High-Entropy Electrode Materials: Synthesis, Properties and Outlook
Corresponding Author: Guoqiang Zou
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 22
Abstract
High-entropy materials represent a new category of high-performance materials, first proposed in 2004 and extensively investigated by researchers over the past two decades. The definition of high-entropy materials has continuously evolved. In the last ten years, the discovery of an increasing number of high-entropy materials has led to significant advancements in their utilization in energy storage, electrocatalysis, and related domains, accompanied by a rise in techniques for fabricating high-entropy electrode materials. Recently, the research emphasis has shifted from solely improving the performance of high-entropy materials toward exploring their reaction mechanisms and adopting cleaner preparation approaches. However, the current definition of high-entropy materials remains relatively vague, and the preparation method of high-entropy materials is based on the preparation method of single metal/low- or medium-entropy materials. It should be noted that not all methods applicable to single metal/low- or medium-entropy materials can be directly applied to high-entropy materials. In this review, the definition and development of high-entropy materials are briefly reviewed. Subsequently, the classification of high-entropy electrode materials is presented, followed by a discussion of their applications in energy storage and catalysis from the perspective of synthesis methods. Finally, an evaluation of the advantages and disadvantages of various synthesis methods in the production process of different high-entropy materials is provided, along with a proposal for potential future development directions for high-entropy materials.
Highlights:
1 The developmental history of high-entropy materials and the conceptual origin of “high entropy” is comprehensively reviewed.
2 The preparation methods of various high-entropy electrode materials are comprehensively reviewed.
3 The application properties of various high-entropy electrode materials in electrocatalysis and energy storage are comprehensively reviewed, with a prospective outlook on the future development of such materials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.S. Meng, Introduction: beyond Li-ion battery chemistry. Chem. Rev. 120, 6327 (2020). https://doi.org/10.1021/acs.chemrev.0c00412
- P.R. Vasudeva Rao, Materials for nuclear industry: some historical perspectives. J. Chem. Sci. 131, 97 (2019). https://doi.org/10.1007/s12039-019-1669-7
- M.A. Little, A.I. Cooper, The chemistry of porous organic molecular materials. Adv. Funct. Mater. 30, 1909842 (2020). https://doi.org/10.1002/adfm.201909842
- X. Zhou, W.-S. Lee, M. Imada, N. Trivedi, P. Phillips et al., High-temperature superconductivity. Nat. Rev. Phys. 3, 462–465 (2021). https://doi.org/10.1038/s42254-021-00324-3
- E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019). https://doi.org/10.1038/s41578-019-0121-4
- C. Oses, C. Toher, S. Curtarolo, High-entropy ceramics. Nat. Rev. Mater. 5, 295–309 (2020). https://doi.org/10.1038/s41578-019-0170-8
- G. Pacchioni, High-entropy materials go nano. Nat. Rev. Mater. 7, 156 (2022). https://doi.org/10.1038/s41578-022-00429-w
- C. Lu, X. Zhang, X. Chen, Advanced materials and technologies toward carbon neutrality. Acc. Mater. Res. 3, 913–921 (2022). https://doi.org/10.1021/accountsmr.2c00084
- B. Lei, G.-R. Li, P. Chen, X.-P. Gao, A solar rechargeable battery based on hydrogen storage mechanism in dual-phase electrolyte. Nano Energy 38, 257–262 (2017). https://doi.org/10.1016/j.nanoen.2017.06.001
- J. Nowotny, C. Sorrell, L. Sheppard, T. Bak, Solar-hydrogen: Environmentally safe fuel for the future. Int. J. Hydrog. Energy 30, 521–544 (2005). https://doi.org/10.1016/j.ijhydene.2004.06.012
- W. Chen, G. Li, A. Pei, Y. Li, L. Liao et al., A manganese–hydrogen battery with potential for grid-scale energy storage. Nat. Energy 3, 428–435 (2018). https://doi.org/10.1038/s41560-018-0147-7
- H. Lee, O. Gwon, C. Lim, J. Kim, O. Galindev et al., Advanced electrochemical properties of PrBa0.5Sr0.5Co1.9Ni0.1O5+δ as a bifunctional catalyst for rechargeable zinc-air batteries. ChemElectroChem 6, 3154–3159 (2019). https://doi.org/10.1002/celc.201900633
- D.R. Egan, C. Ponce de León, R.J.K. Wood, R.L. Jones, K.R. Stokes et al., Developments in electrode materials and electrolytes for aluminium–air batteries. J. Power. Sources 236, 293–310 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.141
- S.R. Narayanan, G.K.S. Prakash, A. Manohar, B. Yang, S. Malkhandi et al., Materials challenges and technical approaches for realizing inexpensive and robust iron–air batteries for large-scale energy storage. Solid State Ion. 216, 105–109 (2012). https://doi.org/10.1016/j.ssi.2011.12.002
- C. Lim, C. Kim, O. Gwon, H.Y. Jeong, H.-K. Song et al., Nano-perovskite oxide prepared via inverse microemulsion mediated synthesis for catalyst of lithium-air batteries. Electrochim. Acta 275, 248–255 (2018). https://doi.org/10.1016/j.electacta.2018.04.121
- S.S. Shinde, J.Y. Jung, N.K. Wagh, C.H. Lee, D.-H. Kim et al., Ampere-hour-scale zinc–air pouch cells. Nat. Energy 6, 592–604 (2021). https://doi.org/10.1038/s41560-021-00807-8
- G. Wang, J. Chang, S. Koul, A. Kushima, Y. Yang, CO2 bubble-assisted Pt exposure in PtFeNi porous film for high-performance zinc-air battery. J. Am. Chem. Soc. 143, 11595–11601 (2021). https://doi.org/10.1021/jacs.1c04339
- R. Xiao, J. Chen, K. Fu, X. Zheng, T. Wang et al., Hydrolysis batteries: generating electrical energy during hydrogen absorption. Angew. Chem. Int. Ed. 57, 2219–2223 (2018). https://doi.org/10.1002/anie.201711666
- C. Zhang, Y. Yang, X. Liu, M. Mao, K. Li et al., Mobile energy storage technologies for boosting carbon neutrality. Innov. Camb 4, 100518 (2023). https://doi.org/10.1016/j.xinn.2023.100518
- E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Energy storage: The future enabled by nanomaterials. Science 366, eaan8285 (2019). https://doi.org/10.1126/science.aan8285
- Z. Hu, Z. Song, Z. Huang, S. Tao, B. Song et al., Reconstructing hydrogen bond network enables high voltage aqueous zinc-ion supercapacitors. Angew. Chem. Int. Ed. 62, e202309601 (2023). https://doi.org/10.1002/anie.202309601
- N.T. Aristote, K. Zou, A. Di, W. Deng, B. Wang et al., Methods of improving the initial Coulombic efficiency and rate performance of both anode and cathode materials for sodium-ion batteries. Chin. Chem. Lett. 33, 730–742 (2022). https://doi.org/10.1016/j.cclet.2021.08.049
- L. Tian, Z. Li, P. Wang, X. Zhai, X. Wang et al., Carbon quantum dots for advanced electrocatalysis. J. Energy Chem. 55, 279–294 (2021). https://doi.org/10.1016/j.jechem.2020.06.057
- G. Zhao, G. Zou, H. Hou, P. Ge, X. Cao et al., Sulfur-doped carbon employing biomass-activated carbon as a carrier with enhanced sodium storage behavior. J. Mater. Chem. A 5, 24353–24360 (2017). https://doi.org/10.1039/c7ta07860a
- S. Li, Z. Luo, H. Tu, H. Zhang, W. Deng et al., N, S-codoped carbon dots as deposition regulating electrolyte additive for stable lithium metal anode. Energy Storage Mater. 42, 679–686 (2021). https://doi.org/10.1016/j.ensm.2021.08.008
- Y. Cai, X. Chen, Y. Xu, Y. Zhang, H. Liu et al., Ti3C2Tx MXene/carbon composites for advanced supercapacitors: Synthesis, progress, and perspectives. Carbon Energy 6, e501 (2024). https://doi.org/10.1002/cey2.501
- W. Fan, Q. Wang, K. Rong, Y. Shi, W. Peng et al., MXene enhanced 3D needled waste denim felt for high-performance flexible supercapacitors. Nano-Micro Lett. 16, 36 (2023). https://doi.org/10.1007/s40820-023-01226-y
- G. Zou, H. Hou, P. Ge, Z. Huang, G. Zhao et al., Metal–organic framework-derived materials for sodium energy storage. Small 14, 1702648 (2018). https://doi.org/10.1002/smll.201702648
- X. Xiao, X. Deng, Y. Tian, S. Tao, Z. Song et al., Ultrathin two-dimensional nanosheet metal-organic frameworks with high-density ligand active sites for advanced lithium-ion capacitors. Nano Energy 103, 107797 (2022). https://doi.org/10.1016/j.nanoen.2022.107797
- Z. Cao, H. Zhang, B. Song, D. Xiong, S. Tao et al., Angstrom-level ionic sieve 2D-MOF membrane for high power aqueous zinc anode. Adv. Funct. Mater. 33, 2300339 (2023). https://doi.org/10.1002/adfm.202300339
- D. Xiong, L. Yang, Z. Cao, F. Li, W. Deng et al., In situ construction of high-density solid electrolyte interphase from MOFs for advanced Zn metal anodes. Adv. Funct. Mater. 33, 2301530 (2023). https://doi.org/10.1002/adfm.202301530
- T.B. Schon, B.T. McAllister, P.-F. Li, D.S. Seferos, The Rise of organic electrode materials for energy storage. Chem. Soc. Rev. 45, 6345–6404 (2016). https://doi.org/10.1039/c6cs00173d
- Z. Song, G. Zhang, X. Deng, K. Zou, X. Xiao et al., Ultra-low-dose pre-metallation strategy served for commercial metal-ion capacitors. Nano-Micro Lett. 14, 53 (2022). https://doi.org/10.1007/s40820-022-00792-x
- J. Ma, J. Qin, S. Zheng, Y. Fu, L. Chi et al., Hierarchically structured Nb2O5 microflowers with enhanced capacity and fast-charging capability for flexible planar sodium ion micro-supercapacitors. Nano-Micro Lett. 16, 67 (2024). https://doi.org/10.1007/s40820-023-01281-5
- X. Deng, K. Zou, R. Momen, P. Cai, J. Chen et al., High content anion (S/Se/P) doping assisted by defect engineering with fast charge transfer kinetics for high-performance sodium ion capacitors. Sci. Bull. 66, 1858–1868 (2021). https://doi.org/10.1016/j.scib.2021.04.042
- Y. Zhu, W. Zhong, W. Chen, Z. Hu, Y. Xie et al., Crystallographic types depended energy storage mechanism for zinc storage. Nano Energy 125, 109524 (2024). https://doi.org/10.1016/j.nanoen.2024.109524
- Z. Song, G. Zhang, X. Deng, Y. Tian, X. Xiao et al., Strongly coupled interfacial engineering inspired by robotic arms enable high-performance sodium-ion capacitors. Adv. Funct. Mater. 32, 2205453 (2022). https://doi.org/10.1002/adfm.202205453
- L. Yang, M. Liu, Y. Xiang, W. Deng, G. Zou et al., Carbon skeleton confined Sb chalcogenides nanodots for stable sodium storage. Carbon 197, 341–349 (2022). https://doi.org/10.1016/j.carbon.2022.06.043
- S. Tao, J. Cai, Z. Cao, B. Song, W. Deng et al., Revealing the valence evolution of metal element in heterostructures for ultra-high power Li-ion capacitors. Adv. Energy Mater. 13, 2301653 (2023). https://doi.org/10.1002/aenm.202301653
- I.S. Kim, M.J. Pellin, A.B.F. Martinson, Acid-compatible halide perovskite photocathodes utilizing atomic layer deposited TiO2 for solar-driven hydrogen evolution. ACS Energy Lett. 4, 293–298 (2019). https://doi.org/10.1021/acsenergylett.8b01661
- H. Su, S. Jaffer, H. Yu, Transition metal oxides for sodium-ion batteries. Energy Storage Mater. 5, 116–131 (2016). https://doi.org/10.1016/j.ensm.2016.06.005
- X. Pu, K. Yang, Z. Pan, C. Song, Y. Lai et al., Extending the solid solution range of sodium ferric pyrophosphate: off-stoichiometric Na3Fe2.5(P2O7)2 as a novel cathode for sodium-ion batteries. Carbon Energy 6, e449 (2024). https://doi.org/10.1002/cey2.449
- Y. Wang, H. Li, S. Di, B. Zhai, P. Niu et al., Constructing long-cycling crystalline C3N4-based carbonaceous anodes for sodium-ion battery via N configuration control. Carbon Energy 6, e388 (2024). https://doi.org/10.1002/cey2.388
- S.-J. Kwon, T.-H. Han, T.Y. Ko, N. Li, Y. Kim et al., Extremely stable graphene electrodes doped with macromolecular acid. Nat. Commun. 9, 2037 (2018). https://doi.org/10.1038/s41467-018-04385-4
- P. Dong, Z. Xu, X. Ma, Y. Gu, J. Zhang et al., Simple preparation of monolithic N-doped electrode for efficient EF remediation of petrochemical wastewater: performance, degradation pathways, and mechanism of different N-doped positions. Chem. Eng. J. 473, 145237 (2023). https://doi.org/10.1016/j.cej.2023.145237
- F. Wang, J.Y. Cheong, Q. He, G. Duan, S. He et al., Phosphorus-doped thick carbon electrode for high-energy density and long-life supercapacitors. Chem. Eng. J. 414, 128767 (2021). https://doi.org/10.1016/j.cej.2021.128767
- W. Liu, X. Wang, J. Qu, X. Liu, Z. Zhang et al., Tuning Ni dopant concentration to enable co-deposited superhydrophilic self-standing Mo2C electrode for high-efficient hydrogen evolution reaction. Appl. Catal. B Environ. Energy 307, 121201 (2022). https://doi.org/10.1016/j.apcatb.2022.121201
- G. Liang, Z. Wu, C. Didier, W. Zhang, J. Cuan et al., A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping. Angew. Chem. Int. Ed. 59, 10594–10602 (2020). https://doi.org/10.1002/anie.202001454
- Y. Tian, M. Ju, Y. Luo, X. Bin, X. Lou et al., In situ oxygen doped Ti3C2Tx MXene flexible film as supercapacitor electrode. Chem. Eng. J. 446, 137451 (2022). https://doi.org/10.1016/j.cej.2022.137451
- Y. Xiang, X. Hu, X. Zhong, W. Deng, G. Zou et al., Mechanism of fast storage of Li/Na in complex Sb-based hybrid system. Adv. Funct. Mater. 34, 2311478 (2024). https://doi.org/10.1002/adfm.202311478
- X. Xiao, X. Duan, Z. Song, X. Deng, W. Deng et al., High-throughput production of cheap mineral-based heterostructures for high power sodium ion capacitors. Adv. Funct. Mater. 32, 2110476 (2022). https://doi.org/10.1002/adfm.202110476
