Tailoring Light–Matter Interactions in Overcoupled Resonator for Biomolecule Recognition and Detection
Corresponding Author: Chengkuo Lee
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 10
Abstract
Plasmonic nanoantennas provide unique opportunities for precise control of light–matter coupling in surface-enhanced infrared absorption (SEIRA) spectroscopy, but most of the resonant systems realized so far suffer from the obstacles of low sensitivity, narrow bandwidth, and asymmetric Fano resonance perturbations. Here, we demonstrated an overcoupled resonator with a high plasmon-molecule coupling coefficient (μ) (OC-Hμ resonator) by precisely controlling the radiation loss channel, the resonator-oscillator coupling channel, and the frequency detuning channel. We observed a strong dependence of the sensing performance on the coupling state, and demonstrated that OC-Hμ resonator has excellent sensing properties of ultra-sensitive (7.25% nm−1), ultra-broadband (3–10 μm), and immune asymmetric Fano lineshapes. These characteristics represent a breakthrough in SEIRA technology and lay the foundation for specific recognition of biomolecules, trace detection, and protein secondary structure analysis using a single array (array size is 100 × 100 µm2). In addition, with the assistance of machine learning, mixture classification, concentration prediction and spectral reconstruction were achieved with the highest accuracy of 100%. Finally, we demonstrated the potential of OC-Hμ resonator for SARS-CoV-2 detection. These findings will promote the wider application of SEIRA technology, while providing new ideas for other enhanced spectroscopy technologies, quantum photonics and studying light–matter interactions.
Highlights:
1 Proposed a new paradigm for nanoantenna design using coupled-mode theory.
2 Designed an OC-Hµ resonator with excellent sensing performance.
3 Using OC-Hµ resonators for biomolecule recognition and detection.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Weber, L. Kühner, L. Sortino, A. BenMhenni, N.P. Wilson et al., Intrinsic strong light–matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces. Nat. Mater. 22, 970–976 (2023). https://doi.org/10.1038/s41563-023-01580-7
- A.H. Dorrah, F. Capasso, Tunable structured light with flat optics. Science 376, eabi6860 (2022). https://doi.org/10.1126/science.abi6860
- F. Neubrech, C. Huck, K. Weber, A. Pucci, H. Giessen, Surface-enhanced infrared spectroscopy using resonant nanoantennas. Chem. Rev. 117, 5110–5145 (2017). https://doi.org/10.1021/acs.chemrev.6b00743
- C. Xu, Z. Ren, H. Zhou, J. Zhou, C.P. Ho et al., Expanding chiral metamaterials for retrieving fingerprints via vibrational circular dichroism. Light Sci. Appl. 12, 154 (2023). https://doi.org/10.1038/s41377-023-01186-3
- C. Xu, Z. Ren, H. Zhou, J. Zhou, D. Li et al., Near-field coupling induced less chiral responses in chiral metamaterials for surface-enhanced vibrational circular dichroism. Adv. Funct. Mater. 34, 2314482 (2024). https://doi.org/10.1002/adfm.202314482
- G. Li, S. Zhang, T. Zentgraf, Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017). https://doi.org/10.1038/natrevmats.2017.10
- U. Aslam, V.G. Rao, S. Chavez, S. Linic, Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 1, 656–665 (2018). https://doi.org/10.1038/s41929-018-0138-x
- T. Santiago-Cruz, S.D. Gennaro, O. Mitrofanov, S. Addamane, J. Reno et al., Resonant metasurfaces for generating complex quantum states. Science 377, 991–995 (2022). https://doi.org/10.1126/science.abq8684
