.apcatb.2020.118967
P. Yu, L. Wang, F. Sun, Y. Xie, X. Liu et al., Co nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn-air batteries. Adv. Mater. 31(30), 1901666 (2019). https://doi.org/10.1002/adma.201901666
Y. Tian, X. Liu, L. Xu, D. Yuan, Y. Dou et al., Engineering crystallinity and oxygen vacancies of Co(II) oxide nanosheets for high performance and robust rechargeable Zn-air batteries. Adv. Funct. Mater. 31(20), 2101239 (2021). https://doi.org/10.1002/adfm.202101239
M. Hao, H. Wang, X. Zhang, Y. Qu, C. Xuan et al., In situ construction of self-supporting Ni-Fe sulfide for high-efficiency oxygen evolution. New J. Chem. 46(17), 8250–8255 (2022). https://doi.org/10.1039/D2NJ00489E
W. Zheng, M. Liu, L.Y.S. Lee, Electrochemical instability of metal-organic frameworks: in situ spectroelectrochemical investigation of the real active sites. ACS Catal. 10(1), 81–92 (2019). https://doi.org/10.1021/acscatal.9b03790
K. Jayaramulu, J. Masa, D.M. Morales, O. Tomanec, V. Ranc et al., Ultrathin 2D cobalt zeolite-imidazole framework nanosheets for electrocatalytic oxygen evolution. Adv. Sci. 5(11), 1801029 (2018). https://doi.org/10.1002/advs.201801029
Z. Liu, H. Liu, X. Gu, L. Feng, Oxygen evolution reaction efficiently catalyzed by a quasi-single-crystalline cobalt fluoride. Chem. Eng. J. 397, 125500 (2020). https://doi.org/10.1016/j.cej.2020.125500
T. Wang, Z. Kou, S. Mu, J. Liu, D. He et al., 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries. Adv. Funct. Mater. 28(5), 1705048 (2018). https://doi.org/10.1002/adfm.201705048