- A. Wang, W. Hong, L. Li, R. Guo, Y. Xiang et al., Hierarchical bismuth composite for fast lithium storage: carbon dots tuned interfacial interaction. Energy Storage Mater. 44, 145–155 (2022). https://doi.org/10.1016/j.ensm.2021.10.019
- W. Zhou, Y. Tang, X. Zhang, S. Zhang, H. Xue et al., MOF derived metal oxide composites and their applications in energy storage. Coord. Chem. Rev. 477, 214949 (2023). https://doi.org/10.1016/j.ccr.2022.214949
- X. Zhong, J. Duan, Y. Xiang, X. Hu, Y. Huang et al., Constructing rich interfacial structure by carbon dots to improve the sodium storage capacity of Sb/C composite. Adv. Funct. Mater. 33, 2306574 (2023). https://doi.org/10.1002/adfm.202306574
- C. Liu, Z. Song, X. Deng, S. Xu, R. Zheng et al., Interfacial/bulk synergetic effects accelerating charge transferring for advanced lithium-ion capacitors. Chin. Chem. Lett. 35, 109081 (2024). https://doi.org/10.1016/j.cclet.2023.109081
- C. Liu, B. Wang, Z. Song, X. Xiao, Z. Cao et al., Enabling electron delocalization by conductor heterostructure for highly reversible sodium storage. Adv. Funct. Mater. 34, 2312905 (2024). https://doi.org/10.1002/adfm.202312905
- L. Cao, S. Fang, B. Xu, B. Zhang, C. Wang et al., Enabling reversible reaction by uniform distribution of heterogeneous intermediates on defect-rich SnSSe/C layered heterostructure for ultralong-cycling sodium storage. Small 18, e2202134 (2022). https://doi.org/10.1002/smll.202202134
- Y. Gao, S. Liang, B. Liu, C. Jiang, C. Xu et al., Subtle tuning of nanodefects actuates highly efficient electrocatalytic oxidation. Nat. Commun. 14, 2059 (2023). https://doi.org/10.1038/s41467-023-37676-6
- C. Fu, T. Wu, G. Sun, G. Yin, C. Wang et al., Dual-defect enhanced piezocatalytic performance of C3N5 for multifunctional applications. Appl. Catal. B Environ. 323, 122196 (2023). https://doi.org/10.1016/j.apcatb.2022.122196
- S. Wu, Y. Yang, M. Sun, T. Zhang, S. Huang et al., Dilute aqueous-aprotic electrolyte towards robust Zn-ion hybrid supercapacitor with high operation voltage and long lifespan. Nano-Micro Lett. 16, 161 (2024). https://doi.org/10.1007/s40820-024-01372-x
- X.-Y. Feng, W.-T. Wu, Q.-Q. Huang, Y.-C. Liu, C. Ni et al., Medium entropy stabilized disordered LiNi0.5Mn1.5O4 cathode with enhanced electrochemical performance. J. Alloys Compd. 948, 169768 (2023). https://doi.org/10.1016/j.jallcom.2023.169768
- W. Wang, W. Song, Y. Li, Y. Guo, K. Yang et al., Mesocrystallinely stabilized lithium storage in high-entropy oxides. Nano Energy 124, 109482 (2024). https://doi.org/10.1016/j.nanoen.2024.109482
- F. Qian, L. Peng, D. Cao, W. Jiang, C. Hu et al., Asymmetric active sites originate from high-entropy metal selenides by joule heating to boost electrocatalytic water oxidation. Joule (2024). https://doi.org/10.1016/j.joule.2024.06.004
- H. Zheng, Y. Liu, Z. Ma, E. Debroye, J. Ye et al., High-entropy perovskite oxides as a family of electrocatalysts for efficient and selective nitrogen oxidation. ACS Nano 18, 17642–17650 (2024). https://doi.org/10.1021/acsnano.4c02231
- Z. Xia, Y. Zhang, X. Xiong, J. Cui, Z. Liu et al., Realizing B-site high-entropy air electrode for superior reversible solid oxide cells. Appl. Catal. B Environ. Energy 357, 124314 (2024). https://doi.org/10.1016/j.apcatb.2024.124314
- J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin et al., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004). https://doi.org/10.1002/adem.200300567
- Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects. Mater. Today 19, 349–362 (2016). https://doi.org/10.1016/j.mattod.2015.11.026
- Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen et al., Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014). https://doi.org/10.1016/j.pmatsci.2013.10.001
- C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey et al., Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015). https://doi.org/10.1038/ncomms9485
- J. Baek, M.D. Hossain, P. Mukherjee, J. Lee, K.T. Winther et al., Synergistic effects of mixing and strain in high entropy spinel oxides for oxygen evolution reaction. Nat. Commun. 14, 5936 (2023). https://doi.org/10.1038/s41467-023-41359-7
- D. Liu, Y. Liu, P. Huang, C. Zhu, Z. Kang et al., Highly tunable heterojunctions from multimetallic sulfide nanops and silver nanowires. Angew. Chem. Int. Ed. 57, 5374–5378 (2018). https://doi.org/10.1002/anie.201800848
- Z. Du, C. Wu, Y. Chen, Z. Cao, R. Hu et al., High-entropy atomic layers of transition-metal carbides (MXenes). Adv. Mater. 33, 2101473 (2021). https://doi.org/10.1002/adma.202101473
- W. Xu, H. Chen, K. Jie, Z. Yang, T. Li et al., Entropy-driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks for CO2 fixation. Angew. Chem. Int. Ed. 58, 5018–5022 (2019). https://doi.org/10.1002/anie.201900787
- Z. Deng, A. Olvera, J. Casamento, J.S. Lopez, L. Williams et al., Semiconducting high-entropy chalcogenide alloys with ambi-ionic entropy stabilization and ambipolar doping. Chem. Mater. 32, 6070–6077 (2020). https://doi.org/10.1021/acs.chemmater.0c01555
- S.K. Nemani, B. Zhang, B.C. Wyatt, Z.D. Hood, S. Manna et al., High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 15, 12815–12825 (2021). https://doi.org/10.1021/acsnano.1c02775
- H.-J. Qiu, G. Fang, Y. Wen, P. Liu, G. Xie et al., Nanoporous high-entropy alloys for highly stable and efficient catalysts. J. Mater. Chem. A 7, 6499–6506 (2019). https://doi.org/10.1039/c9ta00505f
- G. Fang, J. Gao, J. Lv, H. Jia, H. Li et al., Multi-component nanoporous alloy/(oxy)hydroxide for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries. Appl. Catal. B Environ. 268, 118431 (2020). https://doi.org/10.1016/j.apcatb.2019.118431
- Z.-X. Cai, H. Goou, Y. Ito, T. Tokunaga, M. Miyauchi et al., Nanoporous ultra-high-entropy alloys containing fourteen elements for water splitting electrocatalysis. Chem. Sci. 12, 11306–11315 (2021). https://doi.org/10.1039/D1SC01981C
- P. Zhou, D. Liu, Y. Chen, M. Chen, Y. Liu et al., Corrosion engineering boosting bulk Fe50Mn30Co10Cr10 high-entropy alloy as high-efficient alkaline oxygen evolution reaction electrocatalyst. J. Mater. Sci. Technol. 109, 267–275 (2022). https://doi.org/10.1016/j.jmst.2021.09.003
- Y. Wang, B. Yu, M. He, Z. Zhai, K. Yin et al., Eutectic-derived high-entropy nanoporous nanowires for efficient and stable water-to-hydrogen conversion. Nano Res. 15, 4820–4826 (2022). https://doi.org/10.1007/s12274-021-4059-7
- L. Tao, M. Sun, Y. Zhou, M. Luo, F. Lv et al., A general synthetic method for high-entropy alloy subnanometer ribbons. J. Am. Chem. Soc. 144, 10582–10590 (2022). https://doi.org/10.1021/jacs.2c03544
- R. Li, X. Liu, W. Liu, Z. Li, K.C. Chan et al., Design of hierarchical porosity via manipulating chemical and microstructural complexities in high-entropy alloys for efficient water electrolysis. Adv. Sci. 9, e2105808 (2022). https://doi.org/10.1002/advs.202105808
- H. Li, Y. Han, H. Zhao, W. Qi, D. Zhang et al., Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat. Commun. 11, 5437 (2020). https://doi.org/10.1038/s41467-020-19277-9
- H. Li, M. Sun, Y. Pan, J. Xiong, H. Du et al., The self-complementary effect through strong orbital coupling in ultrathin high-entropy alloy nanowires boosting pH-universal multifunctional electrocatalysis. Appl. Catal. B Environ. 312, 121431 (2022). https://doi.org/10.1016/j.apcatb.2022.121431
- D. Zhang, Y. Shi, H. Zhao, W. Qi, X. Chen et al., The facile oil-phase synthesis of a multi-site synergistic high-entropy alloy to promote the alkaline hydrogen evolution reaction. J. Mater. Chem. A 9, 889–893 (2021). https://doi.org/10.1039/d0ta10574k
- Y. Kang, O. Cretu, J. Kikkawa, K. Kimoto, H. Nara et al., Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites. Nat. Commun. 14, 4182 (2023). https://doi.org/10.1038/s41467-023-39157-2
- Z. Chen, J. Wen, C. Wang, X. Kang, Convex cube-shaped Pt34 Fe5 Ni20 Cu31 Mo9 Ru high entropy alloy catalysts toward high-performance multifunctional electrocatalysis. Small 18, e2204255 (2022). https://doi.org/10.1002/smll.202204255
- W. Chen, S. Luo, M. Sun, X. Wu, Y. Zhou et al., High-entropy intermetallic PtRhBiSnSb nanoplates for highly efficient alcohol oxidation electrocatalysis. Adv. Mater. 34, e2206276 (2022). https://doi.org/10.1002/adma.202206276
- G. Feng, F. Ning, J. Song, H. Shang, K. Zhang et al., Sub-2 nm ultrasmall high-entropy alloy nanops for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 143, 17117–17127 (2021). https://doi.org/10.1021/jacs.1c07643
- M. Li, C. Huang, H. Yang, Y. Wang, X. Song et al., Programmable synthesis of high-entropy nanoalloys for efficient ethanol oxidation reaction. ACS Nano 17, 13659–13671 (2023). https://doi.org/10.1021/acsnano.3c02762
- X. Wang, Q. Peng, X. Zhang, X. Lv, X. Wang et al., Carbonaceous-assisted confinement synthesis of refractory high-entropy alloy nanocomposites and their application for seawater electrolysis. J. Colloid Interface Sci. 607, 1580–1588 (2022). https://doi.org/10.1016/j.jcis.2021.08.201
- L. Banko, E.B. Tetteh, A. Kostka, T.H. Piotrowiak, O.A. Krysiak et al., Microscale combinatorial libraries for the discovery of high-entropy materials. Adv. Mater. 35, e2207635 (2023). https://doi.org/10.1002/adma.202207635
- Y. Yao, Z. Huang, P. Xie, S.D. Lacey, R.J. Jacob et al., Carbothermal shock synthesis of high-entropy-alloy nanops. Science 359, 1489–1494 (2018). https://doi.org/10.1126/science.aan5412
- Z. Qiu, Y. Li, Y. Gao, Z. Meng, Y. Sun et al., 2D MOF-assisted Pyrolysis-displacement-alloying synthesis of high-entropy alloy nanops library for efficient electrocatalytic hydrogen oxidation. Angew. Chem. Int. Ed. 62, 2306881 (2023). https://doi.org/10.1002/anie.202306881
- T.X. Nguyen, J. Patra, J.-K. Chang, J.-M. Ting, High entropy spinel oxide nanops for superior lithiation–delithiation performance. J. Mater. Chem. A 8, 18963–18973 (2020). https://doi.org/10.1039/d0ta04844e
- D. Wang, S. Jiang, C. Duan, J. Mao, Y. Dong et al., Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance. J. Alloys Compd. 844, 156158 (2020). https://doi.org/10.1016/j.jallcom.2020.156158
- H.-Z. Xiang, H.-X. Xie, Y.-X. Chen, H. Zhang, A. Mao et al., Porous spinel-type (Al0.2CoCrFeMnNi)0.58O4-δ high-entropy oxide as a novel high-performance anode material for lithium-ion batteries. J. Mater. Sci. 56, 8127–8142 (2021). https://doi.org/10.1007/s10853-021-05805-5
- C. Duan, K. Tian, X. Li, D. Wang, H. Sun et al., New spinel high-entropy oxides (FeCoNiCrMnXLi)3O4 (X = Cu, Mg, Zn) as the anode material for lithium-ion batteries. Ceram. Int. 47, 32025–32032 (2021). https://doi.org/10.1016/j.ceramint.2021.08.091
- Y. Zheng, X. Wu, X. Lan, R. Hu, A spinel (FeNiCrMnMgAl)3O4 high entropy oxide as a cycling stable anode material for Li-ion batteries. Processes 10, 49 (2021). https://doi.org/10.3390/pr10010049
- C. Liu, J. Bi, L. Xie, X. Gao, J. Rong, High entropy spinel oxides (CrFeMnNiCox)3O4 (x = 2, 3, 4) nanops as anode material towards electrochemical properties. J. Energy Storage 71, 108211 (2023). https://doi.org/10.1016/j.est.2023.108211
- C. Liu, J. Bi, L. Xie, X. Gao, L. Meng, Electrochemical properties of four novel high-entropy spinel oxides used as lithium-ion battery anodes synthesized by the glycine-nitrate scs method. J. Mater. Sci. 58, 8005–8021 (2023). https://doi.org/10.1007/s10853-023-08498-0
- C. Liu, J. Bi, L. Xie, X. Gao, L. Meng, Preparation and electrochemical properties of two novel high entropy spinel oxides (MgTiZnNiFe)3O4 and (CoTiZnNiFe)3O4 by solid state reaction. Mater. Today Commun. 35, 106315 (2023). https://doi.org/10.1016/j.mtcomm.2023.106315
- Z. Sun, Y. Zhao, C. Sun, Q. Ni, C. Wang et al., High entropy spinel-structure oxide for electrochemical application. Chem. Eng. J. 431, 133448 (2022). https://doi.org/10.1016/j.cej.2021.133448
- B. Xiao, G. Wu, T. Wang, Z. Wei, Y. Sui et al., High-entropy oxides as advanced anode materials for long-life lithium-ion Batteries. Nano Energy 95, 106962 (2022). https://doi.org/10.1016/j.nanoen.2022.106962
- J. Yan, D. Wang, X. Zhang, J. Li, Q. Du et al., A high-entropy perovskite titanate lithium-ion battery anode. J. Mater. Sci. 55, 6942–6951 (2020). https://doi.org/10.1007/s10853-020-04482-0
- P. Zhou, Z. Che, J. Liu, J. Zhou, X. Wu et al., High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries. Energy Storage Mater. 57, 618–627 (2023). https://doi.org/10.1016/j.ensm.2023.03.007
- C. Zhao, F. Ding, Y. Lu, L. Chen, Y.-S. Hu, High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Ed. 59, 264–269 (2020). https://doi.org/10.1002/anie.201912171
- X. Liu, Y. Xing, K. Xu, H. Zhang, M. Gong et al., Kinetically accelerated lithium storage in high-entropy (LiMgCoNiCuZn)O enabled by oxygen vacancies. Small 18, e2200524 (2022). https://doi.org/10.1002/smll.202200524
- L. Li, P. Ji, C. Geng, Y. Li, L. Meng et al., Facile synthesis of high-entropy (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4 nanopowders and their electrochemical properties as supercapacitor electrode. J. Energy Storage 73, 109182 (2023). https://doi.org/10.1016/j.est.2023.109182