- W. Wang, M. Ramezani, A.I. Väkeväinen, P. Törmä, J.G. Rivas et al., The rich photonic world of plasmonic nanop arrays. Mater. Today 21, 303–314 (2018). https://doi.org/10.1016/j.mattod.2017.09.002
- J. Kozuch, K. Ataka, J. Heberle, Surface-enhanced infrared absorption spectroscopy. Nat. Rev. Meth. Primers 3, 70 (2023). https://doi.org/10.1038/s43586-023-00253-8
- D. Li, C. Xu, J. Xie, C. Lee, Research progress in surface-enhanced infrared absorption spectroscopy: from performance optimization, sensing applications, to system integration. Nanomaterials 13, 2377 (2023). https://doi.org/10.3390/nano13162377
- D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, H. Giessen, Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures. Nat. Commun. 4, 2237 (2013). https://doi.org/10.1038/ncomms3237
- A. John-Herpin, A. Tittl, L. Kühner, F. Richter, S.H. Huang et al., Metasurface-enhanced infrared spectroscopy: an abundance of materials and functionalities. Adv. Mater. 35, e2110163 (2023). https://doi.org/10.1002/adma.202110163
- H. Altug, S.H. Oh, S.A. Maier, J. Homola, Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 17(1), 5–16 (2022). https://doi.org/10.1038/s41565-021-01045-5
- X. Hui, C. Yang, D. Li, X. He, H. Huang et al., Infrared plasmonic biosensor with tetrahedral DNA nanostructure as carriers for label-free and ultrasensitive detection of miR-155. Adv. Sci. 8, e2100583 (2021). https://doi.org/10.1002/advs.202100583
- A. John-Herpin, D. Kavungal, L. von Mücke, H. Altug, Infrared metasurface augmented by deep learning for monitoring dynamics between all major classes of biomolecules. Adv. Mater. 33, e2006054 (2021). https://doi.org/10.1002/adma.202006054
- D. Rodrigo, A. Tittl, N. Ait-Bouziad, A. John-Herpin, O. Limaj et al., Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces. Nat. Commun. 9, 2160 (2018). https://doi.org/10.1038/s41467-018-04594-x
- R. Adato, H. Altug, In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat. Commun. 4, 2154 (2013). https://doi.org/10.1038/ncomms3154
- L. Paggi, A. Fabas, H. El Ouazzani, J.P. Hugonin, N. Fayard et al., Over-coupled resonator for broadband surface enhanced infrared absorption (SEIRA). Nat. Commun. 14, 4814 (2023). https://doi.org/10.1038/s41467-023-40511-7
- A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi et al., Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018). https://doi.org/10.1126/science.aas9768
- F. Yesilkoy, E.R. Arvelo, Y. Jahani, M. Liu, A. Tittl et al., Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics 13, 390–396 (2019). https://doi.org/10.1038/s41566-019-0394-6
- A. Aigner, A. Tittl, J. Wang, T. Weber, Y. Kivshar et al., Plasmonic bound states in the continuum to tailor light–matter coupling. Sci. Adv. 8, eadd4816 (2022). https://doi.org/10.1126/sciadv.add4816
- S. Rosas, K.A. Schoeller, E. Chang, H. Mei, M.A. Kats et al., Metasurface-enhanced mid-infrared spectrochemical imaging of tissues. Adv. Mater. 35, 2301208 (2023). https://doi.org/10.1002/adma.202301208
- H. Zhou, D. Li, Z. Ren, C. Xu, L.-F. Wang et al., Surface plasmons-phonons for mid-infrared hyperspectral imaging. Sci. Adv. 10, eado3179 (2024). https://doi.org/10.1126/sciadv.ado3179
- D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F.J. García de Abajo et al., Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015). https://doi.org/10.1126/science.aab2051
- C. Wu, A.B. Khanikaev, R. Adato, N. Arju, A. Ali Yanik et al., Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification ofmolecular monolayers. Nat. Mater. 11, 69–75 (2012). https://doi.org/10.1038/nmat3161
- H. Zhou, X. Hui, D. Li, D. Hu, X. Chen et al., Metal-organic framework-surface-enhanced infrared absorption platform enables simultaneous on-chip sensing of greenhouse gases. Adv. Sci. 7, 2001173 (2020). https://doi.org/10.1002/advs.202001173
- X. Miao, T.S. Luk, P.Q. Liu, Liquid-metal-based nanophotonic structures for high-performance SEIRA sensing. Adv. Mater. 34, e2107950 (2022). https://doi.org/10.1002/adma.202107950
- I. Hwang, M. Kim, J. Yu, J. Lee, J.H. Choi et al., Ultrasensitive molecule detection based on infrared metamaterial absorber with vertical nanogap. Small Methods 5, e2100277 (2021). https://doi.org/10.1002/smtd.202100277
- J. Yi, E.-M. You, S.-Y. Ding, Z.-Q. Tian, Unveiling the molecule-plasmon interactions in surface-enhanced infrared absorption spectroscopy. Natl. Sci. Rev. 7, 1228–1238 (2020). https://doi.org/10.1093/nsr/nwaa054
- Z. Ren, Z. Zhang, J. Wei, B. Dong, C. Lee, Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy. Nat. Commun. 13, 3859 (2022). https://doi.org/10.1038/s41467-022-31520-z
- L. Dong, X. Yang, C. Zhang, B. Cerjan, L. Zhou et al., Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy. Nano Lett. 17, 5768–5774 (2017). https://doi.org/10.1021/acs.nanolett.7b02736
- D. Yoo, F. de León-Pérez, M. Pelton, I.-H. Lee, D.A. Mohr et al., Ultrastrong plasmon–phonon coupling via epsilon-near-zero nanocavities. Nat. Photonics 15, 125–130 (2021). https://doi.org/10.1038/s41566-020-00731-5
- D. Li, A. Yadav, H. Zhou, K. Roy, P. Thanasekaran et al., Advances and applications of metal-organic frameworks (MOFs) in emerging technologies: a comprehensive review. Glob. Chall. 8, 2300244 (2023). https://doi.org/10.1002/gch2.202300244
- D. Li, H. Zhou, X. Hui, X. He, H. Huang et al., Multifunctional chemical sensing platform based on dual-resonant infrared plasmonic perfect absorber for on-chip detection of poly(ethyl cyanoacrylate). Adv. Sci. 8, e2101879 (2021). https://doi.org/10.1002/advs.202101879
- K. Chen, R. Adato, H. Altug, Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. ACS Nano 6, 7998–8006 (2012). https://doi.org/10.1021/nn3026468
- R.A. Maniyara, D. Rodrigo, R. Yu, J. Canet-Ferrer, D.S. Ghosh et al., Tunable plasmons in ultrathin metal films. Nat. Photonics 13, 328–333 (2019). https://doi.org/10.1038/s41566-019-0366-x
- P. Jangid, F.U. Richter, M.L. Tseng, I. Sinev, S. Kruk et al., Spectral tuning of high-harmonic generation with resonance-gradient metasurfaces. Adv. Mater. 36, e2307494 (2024). https://doi.org/10.1002/adma.202307494
- F.U. Richter, I. Sinev, S. Zhou, A. Leitis, S.H. Oh et al., Gradient high-Q dielectric metasurfaces for broadband sensing and control of vibrational light–matter coupling. Adv. Mater. 36, e2314279 (2024). https://doi.org/10.1002/adma.202314279
- A. Leitis, A. Tittl, M. Liu, B.H. Lee, M.B. Gu et al., Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Sci. Adv. 5, eaaw2871 (2019). https://doi.org/10.1126/sciadv.aaw2871
- J. Wang, T. Weber, A. Aigner, S.A. Maier, A. Tittl, Mirror-coupled plasmonic bound states in the continuum for tunable perfect absorption. Laser Photonics Rev. 17, 2300294 (2023). https://doi.org/10.1002/lpor.202300294
- Z. Chen, D. Li, H. Zhou, T. Liu, X. Mu, A hybrid graphene metamaterial absorber for enhanced modulation and molecular fingerprint retrieval. Nanoscale 15, 14100–14108 (2023). https://doi.org/10.1039/d3nr02830e
- J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert et al., Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals. Phys. Chem. Chem. Phys. 17, 21169–21175 (2015). https://doi.org/10.1039/c4cp04851b