- D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, D. Raabe, Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90–97 (2015). https://doi.org/10.1016/j.actamat.2015.08.050
- V.A. Mints, J.K. Pedersen, A. Bagger, J. Quinson, A.S. Anker et al., Exploring the composition space of high-entropy alloy nanops for the electrocatalytic H2/CO oxidation with Bayesian optimization. ACS Catal. 12, 11263–11271 (2022). https://doi.org/10.1021/acscatal.2c02563
- J.-W. Yeh, Recent progress in high-entropy alloys. Ann. Chim. Sci. Mat. 31, 633–648 (2006). https://doi.org/10.3166/acsm.31.633-648
- C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen et al., Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263–1271 (2005). https://doi.org/10.1007/s11661-005-0218-9
- M.-R. Chen, S.-J. Lin, J.-W. Yeh, M.-H. Chuang, S.-K. Chen et al., Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. Metall. Mater. Trans. A 37, 1363–1369 (2006). https://doi.org/10.1007/s11661-006-0081-3
- C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen et al., Microstructure characterization of Alx CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 881–893 (2005). https://doi.org/10.1007/s11661-005-0283-0
- T. Yang, S. Xia, S. Liu, C. Wang, S. Liu et al., Effects of AL addition on microstructure and mechanical properties of AlxCoCrFeNi High-entropy alloy. Mater. Sci. Eng. A 648, 15–22 (2015). https://doi.org/10.1016/j.msea.2015.09.034
- M.-R. Chen, S.-J. Lin, J.-W. Yeh, S.-K. Chen, Y.-S. Huang et al., Microstructure and properties of Al0.5CoCrCuFeNiTix (x=0–2.0) high-entropy alloys. Mater. Trans. 47, 1395–1401 (2006). https://doi.org/10.2320/matertrans.47.1395
- W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu et al., Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics 60, 1–8 (2015). https://doi.org/10.1016/j.intermet.2015.01.004
- W. Wu, L. Jiang, H. Jiang, X. Pan, Z. Cao et al., Phase evolution and properties of Al2CrFeNiMox High-entropy alloys coatings by laser cladding. J. Therm. Spray Technol. 24, 1333–1340 (2015). https://doi.org/10.1007/s11666-015-0303-6
- Y.-J. Hsu, W.-C. Chiang, J.-K. Wu, Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution. Mater. Chem. Phys. 92, 112–117 (2005). https://doi.org/10.1016/j.matchemphys.2005.01.001
- C.P. Lee, Y.Y. Chen, C.Y. Hsu, J.W. Yeh, H.C. Shih, The effect of boron on the corrosion resistance of the high entropy alloys Al0.5CoCrCuFeNiBx. J. Electrochem. Soc. 154, C424 (2007). https://doi.org/10.1149/1.2744133
- C.P. Lee, Y.Y. Chen, C.Y. Hsu, J.W. Yeh, H.C. Shih, Enhancing pitting corrosion resistance of AlxCrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric acid. Thin Solid Films 517, 1301–1305 (2008). https://doi.org/10.1016/j.tsf.2008.06.014
- Y.L. Chou, J.W. Yeh, H.C. Shih, The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments. Corros. Sci. 52, 2571–2581 (2010). https://doi.org/10.1016/j.corsci.2010.04.004
- F.J. Wang, Y. Zhang, Effect of Co addition on crystal structure and mechanical properties of Ti0.5CrFeNiAlCo high entropy alloy. Mater. Sci. Eng. A 496, 214–216 (2008). https://doi.org/10.1016/j.msea.2008.05.020
- S.F. Zhao, Y. Shao, X. Liu, N. Chen, H.Y. Ding et al., Pseudo-quinary Ti20Zr20Hf20Be20(Cu20-xNix) high entropy bulk metallic glasses with large glass forming ability. Mater. Des. 87, 625–631 (2015). https://doi.org/10.1016/j.matdes.2015.08.067
- Y.-S. Huang, L. Chen, H.-W. Lui, M.-H. Cai, J.-W. Yeh, Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy. Mater. Sci. Eng. A 457, 77–83 (2007). https://doi.org/10.1016/j.msea.2006.12.001
- Z. An, H. Jia, Y. Wu, P.D. Rack, A.D. Patchen et al., Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition. Mater. Res. Lett. 3, 203–209 (2015). https://doi.org/10.1080/21663831.2015.1048904
- T.-W. Lu, C.-S. Feng, Z. Wang, K.-W. Liao, Z.-Y. Liu et al., Microstructures and mechanical properties of CoCrFeNiAl0.3 high-entropy alloy thin films by pulsed laser deposition. Appl. Surf. Sci. 494, 72–79 (2019). https://doi.org/10.1016/j.apsusc.2019.07.186
- C.-Z. Yao, P. Zhang, M. Liu, G.-R. Li, J.-Q. Ye et al., Electrochemical preparation and magnetic study of Bi–Fe–Co–Ni–Mn high entropy alloy. Electrochim. Acta 53, 8359–8365 (2008). https://doi.org/10.1016/j.electacta.2008.06.036
- V. Soare, M. Burada, I. Constantin, D. Mitrică, V. Bădiliţă et al., Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films. Appl. Surf. Sci. 358, 533–539 (2015). https://doi.org/10.1016/j.apsusc.2015.07.142
- W.-B. Liao, Z.-X. Wu, W. Lu, M. He, T. Wang et al., Microstructures and mechanical properties of CoCrFeNiMn high-entropy alloy coatings by detonation spraying. Intermetallics 132, 107138 (2021). https://doi.org/10.1016/j.intermet.2021.107138
- T.A.A. Batchelor, J.K. Pedersen, S.H. Winther, I.E. Castelli, K.W. Jacobsen et al., High-entropy alloys as a discovery platform for electrocatalysis. Joule 3, 834–845 (2019). https://doi.org/10.1016/j.joule.2018.12.015
- T.A.A. Batchelor, T. Löffler, B. Xiao, O.A. Krysiak, V. Strotkötter et al., Complex-solid-solution electrocatalyst discovery by computational prediction and high-throughput experimentation. Angew. Chem. Int. Ed. 60, 6932–6937 (2021). https://doi.org/10.1002/anie.202014374
- T. Yu, Y. Zhang, Y. Hu, K. Hu, X. Lin et al., Twelve-component free-standing nanoporous high-entropy alloys for multifunctional electrocatalysis. ACS Mater. Lett. 4, 181–189 (2022). https://doi.org/10.1021/acsmaterialslett.1c00762
- Q. Sang, S. Hao, J. Han, Y. Ding, Dealloyed nanoporous materials for electrochemical energy conversion and storage. EnergyChem 4, 100069 (2022). https://doi.org/10.1016/j.enchem.2022.100069
- H. Xu, R. Hu, Y. Zhang, H. Yan, Q. Zhu et al., Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries. Energy Storage Mater. 43, 212–220 (2021). https://doi.org/10.1016/j.ensm.2021.09.003
- Y. Chida, T. Tomimori, T. Ebata, N. Taguchi, T. Ioroi et al., Experimental study platform for electrocatalysis of atomic-level controlled high-entropy alloy surfaces. Nat. Commun. 14, 4492 (2023). https://doi.org/10.1038/s41467-023-40246-5
- M. Fu, X. Ma, K. Zhao, X. Li, D. Su, High-entropy materials for energy-related applications. iScience 24, 102177 (2021). https://doi.org/10.1016/j.isci.2021.102177
- Y. Xu, X. Xu, L. Bi, A high-entropy spinel ceramic oxide as the cathode for proton-conducting solid oxide fuel cells. J. Adv. Ceramics 11, 794–804 (2022). https://doi.org/10.1007/s40145-022-0573-7
- A. Sarkar, C. Loho, L. Velasco, T. Thomas, S.S. Bhattacharya et al., Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency. Dalton Trans. 46, 12167–12176 (2017). https://doi.org/10.1039/c7dt02077e
- A. Esmaeilzaei, J. Vahdati Khaki, S.A. Sajjadi, S. Mollazadeh, Synthesis and crystallization of (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide: The role of fuel and fuel-to-oxidizer ratio. J. Solid State Chem. 321, 123912 (2023). https://doi.org/10.1016/j.jssc.2023.123912
- X. Yang, H. Wang, Y. Song, K. Liu, T. Huang et al., Low-temperature synthesis of a porous high-entropy transition-metal oxide as an anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 14, 26873–26881 (2022). https://doi.org/10.1021/acsami.2c07576
- B. Cheng, H. Lou, A. Sarkar, Z. Zeng, F. Zhang et al., Lattice distortion and stability of (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide under high pressure. Mater. Today Adv. 8, 100102 (2020). https://doi.org/10.1016/j.mtadv.2020.100102
- M. Biesuz, J. Chen, M. Bortolotti, G. Speranza, V. Esposito et al., Ni-free high-entropy rock salt oxides with Li superionic conductivity. J. Mater. Chem. A 10, 23603–23616 (2022). https://doi.org/10.1039/d2ta06101e
- L. Su, J. Ren, T. Lu, K. Chen, J. Ouyang et al., Deciphering structural origins of highly reversible lithium storage in high entropy oxides with in situ transmission electron microscopy. Adv. Mater. 35, e2205751 (2023). https://doi.org/10.1002/adma.202205751
- H. He, P. Kou, Z. Zhang, D. Wang, R. Zheng et al., Coupling high entropy oxide with hollow carbon spheres by rapid microwave solvothermal strategy for boosting oxygen evolution reaction. J. Colloid Interface Sci. 653, 179–188 (2024). https://doi.org/10.1016/j.jcis.2023.09.063
- H. Wu, Q. Lu, Y. Li, J. Wang, Y. Li et al., Rapid joule-heating synthesis for manufacturing high-entropy oxides as efficient electrocatalysts. Nano Lett. 22, 6492–6500 (2022). https://doi.org/10.1021/acs.nanolett.2c01147
- K. Wang, W. Hua, X. Huang, D. Stenzel, J. Wang et al., Synergy of cations in high entropy oxide lithium ion battery anode. Nat. Commun. 14, 1487 (2023). https://doi.org/10.1038/s41467-023-37034-6
- R.-Z. Zhang, F. Gucci, H. Zhu, K. Chen, M.J. Reece, Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorg. Chem. 57, 13027–13033 (2018). https://doi.org/10.1021/acs.inorgchem.8b02379
- B. Jiang, Y. Yu, J. Cui, X. Liu, L. Xie et al., High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021). https://doi.org/10.1126/science.abe1292
- L. Hu, Y. Zhang, H. Wu, J. Li, Y. Li et al., Entropy engineering of SnTe: multi-principal-element alloying leading to ultralow lattice thermal conductivity and state-of-the-art thermoelectric performance. Adv. Energy Mater. 8, 1802116 (2018). https://doi.org/10.1002/aenm.201802116
- Y.-J. Liao, W.-W. Shen, C.-B. Chang, H.-Y. Tuan, High-entropy transition metal disulfide colloid clusters: synergistic atomic scale interaction and interconnected network for ultra-stable potassium ion storage. Chem. Eng. J. 469, 143942 (2023). https://doi.org/10.1016/j.cej.2023.143942
- Y. Li, J. Li, M. Wang, Y. Liu, H. Cui, High rate performance and stabilized cycle life of Co2+-doped nickel sulfide nanosheets synthesized by a scalable method of solid-state reaction. Chem. Eng. J. 366, 33–40 (2019). https://doi.org/10.1016/j.cej.2019.02.066
- B.C. Steimle, J.L. Fenton, R.E. Schaak, Rational construction of a scalable heterostructured nanorod megalibrary. Science 367, 418–424 (2020). https://doi.org/10.1126/science.aaz1172
- L. Zhou, M.K. Tufail, L. Yang, N. Ahmad, R. Chen et al., Cathode-doped sulfide electrolyte strategy for boosting all-solid-state lithium batteries. Chem. Eng. J. 391, 123529 (2020). https://doi.org/10.1016/j.cej.2019.123529
- Z. Jiang, H. Peng, Y. Liu, Z. Li, Y. Zhong et al., A versatile Li6.5In0.25P0.75S5I sulfide electrolyte triggered by ultimate-energy mechanical alloying for all-solid-state lithium metal batteries. Adv. Energy Mater. 11, 2101521 (2021). https://doi.org/10.1002/aenm.202101521
- F. Li, Y. Ma, H. Wu, Q. Zhai, J. Zhao et al., Sub-3-nm high-entropy metal sulfide nanops with synergistic effects as promising electrocatalysts for enhanced oxygen evolution reaction. J. Phys. Chem. C 126, 18323–18332 (2022). https://doi.org/10.1021/acs.jpcc.2c05666
- L. Lin, Z. Ding, G. Karkera, T. Diemant, M.V. Kante et al., High-entropy sulfides as highly effective catalysts for the oxygen evolution reaction. Small Struct. 4, 2370023 (2023). https://doi.org/10.1002/sstr.202370023
- T.X. Nguyen, Y.-H. Su, C.-C. Lin, J.-M. Ting, Self-reconstruction of sulfate-containing high entropy sulfide for exceptionally high-performance oxygen evolution reaction electrocatalyst. Adv. Funct. Mater. 31, 2106229 (2021). https://doi.org/10.1002/adfm.202106229
- Y. Xu, L. Wang, Z. Shi, N. Su, C. Li et al., Peroxide-mediated selective conversion of biomass polysaccharides over high entropy sulfides via solar energy catalysis. Energy Environ. Sci. 16, 1531–1539 (2023). https://doi.org/10.1039/d2ee03357g
- M. Cui, C. Yang, B. Li, Q. Dong, M. Wu et al., High-entropy metal sulfide nanops promise high-performance oxygen evolution reaction. Adv. Energy Mater. 11, 2002887 (2021). https://doi.org/10.1002/aenm.202002887
- P. Wang, G. Wang, K. Chen, W. Pan, L. Yi et al., High-power hybrid alkali-acid fuel cell for synchronous glycerol valorization implemented by high-entropy sulfide electrocatalyst. Nano Energy 118, 108992 (2023). https://doi.org/10.1016/j.nanoen.2023.108992
- H. Yao, Y. Wang, Y. Zheng, X. Yu, J. Ge et al., High-entropy selenides: a new platform for highly selective oxidation of glycerol to formate and energy-saving hydrogen evolution in alkali-acid hybrid electrolytic cell. Nano Res. 16, 10832–10839 (2023). https://doi.org/10.1007/s12274-023-5842-4
- Z. Jiang, Y. Yuan, L. Tan, M. Li, K. Peng, Self-reconstruction of (CoNiFeCuCr)Se high-entropy selenide for efficient oxygen evolution reaction. Appl. Surf. Sci. 627, 157282 (2023). https://doi.org/10.1016/j.apsusc.2023.157282
- W. Cheng, J. Liu, J. Hu, W. Peng, G. Niu et al., Pressure-stabilized high-entropy (FeCoNiCuRu)S2 sulfide anode toward simultaneously fast and durable lithium/sodium ion storage. Small 19, e2301915 (2023). https://doi.org/10.1002/smll.202301915
- C.R. McCormick, R.E. Schaak, Simultaneous multication exchange pathway to high-entropy metal sulfide nanops. J. Am. Chem. Soc. 143, 1017–1023 (2021). https://doi.org/10.1021/jacs.0c11384
- J. Zhao, Y. Zhang, X. Chen, G. Sun, X. Yang et al., Entropy-change driven highly reversible sodium storage for conversion-type sulfide. Adv. Funct. Mater. 32, 2206531 (2022). https://doi.org/10.1002/adfm.202206531