- J.-H. Park, A. Ndao, W. Cai, L. Hsu, A. Kodigala et al., Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing. Nat. Phys. 16, 462–468 (2020). https://doi.org/10.1038/s41567-020-0796-x
- R. Adato, A. Artar, S. Erramilli, H. Altug, Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems. Nano Lett. 13, 2584–2591 (2013). https://doi.org/10.1021/nl400689q
- H. Zhou, Z. Ren, C. Xu, L. Xu, C. Lee, MOF/polymer-integrated multi-hotspot mid-infrared nanoantennas for sensitive detection of CO2 gas. Nano-Micro Lett. 14, 207 (2022). https://doi.org/10.1007/s40820-022-00950-1
- J. Wei, Y. Li, Y. Chang, D.M.N. Hasan, B. Dong et al., Ultrasensitive transmissive infrared spectroscopy via loss engineering of metallic nanoantennas for compact devices. ACS Appl. Mater. Interfaces 11, 47270–47278 (2019). https://doi.org/10.1021/acsami.9b18002
- D. Li, H. Zhou, Z. Chen, Z. Ren, C. Xu et al., Ultrasensitive molecular fingerprint retrieval using strongly detuned overcoupled plasmonic nanoantennas. Adv. Mater. 35, e2301787 (2023). https://doi.org/10.1002/adma.202301787
- H. Zhou, D. Li, Z. Ren, X. Mu, C. Lee, Loss-induced phase transition in mid-infrared plasmonic metamaterials for ultrasensitive vibrational spectroscopy. InfoMat 4, e12349 (2022). https://doi.org/10.1002/inf2.12349
- J. Xu, Z. Ren, B. Dong, X. Liu, C. Wang et al., Nanometer-scale heterogeneous interfacial sapphire wafer bonding for enabling plasmonic-enhanced nanofluidic mid-infrared spectroscopy. ACS Nano 14, 12159–12172 (2020). https://doi.org/10.1021/acsnano.0c05794
- H. Zhou, Z. Ren, D. Li, C. Xu, X. Mu et al., Dynamic construction of refractive index-dependent vibrations using surface plasmon-phonon polaritons. Nat. Commun. 14, 7316 (2023). https://doi.org/10.1038/s41467-023-43127-z
- B. Cerjan, X. Yang, P. Nordlander, N.J. Halas, Asymmetric aluminum antennas for self-calibrating surface-enhanced infrared absorption spectroscopy. ACS Photonics 3, 354–360 (2016). https://doi.org/10.1021/acsphotonics.6b00024
- K. Chen, T.D. Dao, S. Ishii, M. Aono, T. Nagao, Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy. Adv. Funct. Mater. 25, 6637–6643 (2015). https://doi.org/10.1002/adfm.201501151
- F. Neubrech, A. Pucci, T.W. Cornelius, S. Karim, A. García-Etxarri et al., Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys. Rev. Lett. 101, 157403 (2008). https://doi.org/10.1103/PhysRevLett.101.157403
- M. Bertolotti, Waves and fields in optoelectronics. Opt. Acta Int. J. Opt. 32, 748 (1985). https://doi.org/10.1080/716099690
- P.A. Thomas, W.J. Tan, H.A. Fernandez, W.L. Barnes, A new signature for strong light–matter coupling using spectroscopic ellipsometry. Nano Lett. 20, 6412–6419 (2020). https://doi.org/10.1021/acs.nanolett.0c01963
- M.F. Limonov, M.V. Rybin, A.N. Poddubny, Y.S. Kivshar, Fano resonances in photonics. Nat. Photonics 11(9), 543–554 (2017). https://doi.org/10.1038/nphoton.2017.142
- I. Dolado, C. Maciel-Escudero, E. Nikulina, E. Modin, F. Calavalle et al., Remote near-field spectroscopy of vibrational strong coupling between organic molecules and phononic nanoresonators. Nat. Commun. 13, 6850 (2022). https://doi.org/10.1038/s41467-022-34393-4
- H. Durmaz, Y. Li, A.E. Cetin, A multiple-band perfect absorber for SEIRA applications. Sens. Actuat. B Chem. 275, 174–179 (2018). https://doi.org/10.1016/j.snb.2018.08.053
- L. Liu, S. Iketani, Y. Guo, J.F.-W. Chan, M. Wang et al., Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 602, 676–681 (2022). https://doi.org/10.1038/s41586-021-04388-0
- F. Zhu, C. Zhuang, K. Chu, L. Zhang, H. Zhao et al., Safety and immunogenicity of a live-attenuated influenza virus vector-based intranasal SARS-CoV-2 vaccine in adults: randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Respir. Med. 10, 749–760 (2022). https://doi.org/10.1016/S2213-2600(22)00131-X
- J. Cheong, H. Yu, C.Y. Lee, J.U. Lee, H.J. Choi et al., Fast detection of SARS-CoV-2 RNA via the integration of plasmonic thermocycling and fluorescence detection in a portable device. Nat. Biomed. Eng. 4, 1159–1167 (2020). https://doi.org/10.1038/s41551-020-00654-0
- L. Wang, X. Wang, Y. Wu, M. Guo, C. Gu et al., Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples. Nat. Biomed. Eng. 6, 276–285 (2022). https://doi.org/10.1038/s41551-021-00833-7
- D. Li, H. Zhou, X. Hui, X. He, X. Mu, Plasmonic biosensor augmented by a genetic algorithm for ultra-rapid, label-free, and multi-functional detection of COVID-19. Anal. Chem. 93, 9437–9444 (2021). https://doi.org/10.1021/acs.analchem.1c01078
- S.X. Leong, Y.X. Leong, E.X. Tan, H.Y.F. Sim, C.S.L. Koh et al., Noninvasive and point-of-care surface-enhanced Raman scattering (SERS)-based Breathalyzer for mass screening of coronavirus disease 2019 (COVID-19) under 5 min. ACS Nano 16, 2629–2639 (2022). https://doi.org/10.1021/acsnano.1c09371
- H. Yao, Y. Song, Y. Chen, N. Wu, J. Xu et al., Molecular architecture of the SARS-CoV-2 virus. Cell 183, 730-738.e13 (2020). https://doi.org/10.1016/j.cell.2020.09.018
- X.X. Han, R.S. Rodriguez, C.L. Haynes, Y. Ozaki, B. Zhao, Surface-enhanced Raman spectroscopy. Nat. Rev. Meth. Primers 1, 87 (2022). https://doi.org/10.1038/s43586-021-00083-6
- X. Liu, Z. Zhang, J. Zhou, W. Liu, G. Zhou et al., Artificial intelligence-enhanced waveguide “photonic nose”-augmented sensing platform for VOC gases in mid-infrared. Small 20, e2400035 (2024). https://doi.org/10.1002/smll.202400035
- W. Liu, Y. Ma, X. Liu, J. Zhou, C. Xu et al., Larger-than-unity external optical field confinement enabled by metamaterial-assisted comb waveguide for ultrasensitive long-wave infrared gas spectroscopy. Nano Lett. 22, 6112–6120 (2022). https://doi.org/10.1021/acs.nanolett.2c01198
- J. Zhou, Z. Zhang, B. Dong, Z. Ren, W. Liu et al., Midinfrared spectroscopic analysis of aqueous mixtures using artificial-intelligence-enhanced metamaterial waveguide sensing platform. ACS Nano 17, 711–724 (2023). https://doi.org/10.1021/acsnano.2c10163
- J. Hu, D. Mengu, D.C. Tzarouchis, B. Edwards, N. Engheta et al., Diffractive optical computing in free space. Nat. Commun. 15, 1525 (2024). https://doi.org/10.1038/s41467-024-45982-w
- Z. Zhang, X. Liu, H. Zhou, S. Xu, C. Lee, Advances in machine-learning enhanced nanosensors: from cloud artificial intelligence toward future edge computing at chip level. Small Struct. 5, 2300325 (2024). https://doi.org/10.1002/sstr.202300325
- A. Bylinkin, M. Schnell, M. Autore, F. Calavalle, P. Li et al., Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat. Photonics 15, 197–202 (2021). https://doi.org/10.1038/s41566-020-00725-3
References
T. Weber, L. Kühner, L. Sortino, A. BenMhenni, N.P. Wilson et al., Intrinsic strong light–matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces. Nat. Mater. 22, 970–976 (2023). https://doi.org/10.1038/s41563-023-01580-7
A.H. Dorrah, F. Capasso, Tunable structured light with flat optics. Science 376, eabi6860 (2022). https://doi.org/10.1126/science.abi6860
F. Neubrech, C. Huck, K. Weber, A. Pucci, H. Giessen, Surface-enhanced infrared spectroscopy using resonant nanoantennas. Chem. Rev. 117, 5110–5145 (2017). https://doi.org/10.1021/acs.chemrev.6b00743