- J. Cavin, A. Ahmadiparidari, L. Majidi, A.S. Thind, S.N. Misal et al., 2D high-entropy transition metal dichalcogenides for carbon dioxide electrocatalysis. Adv. Mater. 33, e2100347 (2021). https://doi.org/10.1002/adma.202100347
- P.-W. Chien, C.-B. Chang, H.-Y. Tuan, High-entropy two-dimensional metal phosphorus trichalcogenides boost high-performance potassium ion storage devices via electrochemical reconstruction. Energy Storage Mater. 61, 102853 (2023). https://doi.org/10.1016/j.ensm.2023.102853
- C.-B. Chang, Y.-R. Lu, H.-Y. Tuan, High-entropy NaCl-type metal chalcogenides as K-ion storage materials: role of the cocktail effect. Energy Storage Mater. 59, 102770 (2023). https://doi.org/10.1016/j.ensm.2023.102770
- Y. Lei, L. Zhang, W. Xu, C. Xiong, W. Chen et al., Carbon-supported high-entropy Co–Zn–Cd–Cu–Mn sulfide nanoarrays promise high-performance overall water splitting. Nano Res. 15, 6054–6061 (2022). https://doi.org/10.1007/s12274-022-4304-8
- Y. Lee, J. Jeong, H.J. Lee, M. Kim, D. Han et al., Lithium argyrodite sulfide electrolytes with high ionic conductivity and air stability for all-solid-state Li-ion batteries. ACS Energy Lett. 7, 171–179 (2022). https://doi.org/10.1021/acsenergylett.1c02428
- Z. Zhao, H. Zheng, S. Liu, J. Shen, W. Song et al., Low temperature synthesis of chromium carbide (Cr3C2) nanopowders by a novel precursor method. Int. J. Refract. Met. Hard Mater. 48, 46–50 (2015). https://doi.org/10.1016/j.ijrmhm.2014.07.026
- D. Fray, C. Schwandt, Aspects of the application of electrochemistry to the extraction of titanium and its applications. Mater. Trans. 58, 306–312 (2017). https://doi.org/10.2320/matertrans.mk201619
- G.Z. Chen, Interactions of molten salts with cathode products in the FFC Cambridge Process. Int. J. Miner. Metall. Mater. 27, 1572–1587 (2020). https://doi.org/10.1007/s12613-020-2202-1
- Y. Li, J. Lu, M. Li, K. Chang, X. Zha et al., Multielemental single–atom-thick A layers in nanolaminated V2(Sn, A) C (A = Fe Co, Ni, Mn) for tailoring magnetic properties. Proc. Natl. Acad. Sci. U.S.A. 117, 820–825 (2020). https://doi.org/10.1073/pnas.1916256117
- J. Sure, D. Sri Maha Vishnu, H.-K. Kim, C. Schwandt, Facile electrochemical synthesis of nanoscale (TiNbTaZrHf)C high-entropy carbide powder. Angew. Chem. Int. Ed. 59, 11830–11835 (2020). https://doi.org/10.1002/anie.202003530
- Y. Yang, B. Chen, J. Chen, L. Hu, M. Hu, Preparation of (VNbTaZrHf)C high-entropy carbide nanops via electro-deoxidation in molten salt and their supercapacitive behaviour. Can. Metall. Q. 61, 389–397 (2022). https://doi.org/10.1080/00084433.2022.2058151
- S. Niu, Z. Yang, F. Qi, Y. Han, Z. Shi et al., Electrical discharge induced bulk-to-nanop transformation: nano high-entropy carbide as catalysts for hydrogen evolution reaction. Adv. Funct. Mater. 32, 2203787 (2022). https://doi.org/10.1002/adfm.202203787
- W. Ma, M. Wang, Q. Yi, D. Huang, J. Dang et al., A new Ti2V0.9Cr0.1C2Tx MXene with ultrahigh gravimetric capacitance. Nano Energy 96, 107129 (2022). https://doi.org/10.1016/j.nanoen.2022.107129
- J. Sun, B. Liu, Q. Zhao, C.H. Kirk, J. Wang, MAX, MXene, or MX: what are they and which one is better? Adv. Mater. 35, 2306072 (2023). https://doi.org/10.1002/adma.202306072
- T.J. Harrington, J. Gild, P. Sarker, C. Toher, C.M. Rost et al., Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Mater. 166, 271–280 (2019). https://doi.org/10.1016/j.actamat.2018.12.054
- J. Zhou, Q. Tao, B. Ahmed, J. Palisaitis, I. Persson et al., High-entropy laminate metal carbide (MAX phase) and its two-dimensional derivative MXene. Chem. Mater. 34, 2098–2106 (2022). https://doi.org/10.1021/acs.chemmater.1c03348
- A.S. Etman, J. Zhou, J. Rosen, Ti1.1V0.7CrxNb1.0Ta0.6C3Tz high-entropy MXene freestanding films for charge storage applications. Electrochem. Commun. 137, 107264 (2022). https://doi.org/10.1016/j.elecom.2022.107264
- S. Wu, X. Li, Y. Zhang, Q. Guan, J. Wang et al., Interface engineering of MXene-based heterostructures for lithium-sulfur batteries. Nano Res. 16, 9158–9178 (2023). https://doi.org/10.1007/s12274-023-5532-2
- Z. Du, C. Wu, Y. Chen, Q. Zhu, Y. Cui et al., High-entropy carbonitride MAX phases and their derivative MXenes. Adv. Energy Mater. 12, 2103228 (2022). https://doi.org/10.1002/aenm.202103228
- V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020). https://doi.org/10.1126/science.aba8311
- H.K. Chae, D.Y. Siberio-Pérez, J. Kim, Y. Go, M. Eddaoudi et al., A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004). https://doi.org/10.1038/nature02311
- U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt et al., Metal–organic frameworks—prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006). https://doi.org/10.1039/b511962f
- M. Gharibeh, G.A. Tompsett, K.S. Yngvesson, W.C. Conner, Microwave synthesis of zeolites: effect of power delivery. J. Phys. Chem. B 113, 8930–8940 (2009). https://doi.org/10.1021/jp900400d
- A. Pichon, A. Lazuen-Garay, S.L. James, Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 8, 211–214 (2006). https://doi.org/10.1039/B513750K
- A. Carné-Sánchez, I. Imaz, M. Cano-Sarabia, D. Maspoch, A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures. Nat. Chem. 5, 203–211 (2013). https://doi.org/10.1038/nchem.1569
- X. Zhao, Z. Xue, W. Chen, X. Bai, R. Shi et al., Ambient fast, large-scale synthesis of entropy-stabilized metal–organic framework nanosheets for electrocatalytic oxygen evolution. J. Mater. Chem. A 7, 26238–26242 (2019). https://doi.org/10.1039/c9ta09975a
- Z. Liu, J. Xu, F. Zhang, L. Ji, Z. Shi, Defect-rich high-entropy oxide nanospheres anchored on high-entropy MOF nanosheets for oxygen evolution reaction. Int. J. Hydrog. Energy 48, 14622–14632 (2023). https://doi.org/10.1016/j.ijhydene.2022.12.333
- Y. Sun, W. Wu, L. Yu, S. Xu, Y. Zhang et al., Asymmetric acidic/alkaline N2 electrofixation accelerated by high-entropy metal–organic frameworkderivatives. Carbon Energy 5, e263 (2023). https://doi.org/10.1002/cey2.263
- S. Xu, M. Li, H. Wang, Y. Sun, W. Liu et al., High-entropy metal–organic framework arrays boost oxygen evolution electrocatalysis. J. Phys. Chem. C 126, 14094–14102 (2022). https://doi.org/10.1021/acs.jpcc.2c05083
- P. Hu, X. Liang, M. Yaseen, X. Sun, Z. Tong et al., Preparation of highly-hydrophobic novel N-coordinated UiO-66(Zr) with dopamine via fast mechano-chemical method for (CHO-/Cl-)-VOCs competitive adsorption in humid environment. Chem. Eng. J. 332, 608–618 (2018). https://doi.org/10.1016/j.cej.2017.09.115
- J.M. Gonçalves, J.G. Ruiz-Montoya, Emerging high-entropy coordination compounds and their derivatives for energy application. J. Mater. Chem. A 11, 20872–20885 (2023). https://doi.org/10.1039/d3ta03500j
- J. Hu, L. Cao, Z. Wang, J. Liu, J. Zhang et al., Hollow high-entropy metal organic framework derived nanocomposite as efficient electrocatalyst for oxygen reduction reaction. Compos. Commun. 27, 100866 (2021). https://doi.org/10.1016/j.coco.2021.100866
- W. Dong, Q. Pan, Z. Liu, H. Sun, Z. Shi et al., Electrodeposition of defect-rich high entropy ZIF and its application in water oxidation. Int. J. Hydrog. Energy 48, 35493–35501 (2023). https://doi.org/10.1016/j.ijhydene.2023.05.333
- R. Li, X. Ren, H. Ma, X. Feng, Z. Lin et al., Nickel-substituted zeolitic imidazolate frameworks for time-resolved alcohol sensing and photocatalysis under visible light. J. Mater. Chem. A 2, 5724–5729 (2014). https://doi.org/10.1039/c3ta15058e
- C. Zhao, W. Cai, N. Sun, S. Chen, W. Jing et al., Facile preparation of porous high-entropy alloy FeCoNiCuMn and its OER performance. J. Phys. Chem. Solids 184, 111668 (2024). https://doi.org/10.1016/j.jpcs.2023.111668
- H. Raza, J. Cheng, C. Lin, S. Majumder, G. Zheng et al., High-entropy stabilized oxides derived via a low-temperature template route for high-performance lithium-sulfur batteries. EcoMat 5, e12324 (2023). https://doi.org/10.1002/eom2.12324
- Y. Zhou, L. Gao, H. Chen, H. Wang, J. Zhang et al., Fabrication of amorphous FeCoNiCuMnPx high-entropy phosphide/carbon composites with a heterostructured fusiform morphology for efficient oxygen evolution reaction. J. Mater. Sci. Technol. 168, 62–70 (2024). https://doi.org/10.1016/j.jmst.2023.05.054
- Y. Ma, Y. Ma, S.L. Dreyer, Q. Wang, K. Wang et al., High-entropy metal-organic frameworks for highly reversible sodium storage. Adv. Mater. 33, e2101342 (2021). https://doi.org/10.1002/adma.202101342
- Y. Wei, Y. Zhao, Y. Chen, M. Zhang, Z. Zhang et al., Lithium storage characteristic of nanoporous high-entropy alloy@high-entropy oxide with spin-dependent synergism of cations. Chem. Eng. J. 476, 146881 (2023). https://doi.org/10.1016/j.cej.2023.146881
- Y. Yuan, Z. Xu, P. Han, Z. Dan, F. Qin et al., MnO2-decorated metallic framework supercapacitors fabricated from duplex-phase FeCrCoMnNiAl0.75 Cantor high entropy alloy precursors through selective phase dissolution. J. Alloys Compd. 870, 159523 (2021). https://doi.org/10.1016/j.jallcom.2021.159523
- H. Guo, J. Shen, T. Wang, C. Cheng, H. Yao et al., Design and fabrication of high-entropy oxide anchored on graphene for boosting kinetic performance and energy storage. Ceram. Int. 48, 3344–3350 (2022). https://doi.org/10.1016/j.ceramint.2021.10.109
- S. Wang, W. Huo, F. Fang, Z. Xie, J.K. Shang et al., High entropy alloy/C nanops derived from polymetallic MOF as promising electrocatalysts for alkaline oxygen evolution reaction. Chem. Eng. J. 429, 132410 (2022). https://doi.org/10.1016/j.cej.2021.132410
- V. Jishnu, S.S. Mishra, M.B. Kusuma Urs, S.P. Thomas, C.S. Tiwary et al., Highly sensitive and selective triethylamine sensing through high-entropy alloy (Ti–Zr–Cr–V–Ni) nanop-induced Fermi energy control of MoS2 nanosheets. ACS Appl. Mater. Interfaces 14, 13653–13664 (2022). https://doi.org/10.1021/acsami.2c00531
- H. Fan, Y. Si, Y. Zhang, F. Zhu, X. Wang et al., Grapevine-like high entropy oxide composites boost high-performance lithium sulfur batteries as bifunctional interlayers. Green Energy Environ. 9, 565–572 (2024). https://doi.org/10.1016/j.gee.2022.11.001
- J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu et al., High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 6, 37946 (2016). https://doi.org/10.1038/srep37946
- J. Gild, J. Braun, K. Kaufmann, E. Marin, T. Harrington et al., A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. J. Materiomics 5, 337–343 (2019). https://doi.org/10.1016/j.jmat.2019.03.002
- H. Fu, Y. Jiang, M. Zhang, Z. Zhong, Z. Liang et al., High-entropy rare earth materials: synthesis, application and outlook. Chem. Soc. Rev. 53, 2211–2247 (2024). https://doi.org/10.1039/d2cs01030e
- L. Wang, Z. Gao, K. Su, N.T. Nguyen, R.-T. Gao et al., Stacked high-entropy hydroxides promote charge transfer kinetics for photoelectrochemical water splitting. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202403948
- T. Zhang, Y.-L. Meng, Y.-H. Zhao, J.-C. Ni, Y. Pan et al., Boosting the oxygen evolution electrocatalysis of high-entropy hydroxides by high-valence nickel species regulation. Chem. Commun. 58, 7682–7685 (2022). https://doi.org/10.1039/d2cc02367a
- T.G. Ritter, A.H. Phakatkar, M.G. Rasul, M.T. Saray, L.V. Sorokina et al., Electrochemical synthesis of high entropy hydroxides and oxides boosted by hydrogen evolution reaction. Cell Rep. Phys. Sci. 3, 100847 (2022). https://doi.org/10.1016/j.xcrp.2022.100847
- J. Pan, Y. Bao, H. Wang, F. Lyu, L. Liu et al., Amorphous high-entropy hydroxides of tunable wide solar absorption for solar water evaporation. Part. Part. Syst. Charact. 38, 2100094 (2021). https://doi.org/10.1002/ppsc.202100094
- Z. Zhang, H. Li, Promoting the uptake of chloride ions by ZnCo–Cl layered double hydroxide electrodes for enhanced capacitive deionization. Environ. Sci. Nano 8, 1886–1895 (2021). https://doi.org/10.1039/D1EN00350J
- K. Gu, X. Zhu, D. Wang, N. Zhang, G. Huang et al., Ultrathin defective high-entropy layered double hydroxides for electrochemical water oxidation. J. Energy Chem. 60, 121–126 (2021). https://doi.org/10.1016/j.jechem.2020.12.029
- X. Wu, Z.-J. Zhao, X. Shi, L. Kang, P. Das et al., Multi-site catalysis of high-entropy hydroxides for sustainable electrooxidation of glucose to glucaric acid. Energy Environ. Sci. 17, 3042–3051 (2024). https://doi.org/10.1039/d4ee00221k
- B.M. Hunter, W. Hieringer, J.R. Winkler, H.B. Gray, A.M. Müller, Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy Environ. Sci. 9, 1734–1743 (2016). https://doi.org/10.1039/c6ee00377j
- R.S. Jayashree, P.V. Kamathm, Factors governing the electrochemical synthesis of α-nickel (ii) hydroxide. J. Appl. Electrochem. 29, 449–454 (1999). https://doi.org/10.1023/A:1003493711239
- Z. Zhu, Y. Zhang, D. Kong, N. He, Q. Chen, A novel high entropy hydroxide electrode material for promoting energy density of supercapacitors and its efficient synthesis strategy. Small 20, e2307754 (2024). https://doi.org/10.1002/smll.202307754
- Z. Jia, T. Yang, L. Sun, Y. Zhao, W. Li et al., A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Adv. Mater. 32, e2000385 (2020). https://doi.org/10.1002/adma.202000385
- A. Ostovari Moghaddam, A. Abdollahzadeh, M. Samodurova, N. Shaburova, D. Mikhailov et al., Novel high entropy intermetallic compounds: Synthesis and detonation spraying. Intermetallics 146, 107591 (2022). https://doi.org/10.1016/j.intermet.2022.107591
- Z. Lu, Y. Tan, Y. Huang, X. Tao, H. Chen et al., Synthesis and characterization of a novel Full-Heusler high entropy intermetallic compound-(FeCoNi)2TiSb. Intermetallics 171, 108343 (2024). https://doi.org/10.1016/j.intermet.2024.108343
- S.S. Soliman, G.R. Dey, C.R. McCormick, R.E. Schaak, Temporal evolution of morphology, composition, and structure in the formation of colloidal high-entropy intermetallic nanops. ACS Nano 17, 16147–16159 (2023). https://doi.org/10.1021/acsnano.3c05241
- Y. Nakaya, E. Hayashida, H. Asakura, S. Takakusagi, S. Yasumura et al., High-entropy intermetallics serve ultrastable single-atom Pt for propane dehydrogenation. J. Am. Chem. Soc. 144, 15944–15953 (2022). https://doi.org/10.1021/jacs.2c01200
- Y. Wang, N. Gong, H. Liu, W. Ma, K. Hippalgaonkar et al., Ordering-dependent hydrogen evolution and oxygen reduction electrocatalysis of high-entropy intermetallic Pt4FeCoCuNi. Adv. Mater. 35, e2302067 (2023). https://doi.org/10.1002/adma.202302067
- Y. Wang, X.-Y. Zhang, H. He, J.-J. Chen, B. Liu, Ordered mesoporous high-entropy intermetallics for efficient oxygen reduction electrocatalysis. Adv. Energy Mater. 14, 2303923 (2024). https://doi.org/10.1002/aenm.202303923
References
Y.S. Meng, Introduction: beyond Li-ion battery chemistry. Chem. Rev. 120, 6327 (2020). https://doi.org/10.1021/acs.chemrev.0c00412
P.R. Vasudeva Rao, Materials for nuclear industry: some historical perspectives. J. Chem. Sci. 131, 97 (2019). https://doi.org/10.1007/s12039-019-1669-7
M.A. Little, A.I. Cooper, The chemistry of porous organic molecular materials. Adv. Funct. Mater. 30, 1909842 (2020). https://doi.org/10.1002/adfm.201909842
X. Zhou, W.-S. Lee, M. Imada, N. Trivedi, P. Phillips et al., High-temperature superconductivity. Nat. Rev. Phys. 3, 462–465 (2021). https://doi.org/10.1038/s42254-021-00324-3
E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019). https://doi.org/10.1038/s41578-019-0121-4
C. Oses, C. Toher, S. Curtarolo, High-entropy ceramics. Nat. Rev. Mater. 5, 295–309 (2020). https://doi.org/10.1038/s41578-019-0170-8
G. Pacchioni, High-entropy materials go nano. Nat. Rev. Mater. 7, 156 (2022). https://doi.org/10.1038/s41578-022-00429-w
C. Lu, X. Zhang, X. Chen, Advanced materials and technologies toward carbon neutrality. Acc. Mater. Res. 3, 913–921 (2022). https://doi.org/10.1021/accountsmr.2c00084
B. Lei, G.-R. Li, P. Chen, X.-P. Gao, A solar rechargeable battery based on hydrogen storage mechanism in dual-phase electrolyte. Nano Energy 38, 257–262 (2017). https://doi.org/10.1016/j.nanoen.2017.06.001
J. Nowotny, C. Sorrell, L. Sheppard, T. Bak, Solar-hydrogen: Environmentally safe fuel for the future. Int. J. Hydrog. Energy 30, 521–544 (2005). https://doi.org/10.1016/j.ijhydene.2004.06.012
W. Chen, G. Li, A. Pei, Y. Li, L. Liao et al., A manganese–hydrogen battery with potential for grid-scale energy storage. Nat. Energy 3, 428–435 (2018). https://doi.org/10.1038/s41560-018-0147-7
H. Lee, O. Gwon, C. Lim, J. Kim, O. Galindev et al., Advanced electrochemical properties of PrBa0.5Sr0.5Co1.9Ni0.1O5+δ as a bifunctional catalyst for rechargeable zinc-air batteries. ChemElectroChem 6, 3154–3159 (2019). https://doi.org/10.1002/celc.201900633
D.R. Egan, C. Ponce de León, R.J.K. Wood, R.L. Jones, K.R. Stokes et al., Developments in electrode materials and electrolytes for aluminium–air batteries. J. Power. Sources 236, 293–310 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.141
S.R. Narayanan, G.K.S. Prakash, A. Manohar, B. Yang, S. Malkhandi et al., Materials challenges and technical approaches for realizing inexpensive and robust iron–air batteries for large-scale energy storage. Solid State Ion. 216, 105–109 (2012). https://doi.org/10.1016/j.ssi.2011.12.002
C. Lim, C. Kim, O. Gwon, H.Y. Jeong, H.-K. Song et al., Nano-perovskite oxide prepared via inverse microemulsion mediated synthesis for catalyst of lithium-air batteries. Electrochim. Acta 275, 248–255 (2018). https://doi.org/10.1016/j.electacta.2018.04.121
S.S. Shinde, J.Y. Jung, N.K. Wagh, C.H. Lee, D.-H. Kim et al., Ampere-hour-scale zinc–air pouch cells. Nat. Energy 6, 592–604 (2021). https://doi.org/10.1038/s41560-021-00807-8
G. Wang, J. Chang, S. Koul, A. Kushima, Y. Yang, CO2 bubble-assisted Pt exposure in PtFeNi porous film for high-performance zinc-air battery. J. Am. Chem. Soc. 143, 11595–11601 (2021). https://doi.org/10.1021/jacs.1c04339
R. Xiao, J. Chen, K. Fu, X. Zheng, T. Wang et al., Hydrolysis batteries: generating electrical energy during hydrogen absorption. Angew. Chem. Int. Ed. 57, 2219–2223 (2018). https://doi.org/10.1002/anie.201711666
C. Zhang, Y. Yang, X. Liu, M. Mao, K. Li et al., Mobile energy storage technologies for boosting carbon neutrality. Innov. Camb 4, 100518 (2023). https://doi.org/10.1016/j.xinn.2023.100518
E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Energy storage: The future enabled by nanomaterials. Science 366, eaan8285 (2019). https://doi.org/10.1126/science.aan8285
Z. Hu, Z. Song, Z. Huang, S. Tao, B. Song et al., Reconstructing hydrogen bond network enables high voltage aqueous zinc-ion supercapacitors. Angew. Chem. Int. Ed. 62, e202309601 (2023). https://doi.org/10.1002/anie.202309601
N.T. Aristote, K. Zou, A. Di, W. Deng, B. Wang et al., Methods of improving the initial Coulombic efficiency and rate performance of both anode and cathode materials for sodium-ion batteries. Chin. Chem. Lett. 33, 730–742 (2022). https://doi.org/10.1016/j.cclet.2021.08.049
L. Tian, Z. Li, P. Wang, X. Zhai, X. Wang et al., Carbon quantum dots for advanced electrocatalysis. J. Energy Chem. 55, 279–294 (2021). https://doi.org/10.1016/j.jechem.2020.06.057
G. Zhao, G. Zou, H. Hou, P. Ge, X. Cao et al., Sulfur-doped carbon employing biomass-activated carbon as a carrier with enhanced sodium storage behavior. J. Mater. Chem. A 5, 24353–24360 (2017). https://doi.org/10.1039/c7ta07860a
S. Li, Z. Luo, H. Tu, H. Zhang, W. Deng et al., N, S-codoped carbon dots as deposition regulating electrolyte additive for stable lithium metal anode. Energy Storage Mater. 42, 679–686 (2021). https://doi.org/10.1016/j.ensm.2021.08.008
Y. Cai, X. Chen, Y. Xu, Y. Zhang, H. Liu et al., Ti3C2Tx MXene/carbon composites for advanced supercapacitors: Synthesis, progress, and perspectives. Carbon Energy 6, e501 (2024). https://doi.org/10.1002/cey2.501
W. Fan, Q. Wang, K. Rong, Y. Shi, W. Peng et al., MXene enhanced 3D needled waste denim felt for high-performance flexible supercapacitors. Nano-Micro Lett. 16, 36 (2023). https://doi.org/10.1007/s40820-023-01226-y
G. Zou, H. Hou, P. Ge, Z. Huang, G. Zhao et al., Metal–organic framework-derived materials for sodium energy storage. Small 14, 1702648 (2018). https://doi.org/10.1002/smll.201702648
X. Xiao, X. Deng, Y. Tian, S. Tao, Z. Song et al., Ultrathin two-dimensional nanosheet metal-organic frameworks with high-density ligand active sites for advanced lithium-ion capacitors. Nano Energy 103, 107797 (2022). https://doi.org/10.1016/j.nanoen.2022.107797
Z. Cao, H. Zhang, B. Song, D. Xiong, S. Tao et al., Angstrom-level ionic sieve 2D-MOF membrane for high power aqueous zinc anode. Adv. Funct. Mater. 33, 2300339 (2023). https://doi.org/10.1002/adfm.202300339
D. Xiong, L. Yang, Z. Cao, F. Li, W. Deng et al., In situ construction of high-density solid electrolyte interphase from MOFs for advanced Zn metal anodes. Adv. Funct. Mater. 33, 2301530 (2023). https://doi.org/10.1002/adfm.202301530
T.B. Schon, B.T. McAllister, P.-F. Li, D.S. Seferos, The Rise of organic electrode materials for energy storage. Chem. Soc. Rev. 45, 6345–6404 (2016). https://doi.org/10.1039/c6cs00173d
Z. Song, G. Zhang, X. Deng, K. Zou, X. Xiao et al., Ultra-low-dose pre-metallation strategy served for commercial metal-ion capacitors. Nano-Micro Lett. 14, 53 (2022). https://doi.org/10.1007/s40820-022-00792-x
J. Ma, J. Qin, S. Zheng, Y. Fu, L. Chi et al., Hierarchically structured Nb2O5 microflowers with enhanced capacity and fast-charging capability for flexible planar sodium ion micro-supercapacitors. Nano-Micro Lett. 16, 67 (2024). https://doi.org/10.1007/s40820-023-01281-5
X. Deng, K. Zou, R. Momen, P. Cai, J. Chen et al., High content anion (S/Se/P) doping assisted by defect engineering with fast charge transfer kinetics for high-performance sodium ion capacitors. Sci. Bull. 66, 1858–1868 (2021). https://doi.org/10.1016/j.scib.2021.04.042
Y. Zhu, W. Zhong, W. Chen, Z. Hu, Y. Xie et al., Crystallographic types depended energy storage mechanism for zinc storage. Nano Energy 125, 109524 (2024). https://doi.org/10.1016/j.nanoen.2024.109524
Z. Song, G. Zhang, X. Deng, Y. Tian, X. Xiao et al., Strongly coupled interfacial engineering inspired by robotic arms enable high-performance sodium-ion capacitors. Adv. Funct. Mater. 32, 2205453 (2022). https://doi.org/10.1002/adfm.202205453
L. Yang, M. Liu, Y. Xiang, W. Deng, G. Zou et al., Carbon skeleton confined Sb chalcogenides nanodots for stable sodium storage. Carbon 197, 341–349 (2022). https://doi.org/10.1016/j.carbon.2022.06.043
S. Tao, J. Cai, Z. Cao, B. Song, W. Deng et al., Revealing the valence evolution of metal element in heterostructures for ultra-high power Li-ion capacitors. Adv. Energy Mater. 13, 2301653 (2023). https://doi.org/10.1002/aenm.202301653
I.S. Kim, M.J. Pellin, A.B.F. Martinson, Acid-compatible halide perovskite photocathodes utilizing atomic layer deposited TiO2 for solar-driven hydrogen evolution. ACS Energy Lett. 4, 293–298 (2019). https://doi.org/10.1021/acsenergylett.8b01661
H. Su, S. Jaffer, H. Yu, Transition metal oxides for sodium-ion batteries. Energy Storage Mater. 5, 116–131 (2016). https://doi.org/10.1016/j.ensm.2016.06.005
X. Pu, K. Yang, Z. Pan, C. Song, Y. Lai et al., Extending the solid solution range of sodium ferric pyrophosphate: off-stoichiometric Na3Fe2.5(P2O7)2 as a novel cathode for sodium-ion batteries. Carbon Energy 6, e449 (2024). https://doi.org/10.1002/cey2.449
Y. Wang, H. Li, S. Di, B. Zhai, P. Niu et al., Constructing long-cycling crystalline C3N4-based carbonaceous anodes for sodium-ion battery via N configuration control. Carbon Energy 6, e388 (2024). https://doi.org/10.1002/cey2.388
S.-J. Kwon, T.-H. Han, T.Y. Ko, N. Li, Y. Kim et al., Extremely stable graphene electrodes doped with macromolecular acid. Nat. Commun. 9, 2037 (2018). https://doi.org/10.1038/s41467-018-04385-4
P. Dong, Z. Xu, X. Ma, Y. Gu, J. Zhang et al., Simple preparation of monolithic N-doped electrode for efficient EF remediation of petrochemical wastewater: performance, degradation pathways, and mechanism of different N-doped positions. Chem. Eng. J. 473, 145237 (2023). https://doi.org/10.1016/j.cej.2023.145237
F. Wang, J.Y. Cheong, Q. He, G. Duan, S. He et al., Phosphorus-doped thick carbon electrode for high-energy density and long-life supercapacitors. Chem. Eng. J. 414, 128767 (2021). https://doi.org/10.1016/j.cej.2021.128767
W. Liu, X. Wang, J. Qu, X. Liu, Z. Zhang et al., Tuning Ni dopant concentration to enable co-deposited superhydrophilic self-standing Mo2C electrode for high-efficient hydrogen evolution reaction. Appl. Catal. B Environ. Energy 307, 121201 (2022). https://doi.org/10.1016/j.apcatb.2022.121201
G. Liang, Z. Wu, C. Didier, W. Zhang, J. Cuan et al., A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping. Angew. Chem. Int. Ed. 59, 10594–10602 (2020). https://doi.org/10.1002/anie.202001454
Y. Tian, M. Ju, Y. Luo, X. Bin, X. Lou et al., In situ oxygen doped Ti3C2Tx MXene flexible film as supercapacitor electrode. Chem. Eng. J. 446, 137451 (2022). https://doi.org/10.1016/j.cej.2022.137451
Y. Xiang, X. Hu, X. Zhong, W. Deng, G. Zou et al., Mechanism of fast storage of Li/Na in complex Sb-based hybrid system. Adv. Funct. Mater. 34, 2311478 (2024). https://doi.org/10.1002/adfm.202311478
X. Xiao, X. Duan, Z. Song, X. Deng, W. Deng et al., High-throughput production of cheap mineral-based heterostructures for high power sodium ion capacitors. Adv. Funct. Mater. 32, 2110476 (2022). https://doi.org/10.1002/adfm.202110476
A. Wang, W. Hong, L. Li, R. Guo, Y. Xiang et al., Hierarchical bismuth composite for fast lithium storage: carbon dots tuned interfacial interaction. Energy Storage Mater. 44, 145–155 (2022). https://doi.org/10.1016/j.ensm.2021.10.019
W. Zhou, Y. Tang, X. Zhang, S. Zhang, H. Xue et al., MOF derived metal oxide composites and their applications in energy storage. Coord. Chem. Rev. 477, 214949 (2023). https://doi.org/10.1016/j.ccr.2022.214949
X. Zhong, J. Duan, Y. Xiang, X. Hu, Y. Huang et al., Constructing rich interfacial structure by carbon dots to improve the sodium storage capacity of Sb/C composite. Adv. Funct. Mater. 33, 2306574 (2023). https://doi.org/10.1002/adfm.202306574
C. Liu, Z. Song, X. Deng, S. Xu, R. Zheng et al., Interfacial/bulk synergetic effects accelerating charge transferring for advanced lithium-ion capacitors. Chin. Chem. Lett. 35, 109081 (2024). https://doi.org/10.1016/j.cclet.2023.109081
C. Liu, B. Wang, Z. Song, X. Xiao, Z. Cao et al., Enabling electron delocalization by conductor heterostructure for highly reversible sodium storage. Adv. Funct. Mater. 34, 2312905 (2024). https://doi.org/10.1002/adfm.202312905
L. Cao, S. Fang, B. Xu, B. Zhang, C. Wang et al., Enabling reversible reaction by uniform distribution of heterogeneous intermediates on defect-rich SnSSe/C layered heterostructure for ultralong-cycling sodium storage. Small 18, e2202134 (2022). https://doi.org/10.1002/smll.202202134
Y. Gao, S. Liang, B. Liu, C. Jiang, C. Xu et al., Subtle tuning of nanodefects actuates highly efficient electrocatalytic oxidation. Nat. Commun. 14, 2059 (2023). https://doi.org/10.1038/s41467-023-37676-6
C. Fu, T. Wu, G. Sun, G. Yin, C. Wang et al., Dual-defect enhanced piezocatalytic performance of C3N5 for multifunctional applications. Appl. Catal. B Environ. 323, 122196 (2023). https://doi.org/10.1016/j.apcatb.2022.122196
S. Wu, Y. Yang, M. Sun, T. Zhang, S. Huang et al., Dilute aqueous-aprotic electrolyte towards robust Zn-ion hybrid supercapacitor with high operation voltage and long lifespan. Nano-Micro Lett. 16, 161 (2024). https://doi.org/10.1007/s40820-024-01372-x
X.-Y. Feng, W.-T. Wu, Q.-Q. Huang, Y.-C. Liu, C. Ni et al., Medium entropy stabilized disordered LiNi0.5Mn1.5O4 cathode with enhanced electrochemical performance. J. Alloys Compd. 948, 169768 (2023). https://doi.org/10.1016/j.jallcom.2023.169768
W. Wang, W. Song, Y. Li, Y. Guo, K. Yang et al., Mesocrystallinely stabilized lithium storage in high-entropy oxides. Nano Energy 124, 109482 (2024). https://doi.org/10.1016/j.nanoen.2024.109482
F. Qian, L. Peng, D. Cao, W. Jiang, C. Hu et al., Asymmetric active sites originate from high-entropy metal selenides by joule heating to boost electrocatalytic water oxidation. Joule (2024). https://doi.org/10.1016/j.joule.2024.06.004
H. Zheng, Y. Liu, Z. Ma, E. Debroye, J. Ye et al., High-entropy perovskite oxides as a family of electrocatalysts for efficient and selective nitrogen oxidation. ACS Nano 18, 17642–17650 (2024). https://doi.org/10.1021/acsnano.4c02231
Z. Xia, Y. Zhang, X. Xiong, J. Cui, Z. Liu et al., Realizing B-site high-entropy air electrode for superior reversible solid oxide cells. Appl. Catal. B Environ. Energy 357, 124314 (2024). https://doi.org/10.1016/j.apcatb.2024.124314
J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin et al., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004). https://doi.org/10.1002/adem.200300567
Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects. Mater. Today 19, 349–362 (2016). https://doi.org/10.1016/j.mattod.2015.11.026
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen et al., Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014). https://doi.org/10.1016/j.pmatsci.2013.10.001
C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey et al., Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015). https://doi.org/10.1038/ncomms9485
J. Baek, M.D. Hossain, P. Mukherjee, J. Lee, K.T. Winther et al., Synergistic effects of mixing and strain in high entropy spinel oxides for oxygen evolution reaction. Nat. Commun. 14, 5936 (2023). https://doi.org/10.1038/s41467-023-41359-7
D. Liu, Y. Liu, P. Huang, C. Zhu, Z. Kang et al., Highly tunable heterojunctions from multimetallic sulfide nanops and silver nanowires. Angew. Chem. Int. Ed. 57, 5374–5378 (2018). https://doi.org/10.1002/anie.201800848
Z. Du, C. Wu, Y. Chen, Z. Cao, R. Hu et al., High-entropy atomic layers of transition-metal carbides (MXenes). Adv. Mater. 33, 2101473 (2021). https://doi.org/10.1002/adma.202101473
W. Xu, H. Chen, K. Jie, Z. Yang, T. Li et al., Entropy-driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks for CO2 fixation. Angew. Chem. Int. Ed. 58, 5018–5022 (2019). https://doi.org/10.1002/anie.201900787
Z. Deng, A. Olvera, J. Casamento, J.S. Lopez, L. Williams et al., Semiconducting high-entropy chalcogenide alloys with ambi-ionic entropy stabilization and ambipolar doping. Chem. Mater. 32, 6070–6077 (2020). https://doi.org/10.1021/acs.chemmater.0c01555
S.K. Nemani, B. Zhang, B.C. Wyatt, Z.D. Hood, S. Manna et al., High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 15, 12815–12825 (2021). https://doi.org/10.1021/acsnano.1c02775
H.-J. Qiu, G. Fang, Y. Wen, P. Liu, G. Xie et al., Nanoporous high-entropy alloys for highly stable and efficient catalysts. J. Mater. Chem. A 7, 6499–6506 (2019). https://doi.org/10.1039/c9ta00505f
G. Fang, J. Gao, J. Lv, H. Jia, H. Li et al., Multi-component nanoporous alloy/(oxy)hydroxide for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries. Appl. Catal. B Environ. 268, 118431 (2020). https://doi.org/10.1016/j.apcatb.2019.118431
Z.-X. Cai, H. Goou, Y. Ito, T. Tokunaga, M. Miyauchi et al., Nanoporous ultra-high-entropy alloys containing fourteen elements for water splitting electrocatalysis. Chem. Sci. 12, 11306–11315 (2021). https://doi.org/10.1039/D1SC01981C
P. Zhou, D. Liu, Y. Chen, M. Chen, Y. Liu et al., Corrosion engineering boosting bulk Fe50Mn30Co10Cr10 high-entropy alloy as high-efficient alkaline oxygen evolution reaction electrocatalyst. J. Mater. Sci. Technol. 109, 267–275 (2022). https://doi.org/10.1016/j.jmst.2021.09.003
Y. Wang, B. Yu, M. He, Z. Zhai, K. Yin et al., Eutectic-derived high-entropy nanoporous nanowires for efficient and stable water-to-hydrogen conversion. Nano Res. 15, 4820–4826 (2022). https://doi.org/10.1007/s12274-021-4059-7
L. Tao, M. Sun, Y. Zhou, M. Luo, F. Lv et al., A general synthetic method for high-entropy alloy subnanometer ribbons. J. Am. Chem. Soc. 144, 10582–10590 (2022). https://doi.org/10.1021/jacs.2c03544
R. Li, X. Liu, W. Liu, Z. Li, K.C. Chan et al., Design of hierarchical porosity via manipulating chemical and microstructural complexities in high-entropy alloys for efficient water electrolysis. Adv. Sci. 9, e2105808 (2022). https://doi.org/10.1002/advs.202105808
H. Li, Y. Han, H. Zhao, W. Qi, D. Zhang et al., Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat. Commun. 11, 5437 (2020). https://doi.org/10.1038/s41467-020-19277-9
H. Li, M. Sun, Y. Pan, J. Xiong, H. Du et al., The self-complementary effect through strong orbital coupling in ultrathin high-entropy alloy nanowires boosting pH-universal multifunctional electrocatalysis. Appl. Catal. B Environ. 312, 121431 (2022). https://doi.org/10.1016/j.apcatb.2022.121431
D. Zhang, Y. Shi, H. Zhao, W. Qi, X. Chen et al., The facile oil-phase synthesis of a multi-site synergistic high-entropy alloy to promote the alkaline hydrogen evolution reaction. J. Mater. Chem. A 9, 889–893 (2021). https://doi.org/10.1039/d0ta10574k
Y. Kang, O. Cretu, J. Kikkawa, K. Kimoto, H. Nara et al., Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites. Nat. Commun. 14, 4182 (2023). https://doi.org/10.1038/s41467-023-39157-2
Z. Chen, J. Wen, C. Wang, X. Kang, Convex cube-shaped Pt34 Fe5 Ni20 Cu31 Mo9 Ru high entropy alloy catalysts toward high-performance multifunctional electrocatalysis. Small 18, e2204255 (2022). https://doi.org/10.1002/smll.202204255
W. Chen, S. Luo, M. Sun, X. Wu, Y. Zhou et al., High-entropy intermetallic PtRhBiSnSb nanoplates for highly efficient alcohol oxidation electrocatalysis. Adv. Mater. 34, e2206276 (2022). https://doi.org/10.1002/adma.202206276
G. Feng, F. Ning, J. Song, H. Shang, K. Zhang et al., Sub-2 nm ultrasmall high-entropy alloy nanops for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 143, 17117–17127 (2021). https://doi.org/10.1021/jacs.1c07643
M. Li, C. Huang, H. Yang, Y. Wang, X. Song et al., Programmable synthesis of high-entropy nanoalloys for efficient ethanol oxidation reaction. ACS Nano 17, 13659–13671 (2023). https://doi.org/10.1021/acsnano.3c02762
X. Wang, Q. Peng, X. Zhang, X. Lv, X. Wang et al., Carbonaceous-assisted confinement synthesis of refractory high-entropy alloy nanocomposites and their application for seawater electrolysis. J. Colloid Interface Sci. 607, 1580–1588 (2022). https://doi.org/10.1016/j.jcis.2021.08.201
L. Banko, E.B. Tetteh, A. Kostka, T.H. Piotrowiak, O.A. Krysiak et al., Microscale combinatorial libraries for the discovery of high-entropy materials. Adv. Mater. 35, e2207635 (2023). https://doi.org/10.1002/adma.202207635
Y. Yao, Z. Huang, P. Xie, S.D. Lacey, R.J. Jacob et al., Carbothermal shock synthesis of high-entropy-alloy nanops. Science 359, 1489–1494 (2018). https://doi.org/10.1126/science.aan5412
Z. Qiu, Y. Li, Y. Gao, Z. Meng, Y. Sun et al., 2D MOF-assisted Pyrolysis-displacement-alloying synthesis of high-entropy alloy nanops library for efficient electrocatalytic hydrogen oxidation. Angew. Chem. Int. Ed. 62, 2306881 (2023). https://doi.org/10.1002/anie.202306881
T.X. Nguyen, J. Patra, J.-K. Chang, J.-M. Ting, High entropy spinel oxide nanops for superior lithiation–delithiation performance. J. Mater. Chem. A 8, 18963–18973 (2020). https://doi.org/10.1039/d0ta04844e
D. Wang, S. Jiang, C. Duan, J. Mao, Y. Dong et al., Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance. J. Alloys Compd. 844, 156158 (2020). https://doi.org/10.1016/j.jallcom.2020.156158
H.-Z. Xiang, H.-X. Xie, Y.-X. Chen, H. Zhang, A. Mao et al., Porous spinel-type (Al0.2CoCrFeMnNi)0.58O4-δ high-entropy oxide as a novel high-performance anode material for lithium-ion batteries. J. Mater. Sci. 56, 8127–8142 (2021). https://doi.org/10.1007/s10853-021-05805-5
C. Duan, K. Tian, X. Li, D. Wang, H. Sun et al., New spinel high-entropy oxides (FeCoNiCrMnXLi)3O4 (X = Cu, Mg, Zn) as the anode material for lithium-ion batteries. Ceram. Int. 47, 32025–32032 (2021). https://doi.org/10.1016/j.ceramint.2021.08.091
Y. Zheng, X. Wu, X. Lan, R. Hu, A spinel (FeNiCrMnMgAl)3O4 high entropy oxide as a cycling stable anode material for Li-ion batteries. Processes 10, 49 (2021). https://doi.org/10.3390/pr10010049
C. Liu, J. Bi, L. Xie, X. Gao, J. Rong, High entropy spinel oxides (CrFeMnNiCox)3O4 (x = 2, 3, 4) nanops as anode material towards electrochemical properties. J. Energy Storage 71, 108211 (2023). https://doi.org/10.1016/j.est.2023.108211
C. Liu, J. Bi, L. Xie, X. Gao, L. Meng, Electrochemical properties of four novel high-entropy spinel oxides used as lithium-ion battery anodes synthesized by the glycine-nitrate scs method. J. Mater. Sci. 58, 8005–8021 (2023). https://doi.org/10.1007/s10853-023-08498-0
C. Liu, J. Bi, L. Xie, X. Gao, L. Meng, Preparation and electrochemical properties of two novel high entropy spinel oxides (MgTiZnNiFe)3O4 and (CoTiZnNiFe)3O4 by solid state reaction. Mater. Today Commun. 35, 106315 (2023). https://doi.org/10.1016/j.mtcomm.2023.106315
Z. Sun, Y. Zhao, C. Sun, Q. Ni, C. Wang et al., High entropy spinel-structure oxide for electrochemical application. Chem. Eng. J. 431, 133448 (2022). https://doi.org/10.1016/j.cej.2021.133448
B. Xiao, G. Wu, T. Wang, Z. Wei, Y. Sui et al., High-entropy oxides as advanced anode materials for long-life lithium-ion Batteries. Nano Energy 95, 106962 (2022). https://doi.org/10.1016/j.nanoen.2022.106962
J. Yan, D. Wang, X. Zhang, J. Li, Q. Du et al., A high-entropy perovskite titanate lithium-ion battery anode. J. Mater. Sci. 55, 6942–6951 (2020). https://doi.org/10.1007/s10853-020-04482-0
P. Zhou, Z. Che, J. Liu, J. Zhou, X. Wu et al., High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries. Energy Storage Mater. 57, 618–627 (2023). https://doi.org/10.1016/j.ensm.2023.03.007
C. Zhao, F. Ding, Y. Lu, L. Chen, Y.-S. Hu, High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Ed. 59, 264–269 (2020). https://doi.org/10.1002/anie.201912171
X. Liu, Y. Xing, K. Xu, H. Zhang, M. Gong et al., Kinetically accelerated lithium storage in high-entropy (LiMgCoNiCuZn)O enabled by oxygen vacancies. Small 18, e2200524 (2022). https://doi.org/10.1002/smll.202200524
L. Li, P. Ji, C. Geng, Y. Li, L. Meng et al., Facile synthesis of high-entropy (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4 nanopowders and their electrochemical properties as supercapacitor electrode. J. Energy Storage 73, 109182 (2023). https://doi.org/10.1016/j.est.2023.109182
D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, D. Raabe, Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90–97 (2015). https://doi.org/10.1016/j.actamat.2015.08.050
V.A. Mints, J.K. Pedersen, A. Bagger, J. Quinson, A.S. Anker et al., Exploring the composition space of high-entropy alloy nanops for the electrocatalytic H2/CO oxidation with Bayesian optimization. ACS Catal. 12, 11263–11271 (2022). https://doi.org/10.1021/acscatal.2c02563
J.-W. Yeh, Recent progress in high-entropy alloys. Ann. Chim. Sci. Mat. 31, 633–648 (2006). https://doi.org/10.3166/acsm.31.633-648
C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen et al., Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263–1271 (2005). https://doi.org/10.1007/s11661-005-0218-9
M.-R. Chen, S.-J. Lin, J.-W. Yeh, M.-H. Chuang, S.-K. Chen et al., Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. Metall. Mater. Trans. A 37, 1363–1369 (2006). https://doi.org/10.1007/s11661-006-0081-3
C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen et al., Microstructure characterization of Alx CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 881–893 (2005). https://doi.org/10.1007/s11661-005-0283-0
T. Yang, S. Xia, S. Liu, C. Wang, S. Liu et al., Effects of AL addition on microstructure and mechanical properties of AlxCoCrFeNi High-entropy alloy. Mater. Sci. Eng. A 648, 15–22 (2015). https://doi.org/10.1016/j.msea.2015.09.034
M.-R. Chen, S.-J. Lin, J.-W. Yeh, S.-K. Chen, Y.-S. Huang et al., Microstructure and properties of Al0.5CoCrCuFeNiTix (x=0–2.0) high-entropy alloys. Mater. Trans. 47, 1395–1401 (2006). https://doi.org/10.2320/matertrans.47.1395
W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu et al., Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics 60, 1–8 (2015). https://doi.org/10.1016/j.intermet.2015.01.004
W. Wu, L. Jiang, H. Jiang, X. Pan, Z. Cao et al., Phase evolution and properties of Al2CrFeNiMox High-entropy alloys coatings by laser cladding. J. Therm. Spray Technol. 24, 1333–1340 (2015). https://doi.org/10.1007/s11666-015-0303-6
Y.-J. Hsu, W.-C. Chiang, J.-K. Wu, Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution. Mater. Chem. Phys. 92, 112–117 (2005). https://doi.org/10.1016/j.matchemphys.2005.01.001
C.P. Lee, Y.Y. Chen, C.Y. Hsu, J.W. Yeh, H.C. Shih, The effect of boron on the corrosion resistance of the high entropy alloys Al0.5CoCrCuFeNiBx. J. Electrochem. Soc. 154, C424 (2007). https://doi.org/10.1149/1.2744133
C.P. Lee, Y.Y. Chen, C.Y. Hsu, J.W. Yeh, H.C. Shih, Enhancing pitting corrosion resistance of AlxCrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric acid. Thin Solid Films 517, 1301–1305 (2008). https://doi.org/10.1016/j.tsf.2008.06.014
Y.L. Chou, J.W. Yeh, H.C. Shih, The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments. Corros. Sci. 52, 2571–2581 (2010). https://doi.org/10.1016/j.corsci.2010.04.004
F.J. Wang, Y. Zhang, Effect of Co addition on crystal structure and mechanical properties of Ti0.5CrFeNiAlCo high entropy alloy. Mater. Sci. Eng. A 496, 214–216 (2008). https://doi.org/10.1016/j.msea.2008.05.020
S.F. Zhao, Y. Shao, X. Liu, N. Chen, H.Y. Ding et al., Pseudo-quinary Ti20Zr20Hf20Be20(Cu20-xNix) high entropy bulk metallic glasses with large glass forming ability. Mater. Des. 87, 625–631 (2015). https://doi.org/10.1016/j.matdes.2015.08.067
Y.-S. Huang, L. Chen, H.-W. Lui, M.-H. Cai, J.-W. Yeh, Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy. Mater. Sci. Eng. A 457, 77–83 (2007). https://doi.org/10.1016/j.msea.2006.12.001
Z. An, H. Jia, Y. Wu, P.D. Rack, A.D. Patchen et al., Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition. Mater. Res. Lett. 3, 203–209 (2015). https://doi.org/10.1080/21663831.2015.1048904
T.-W. Lu, C.-S. Feng, Z. Wang, K.-W. Liao, Z.-Y. Liu et al., Microstructures and mechanical properties of CoCrFeNiAl0.3 high-entropy alloy thin films by pulsed laser deposition. Appl. Surf. Sci. 494, 72–79 (2019). https://doi.org/10.1016/j.apsusc.2019.07.186
C.-Z. Yao, P. Zhang, M. Liu, G.-R. Li, J.-Q. Ye et al., Electrochemical preparation and magnetic study of Bi–Fe–Co–Ni–Mn high entropy alloy. Electrochim. Acta 53, 8359–8365 (2008). https://doi.org/10.1016/j.electacta.2008.06.036
V. Soare, M. Burada, I. Constantin, D. Mitrică, V. Bădiliţă et al., Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films. Appl. Surf. Sci. 358, 533–539 (2015). https://doi.org/10.1016/j.apsusc.2015.07.142
W.-B. Liao, Z.-X. Wu, W. Lu, M. He, T. Wang et al., Microstructures and mechanical properties of CoCrFeNiMn high-entropy alloy coatings by detonation spraying. Intermetallics 132, 107138 (2021). https://doi.org/10.1016/j.intermet.2021.107138
T.A.A. Batchelor, J.K. Pedersen, S.H. Winther, I.E. Castelli, K.W. Jacobsen et al., High-entropy alloys as a discovery platform for electrocatalysis. Joule 3, 834–845 (2019). https://doi.org/10.1016/j.joule.2018.12.015
T.A.A. Batchelor, T. Löffler, B. Xiao, O.A. Krysiak, V. Strotkötter et al., Complex-solid-solution electrocatalyst discovery by computational prediction and high-throughput experimentation. Angew. Chem. Int. Ed. 60, 6932–6937 (2021). https://doi.org/10.1002/anie.202014374
T. Yu, Y. Zhang, Y. Hu, K. Hu, X. Lin et al., Twelve-component free-standing nanoporous high-entropy alloys for multifunctional electrocatalysis. ACS Mater. Lett. 4, 181–189 (2022). https://doi.org/10.1021/acsmaterialslett.1c00762
Q. Sang, S. Hao, J. Han, Y. Ding, Dealloyed nanoporous materials for electrochemical energy conversion and storage. EnergyChem 4, 100069 (2022). https://doi.org/10.1016/j.enchem.2022.100069
H. Xu, R. Hu, Y. Zhang, H. Yan, Q. Zhu et al., Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries. Energy Storage Mater. 43, 212–220 (2021). https://doi.org/10.1016/j.ensm.2021.09.003
Y. Chida, T. Tomimori, T. Ebata, N. Taguchi, T. Ioroi et al., Experimental study platform for electrocatalysis of atomic-level controlled high-entropy alloy surfaces. Nat. Commun. 14, 4492 (2023). https://doi.org/10.1038/s41467-023-40246-5
M. Fu, X. Ma, K. Zhao, X. Li, D. Su, High-entropy materials for energy-related applications. iScience 24, 102177 (2021). https://doi.org/10.1016/j.isci.2021.102177
Y. Xu, X. Xu, L. Bi, A high-entropy spinel ceramic oxide as the cathode for proton-conducting solid oxide fuel cells. J. Adv. Ceramics 11, 794–804 (2022). https://doi.org/10.1007/s40145-022-0573-7
A. Sarkar, C. Loho, L. Velasco, T. Thomas, S.S. Bhattacharya et al., Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency. Dalton Trans. 46, 12167–12176 (2017). https://doi.org/10.1039/c7dt02077e
A. Esmaeilzaei, J. Vahdati Khaki, S.A. Sajjadi, S. Mollazadeh, Synthesis and crystallization of (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide: The role of fuel and fuel-to-oxidizer ratio. J. Solid State Chem. 321, 123912 (2023). https://doi.org/10.1016/j.jssc.2023.123912
X. Yang, H. Wang, Y. Song, K. Liu, T. Huang et al., Low-temperature synthesis of a porous high-entropy transition-metal oxide as an anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 14, 26873–26881 (2022). https://doi.org/10.1021/acsami.2c07576
B. Cheng, H. Lou, A. Sarkar, Z. Zeng, F. Zhang et al., Lattice distortion and stability of (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide under high pressure. Mater. Today Adv. 8, 100102 (2020). https://doi.org/10.1016/j.mtadv.2020.100102
M. Biesuz, J. Chen, M. Bortolotti, G. Speranza, V. Esposito et al., Ni-free high-entropy rock salt oxides with Li superionic conductivity. J. Mater. Chem. A 10, 23603–23616 (2022). https://doi.org/10.1039/d2ta06101e
L. Su, J. Ren, T. Lu, K. Chen, J. Ouyang et al., Deciphering structural origins of highly reversible lithium storage in high entropy oxides with in situ transmission electron microscopy. Adv. Mater. 35, e2205751 (2023). https://doi.org/10.1002/adma.202205751
H. He, P. Kou, Z. Zhang, D. Wang, R. Zheng et al., Coupling high entropy oxide with hollow carbon spheres by rapid microwave solvothermal strategy for boosting oxygen evolution reaction. J. Colloid Interface Sci. 653, 179–188 (2024). https://doi.org/10.1016/j.jcis.2023.09.063
H. Wu, Q. Lu, Y. Li, J. Wang, Y. Li et al., Rapid joule-heating synthesis for manufacturing high-entropy oxides as efficient electrocatalysts. Nano Lett. 22, 6492–6500 (2022). https://doi.org/10.1021/acs.nanolett.2c01147
K. Wang, W. Hua, X. Huang, D. Stenzel, J. Wang et al., Synergy of cations in high entropy oxide lithium ion battery anode. Nat. Commun. 14, 1487 (2023). https://doi.org/10.1038/s41467-023-37034-6
R.-Z. Zhang, F. Gucci, H. Zhu, K. Chen, M.J. Reece, Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorg. Chem. 57, 13027–13033 (2018). https://doi.org/10.1021/acs.inorgchem.8b02379
B. Jiang, Y. Yu, J. Cui, X. Liu, L. Xie et al., High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021). https://doi.org/10.1126/science.abe1292
L. Hu, Y. Zhang, H. Wu, J. Li, Y. Li et al., Entropy engineering of SnTe: multi-principal-element alloying leading to ultralow lattice thermal conductivity and state-of-the-art thermoelectric performance. Adv. Energy Mater. 8, 1802116 (2018). https://doi.org/10.1002/aenm.201802116
Y.-J. Liao, W.-W. Shen, C.-B. Chang, H.-Y. Tuan, High-entropy transition metal disulfide colloid clusters: synergistic atomic scale interaction and interconnected network for ultra-stable potassium ion storage. Chem. Eng. J. 469, 143942 (2023). https://doi.org/10.1016/j.cej.2023.143942
Y. Li, J. Li, M. Wang, Y. Liu, H. Cui, High rate performance and stabilized cycle life of Co2+-doped nickel sulfide nanosheets synthesized by a scalable method of solid-state reaction. Chem. Eng. J. 366, 33–40 (2019). https://doi.org/10.1016/j.cej.2019.02.066
B.C. Steimle, J.L. Fenton, R.E. Schaak, Rational construction of a scalable heterostructured nanorod megalibrary. Science 367, 418–424 (2020). https://doi.org/10.1126/science.aaz1172
L. Zhou, M.K. Tufail, L. Yang, N. Ahmad, R. Chen et al., Cathode-doped sulfide electrolyte strategy for boosting all-solid-state lithium batteries. Chem. Eng. J. 391, 123529 (2020). https://doi.org/10.1016/j.cej.2019.123529
Z. Jiang, H. Peng, Y. Liu, Z. Li, Y. Zhong et al., A versatile Li6.5In0.25P0.75S5I sulfide electrolyte triggered by ultimate-energy mechanical alloying for all-solid-state lithium metal batteries. Adv. Energy Mater. 11, 2101521 (2021). https://doi.org/10.1002/aenm.202101521
F. Li, Y. Ma, H. Wu, Q. Zhai, J. Zhao et al., Sub-3-nm high-entropy metal sulfide nanops with synergistic effects as promising electrocatalysts for enhanced oxygen evolution reaction. J. Phys. Chem. C 126, 18323–18332 (2022). https://doi.org/10.1021/acs.jpcc.2c05666
L. Lin, Z. Ding, G. Karkera, T. Diemant, M.V. Kante et al., High-entropy sulfides as highly effective catalysts for the oxygen evolution reaction. Small Struct. 4, 2370023 (2023). https://doi.org/10.1002/sstr.202370023
T.X. Nguyen, Y.-H. Su, C.-C. Lin, J.-M. Ting, Self-reconstruction of sulfate-containing high entropy sulfide for exceptionally high-performance oxygen evolution reaction electrocatalyst. Adv. Funct. Mater. 31, 2106229 (2021). https://doi.org/10.1002/adfm.202106229
Y. Xu, L. Wang, Z. Shi, N. Su, C. Li et al., Peroxide-mediated selective conversion of biomass polysaccharides over high entropy sulfides via solar energy catalysis. Energy Environ. Sci. 16, 1531–1539 (2023). https://doi.org/10.1039/d2ee03357g
M. Cui, C. Yang, B. Li, Q. Dong, M. Wu et al., High-entropy metal sulfide nanops promise high-performance oxygen evolution reaction. Adv. Energy Mater. 11, 2002887 (2021). https://doi.org/10.1002/aenm.202002887
P. Wang, G. Wang, K. Chen, W. Pan, L. Yi et al., High-power hybrid alkali-acid fuel cell for synchronous glycerol valorization implemented by high-entropy sulfide electrocatalyst. Nano Energy 118, 108992 (2023). https://doi.org/10.1016/j.nanoen.2023.108992
H. Yao, Y. Wang, Y. Zheng, X. Yu, J. Ge et al., High-entropy selenides: a new platform for highly selective oxidation of glycerol to formate and energy-saving hydrogen evolution in alkali-acid hybrid electrolytic cell. Nano Res. 16, 10832–10839 (2023). https://doi.org/10.1007/s12274-023-5842-4
Z. Jiang, Y. Yuan, L. Tan, M. Li, K. Peng, Self-reconstruction of (CoNiFeCuCr)Se high-entropy selenide for efficient oxygen evolution reaction. Appl. Surf. Sci. 627, 157282 (2023). https://doi.org/10.1016/j.apsusc.2023.157282
W. Cheng, J. Liu, J. Hu, W. Peng, G. Niu et al., Pressure-stabilized high-entropy (FeCoNiCuRu)S2 sulfide anode toward simultaneously fast and durable lithium/sodium ion storage. Small 19, e2301915 (2023). https://doi.org/10.1002/smll.202301915
C.R. McCormick, R.E. Schaak, Simultaneous multication exchange pathway to high-entropy metal sulfide nanops. J. Am. Chem. Soc. 143, 1017–1023 (2021). https://doi.org/10.1021/jacs.0c11384
J. Zhao, Y. Zhang, X. Chen, G. Sun, X. Yang et al., Entropy-change driven highly reversible sodium storage for conversion-type sulfide. Adv. Funct. Mater. 32, 2206531 (2022). https://doi.org/10.1002/adfm.202206531
J. Cavin, A. Ahmadiparidari, L. Majidi, A.S. Thind, S.N. Misal et al., 2D high-entropy transition metal dichalcogenides for carbon dioxide electrocatalysis. Adv. Mater. 33, e2100347 (2021). https://doi.org/10.1002/adma.202100347
P.-W. Chien, C.-B. Chang, H.-Y. Tuan, High-entropy two-dimensional metal phosphorus trichalcogenides boost high-performance potassium ion storage devices via electrochemical reconstruction. Energy Storage Mater. 61, 102853 (2023). https://doi.org/10.1016/j.ensm.2023.102853
C.-B. Chang, Y.-R. Lu, H.-Y. Tuan, High-entropy NaCl-type metal chalcogenides as K-ion storage materials: role of the cocktail effect. Energy Storage Mater. 59, 102770 (2023). https://doi.org/10.1016/j.ensm.2023.102770
Y. Lei, L. Zhang, W. Xu, C. Xiong, W. Chen et al., Carbon-supported high-entropy Co–Zn–Cd–Cu–Mn sulfide nanoarrays promise high-performance overall water splitting. Nano Res. 15, 6054–6061 (2022). https://doi.org/10.1007/s12274-022-4304-8
Y. Lee, J. Jeong, H.J. Lee, M. Kim, D. Han et al., Lithium argyrodite sulfide electrolytes with high ionic conductivity and air stability for all-solid-state Li-ion batteries. ACS Energy Lett. 7, 171–179 (2022). https://doi.org/10.1021/acsenergylett.1c02428
Z. Zhao, H. Zheng, S. Liu, J. Shen, W. Song et al., Low temperature synthesis of chromium carbide (Cr3C2) nanopowders by a novel precursor method. Int. J. Refract. Met. Hard Mater. 48, 46–50 (2015). https://doi.org/10.1016/j.ijrmhm.2014.07.026
D. Fray, C. Schwandt, Aspects of the application of electrochemistry to the extraction of titanium and its applications. Mater. Trans. 58, 306–312 (2017). https://doi.org/10.2320/matertrans.mk201619
G.Z. Chen, Interactions of molten salts with cathode products in the FFC Cambridge Process. Int. J. Miner. Metall. Mater. 27, 1572–1587 (2020). https://doi.org/10.1007/s12613-020-2202-1
Y. Li, J. Lu, M. Li, K. Chang, X. Zha et al., Multielemental single–atom-thick A layers in nanolaminated V2(Sn, A) C (A = Fe Co, Ni, Mn) for tailoring magnetic properties. Proc. Natl. Acad. Sci. U.S.A. 117, 820–825 (2020). https://doi.org/10.1073/pnas.1916256117
J. Sure, D. Sri Maha Vishnu, H.-K. Kim, C. Schwandt, Facile electrochemical synthesis of nanoscale (TiNbTaZrHf)C high-entropy carbide powder. Angew. Chem. Int. Ed. 59, 11830–11835 (2020). https://doi.org/10.1002/anie.202003530
Y. Yang, B. Chen, J. Chen, L. Hu, M. Hu, Preparation of (VNbTaZrHf)C high-entropy carbide nanops via electro-deoxidation in molten salt and their supercapacitive behaviour. Can. Metall. Q. 61, 389–397 (2022). https://doi.org/10.1080/00084433.2022.2058151
S. Niu, Z. Yang, F. Qi, Y. Han, Z. Shi et al., Electrical discharge induced bulk-to-nanop transformation: nano high-entropy carbide as catalysts for hydrogen evolution reaction. Adv. Funct. Mater. 32, 2203787 (2022). https://doi.org/10.1002/adfm.202203787
W. Ma, M. Wang, Q. Yi, D. Huang, J. Dang et al., A new Ti2V0.9Cr0.1C2Tx MXene with ultrahigh gravimetric capacitance. Nano Energy 96, 107129 (2022). https://doi.org/10.1016/j.nanoen.2022.107129
J. Sun, B. Liu, Q. Zhao, C.H. Kirk, J. Wang, MAX, MXene, or MX: what are they and which one is better? Adv. Mater. 35, 2306072 (2023). https://doi.org/10.1002/adma.202306072
T.J. Harrington, J. Gild, P. Sarker, C. Toher, C.M. Rost et al., Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Mater. 166, 271–280 (2019). https://doi.org/10.1016/j.actamat.2018.12.054
J. Zhou, Q. Tao, B. Ahmed, J. Palisaitis, I. Persson et al., High-entropy laminate metal carbide (MAX phase) and its two-dimensional derivative MXene. Chem. Mater. 34, 2098–2106 (2022). https://doi.org/10.1021/acs.chemmater.1c03348
A.S. Etman, J. Zhou, J. Rosen, Ti1.1V0.7CrxNb1.0Ta0.6C3Tz high-entropy MXene freestanding films for charge storage applications. Electrochem. Commun. 137, 107264 (2022). https://doi.org/10.1016/j.elecom.2022.107264
S. Wu, X. Li, Y. Zhang, Q. Guan, J. Wang et al., Interface engineering of MXene-based heterostructures for lithium-sulfur batteries. Nano Res. 16, 9158–9178 (2023). https://doi.org/10.1007/s12274-023-5532-2
Z. Du, C. Wu, Y. Chen, Q. Zhu, Y. Cui et al., High-entropy carbonitride MAX phases and their derivative MXenes. Adv. Energy Mater. 12, 2103228 (2022). https://doi.org/10.1002/aenm.202103228
V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020). https://doi.org/10.1126/science.aba8311
H.K. Chae, D.Y. Siberio-Pérez, J. Kim, Y. Go, M. Eddaoudi et al., A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004). https://doi.org/10.1038/nature02311
U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt et al., Metal–organic frameworks—prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006). https://doi.org/10.1039/b511962f
M. Gharibeh, G.A. Tompsett, K.S. Yngvesson, W.C. Conner, Microwave synthesis of zeolites: effect of power delivery. J. Phys. Chem. B 113, 8930–8940 (2009). https://doi.org/10.1021/jp900400d
A. Pichon, A. Lazuen-Garay, S.L. James, Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 8, 211–214 (2006). https://doi.org/10.1039/B513750K
A. Carné-Sánchez, I. Imaz, M. Cano-Sarabia, D. Maspoch, A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures. Nat. Chem. 5, 203–211 (2013). https://doi.org/10.1038/nchem.1569
X. Zhao, Z. Xue, W. Chen, X. Bai, R. Shi et al., Ambient fast, large-scale synthesis of entropy-stabilized metal–organic framework nanosheets for electrocatalytic oxygen evolution. J. Mater. Chem. A 7, 26238–26242 (2019). https://doi.org/10.1039/c9ta09975a
Z. Liu, J. Xu, F. Zhang, L. Ji, Z. Shi, Defect-rich high-entropy oxide nanospheres anchored on high-entropy MOF nanosheets for oxygen evolution reaction. Int. J. Hydrog. Energy 48, 14622–14632 (2023). https://doi.org/10.1016/j.ijhydene.2022.12.333
Y. Sun, W. Wu, L. Yu, S. Xu, Y. Zhang et al., Asymmetric acidic/alkaline N2 electrofixation accelerated by high-entropy metal–organic frameworkderivatives. Carbon Energy 5, e263 (2023). https://doi.org/10.1002/cey2.263
S. Xu, M. Li, H. Wang, Y. Sun, W. Liu et al., High-entropy metal–organic framework arrays boost oxygen evolution electrocatalysis. J. Phys. Chem. C 126, 14094–14102 (2022). https://doi.org/10.1021/acs.jpcc.2c05083
P. Hu, X. Liang, M. Yaseen, X. Sun, Z. Tong et al., Preparation of highly-hydrophobic novel N-coordinated UiO-66(Zr) with dopamine via fast mechano-chemical method for (CHO-/Cl-)-VOCs competitive adsorption in humid environment. Chem. Eng. J. 332, 608–618 (2018). https://doi.org/10.1016/j.cej.2017.09.115
J.M. Gonçalves, J.G. Ruiz-Montoya, Emerging high-entropy coordination compounds and their derivatives for energy application. J. Mater. Chem. A 11, 20872–20885 (2023). https://doi.org/10.1039/d3ta03500j
J. Hu, L. Cao, Z. Wang, J. Liu, J. Zhang et al., Hollow high-entropy metal organic framework derived nanocomposite as efficient electrocatalyst for oxygen reduction reaction. Compos. Commun. 27, 100866 (2021). https://doi.org/10.1016/j.coco.2021.100866
W. Dong, Q. Pan, Z. Liu, H. Sun, Z. Shi et al., Electrodeposition of defect-rich high entropy ZIF and its application in water oxidation. Int. J. Hydrog. Energy 48, 35493–35501 (2023). https://doi.org/10.1016/j.ijhydene.2023.05.333
R. Li, X. Ren, H. Ma, X. Feng, Z. Lin et al., Nickel-substituted zeolitic imidazolate frameworks for time-resolved alcohol sensing and photocatalysis under visible light. J. Mater. Chem. A 2, 5724–5729 (2014). https://doi.org/10.1039/c3ta15058e
C. Zhao, W. Cai, N. Sun, S. Chen, W. Jing et al., Facile preparation of porous high-entropy alloy FeCoNiCuMn and its OER performance. J. Phys. Chem. Solids 184, 111668 (2024). https://doi.org/10.1016/j.jpcs.2023.111668
H. Raza, J. Cheng, C. Lin, S. Majumder, G. Zheng et al., High-entropy stabilized oxides derived via a low-temperature template route for high-performance lithium-sulfur batteries. EcoMat 5, e12324 (2023). https://doi.org/10.1002/eom2.12324
Y. Zhou, L. Gao, H. Chen, H. Wang, J. Zhang et al., Fabrication of amorphous FeCoNiCuMnPx high-entropy phosphide/carbon composites with a heterostructured fusiform morphology for efficient oxygen evolution reaction. J. Mater. Sci. Technol. 168, 62–70 (2024). https://doi.org/10.1016/j.jmst.2023.05.054
Y. Ma, Y. Ma, S.L. Dreyer, Q. Wang, K. Wang et al., High-entropy metal-organic frameworks for highly reversible sodium storage. Adv. Mater. 33, e2101342 (2021). https://doi.org/10.1002/adma.202101342
Y. Wei, Y. Zhao, Y. Chen, M. Zhang, Z. Zhang et al., Lithium storage characteristic of nanoporous high-entropy alloy@high-entropy oxide with spin-dependent synergism of cations. Chem. Eng. J. 476, 146881 (2023). https://doi.org/10.1016/j.cej.2023.146881
Y. Yuan, Z. Xu, P. Han, Z. Dan, F. Qin et al., MnO2-decorated metallic framework supercapacitors fabricated from duplex-phase FeCrCoMnNiAl0.75 Cantor high entropy alloy precursors through selective phase dissolution. J. Alloys Compd. 870, 159523 (2021). https://doi.org/10.1016/j.jallcom.2021.159523
H. Guo, J. Shen, T. Wang, C. Cheng, H. Yao et al., Design and fabrication of high-entropy oxide anchored on graphene for boosting kinetic performance and energy storage. Ceram. Int. 48, 3344–3350 (2022). https://doi.org/10.1016/j.ceramint.2021.10.109
S. Wang, W. Huo, F. Fang, Z. Xie, J.K. Shang et al., High entropy alloy/C nanops derived from polymetallic MOF as promising electrocatalysts for alkaline oxygen evolution reaction. Chem. Eng. J. 429, 132410 (2022). https://doi.org/10.1016/j.cej.2021.132410
V. Jishnu, S.S. Mishra, M.B. Kusuma Urs, S.P. Thomas, C.S. Tiwary et al., Highly sensitive and selective triethylamine sensing through high-entropy alloy (Ti–Zr–Cr–V–Ni) nanop-induced Fermi energy control of MoS2 nanosheets. ACS Appl. Mater. Interfaces 14, 13653–13664 (2022). https://doi.org/10.1021/acsami.2c00531
H. Fan, Y. Si, Y. Zhang, F. Zhu, X. Wang et al., Grapevine-like high entropy oxide composites boost high-performance lithium sulfur batteries as bifunctional interlayers. Green Energy Environ. 9, 565–572 (2024). https://doi.org/10.1016/j.gee.2022.11.001
J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu et al., High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 6, 37946 (2016). https://doi.org/10.1038/srep37946
J. Gild, J. Braun, K. Kaufmann, E. Marin, T. Harrington et al., A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. J. Materiomics 5, 337–343 (2019). https://doi.org/10.1016/j.jmat.2019.03.002
H. Fu, Y. Jiang, M. Zhang, Z. Zhong, Z. Liang et al., High-entropy rare earth materials: synthesis, application and outlook. Chem. Soc. Rev. 53, 2211–2247 (2024). https://doi.org/10.1039/d2cs01030e
L. Wang, Z. Gao, K. Su, N.T. Nguyen, R.-T. Gao et al., Stacked high-entropy hydroxides promote charge transfer kinetics for photoelectrochemical water splitting. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202403948
T. Zhang, Y.-L. Meng, Y.-H. Zhao, J.-C. Ni, Y. Pan et al., Boosting the oxygen evolution electrocatalysis of high-entropy hydroxides by high-valence nickel species regulation. Chem. Commun. 58, 7682–7685 (2022). https://doi.org/10.1039/d2cc02367a
T.G. Ritter, A.H. Phakatkar, M.G. Rasul, M.T. Saray, L.V. Sorokina et al., Electrochemical synthesis of high entropy hydroxides and oxides boosted by hydrogen evolution reaction. Cell Rep. Phys. Sci. 3, 100847 (2022). https://doi.org/10.1016/j.xcrp.2022.100847
J. Pan, Y. Bao, H. Wang, F. Lyu, L. Liu et al., Amorphous high-entropy hydroxides of tunable wide solar absorption for solar water evaporation. Part. Part. Syst. Charact. 38, 2100094 (2021). https://doi.org/10.1002/ppsc.202100094
Z. Zhang, H. Li, Promoting the uptake of chloride ions by ZnCo–Cl layered double hydroxide electrodes for enhanced capacitive deionization. Environ. Sci. Nano 8, 1886–1895 (2021). https://doi.org/10.1039/D1EN00350J
K. Gu, X. Zhu, D. Wang, N. Zhang, G. Huang et al., Ultrathin defective high-entropy layered double hydroxides for electrochemical water oxidation. J. Energy Chem. 60, 121–126 (2021). https://doi.org/10.1016/j.jechem.2020.12.029
X. Wu, Z.-J. Zhao, X. Shi, L. Kang, P. Das et al., Multi-site catalysis of high-entropy hydroxides for sustainable electrooxidation of glucose to glucaric acid. Energy Environ. Sci. 17, 3042–3051 (2024). https://doi.org/10.1039/d4ee00221k
B.M. Hunter, W. Hieringer, J.R. Winkler, H.B. Gray, A.M. Müller, Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy Environ. Sci. 9, 1734–1743 (2016). https://doi.org/10.1039/c6ee00377j
R.S. Jayashree, P.V. Kamathm, Factors governing the electrochemical synthesis of α-nickel (ii) hydroxide. J. Appl. Electrochem. 29, 449–454 (1999). https://doi.org/10.1023/A:1003493711239
Z. Zhu, Y. Zhang, D. Kong, N. He, Q. Chen, A novel high entropy hydroxide electrode material for promoting energy density of supercapacitors and its efficient synthesis strategy. Small 20, e2307754 (2024). https://doi.org/10.1002/smll.202307754
Z. Jia, T. Yang, L. Sun, Y. Zhao, W. Li et al., A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Adv. Mater. 32, e2000385 (2020). https://doi.org/10.1002/adma.202000385
A. Ostovari Moghaddam, A. Abdollahzadeh, M. Samodurova, N. Shaburova, D. Mikhailov et al., Novel high entropy intermetallic compounds: Synthesis and detonation spraying. Intermetallics 146, 107591 (2022). https://doi.org/10.1016/j.intermet.2022.107591
Z. Lu, Y. Tan, Y. Huang, X. Tao, H. Chen et al., Synthesis and characterization of a novel Full-Heusler high entropy intermetallic compound-(FeCoNi)2TiSb. Intermetallics 171, 108343 (2024). https://doi.org/10.1016/j.intermet.2024.108343
S.S. Soliman, G.R. Dey, C.R. McCormick, R.E. Schaak, Temporal evolution of morphology, composition, and structure in the formation of colloidal high-entropy intermetallic nanops. ACS Nano 17, 16147–16159 (2023). https://doi.org/10.1021/acsnano.3c05241
Y. Nakaya, E. Hayashida, H. Asakura, S. Takakusagi, S. Yasumura et al., High-entropy intermetallics serve ultrastable single-atom Pt for propane dehydrogenation. J. Am. Chem. Soc. 144, 15944–15953 (2022). https://doi.org/10.1021/jacs.2c01200
Y. Wang, N. Gong, H. Liu, W. Ma, K. Hippalgaonkar et al., Ordering-dependent hydrogen evolution and oxygen reduction electrocatalysis of high-entropy intermetallic Pt4FeCoCuNi. Adv. Mater. 35, e2302067 (2023). https://doi.org/10.1002/adma.202302067
Y. Wang, X.-Y. Zhang, H. He, J.-J. Chen, B. Liu, Ordered mesoporous high-entropy intermetallics for efficient oxygen reduction electrocatalysis. Adv. Energy Mater. 14, 2303923 (2024). https://doi.org/10.1002/aenm.202303923