C. Xu, Z. Ren, H. Zhou, J. Zhou, C.P. Ho et al., Expanding chiral metamaterials for retrieving fingerprints via vibrational circular dichroism. Light Sci. Appl. 12, 154 (2023). https://doi.org/10.1038/s41377-023-01186-3
C. Xu, Z. Ren, H. Zhou, J. Zhou, D. Li et al., Near-field coupling induced less chiral responses in chiral metamaterials for surface-enhanced vibrational circular dichroism. Adv. Funct. Mater. 34, 2314482 (2024). https://doi.org/10.1002/adfm.202314482
G. Li, S. Zhang, T. Zentgraf, Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017). https://doi.org/10.1038/natrevmats.2017.10
U. Aslam, V.G. Rao, S. Chavez, S. Linic, Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 1, 656–665 (2018). https://doi.org/10.1038/s41929-018-0138-x
T. Santiago-Cruz, S.D. Gennaro, O. Mitrofanov, S. Addamane, J. Reno et al., Resonant metasurfaces for generating complex quantum states. Science 377, 991–995 (2022). https://doi.org/10.1126/science.abq8684
W. Wang, M. Ramezani, A.I. Väkeväinen, P. Törmä, J.G. Rivas et al., The rich photonic world of plasmonic nanop arrays. Mater. Today 21, 303–314 (2018). https://doi.org/10.1016/j.mattod.2017.09.002
J. Kozuch, K. Ataka, J. Heberle, Surface-enhanced infrared absorption spectroscopy. Nat. Rev. Meth. Primers 3, 70 (2023). https://doi.org/10.1038/s43586-023-00253-8
D. Li, C. Xu, J. Xie, C. Lee, Research progress in surface-enhanced infrared absorption spectroscopy: from performance optimization, sensing applications, to system integration. Nanomaterials 13, 2377 (2023). https://doi.org/10.3390/nano13162377
D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, H. Giessen, Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures. Nat. Commun. 4, 2237 (2013). https://doi.org/10.1038/ncomms3237
A. John-Herpin, A. Tittl, L. Kühner, F. Richter, S.H. Huang et al., Metasurface-enhanced infrared spectroscopy: an abundance of materials and functionalities. Adv. Mater. 35, e2110163 (2023). https://doi.org/10.1002/adma.202110163
H. Altug, S.H. Oh, S.A. Maier, J. Homola, Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 17(1), 5–16 (2022). https://doi.org/10.1038/s41565-021-01045-5
X. Hui, C. Yang, D. Li, X. He, H. Huang et al., Infrared plasmonic biosensor with tetrahedral DNA nanostructure as carriers for label-free and ultrasensitive detection of miR-155. Adv. Sci. 8, e2100583 (2021). https://doi.org/10.1002/advs.202100583
A. John-Herpin, D. Kavungal, L. von Mücke, H. Altug, Infrared metasurface augmented by deep learning for monitoring dynamics between all major classes of biomolecules. Adv. Mater. 33, e2006054 (2021). https://doi.org/10.1002/adma.202006054
D. Rodrigo, A. Tittl, N. Ait-Bouziad, A. John-Herpin, O. Limaj et al., Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces. Nat. Commun. 9, 2160 (2018). https://doi.org/10.1038/s41467-018-04594-x
R. Adato, H. Altug, In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat. Commun. 4, 2154 (2013). https://doi.org/10.1038/ncomms3154
L. Paggi, A. Fabas, H. El Ouazzani, J.P. Hugonin, N. Fayard et al., Over-coupled resonator for broadband surface enhanced infrared absorption (SEIRA). Nat. Commun. 14, 4814 (2023). https://doi.org/10.1038/s41467-023-40511-7
A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi et al., Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018). https://doi.org/10.1126/science.aas9768
F. Yesilkoy, E.R. Arvelo, Y. Jahani, M. Liu, A. Tittl et al., Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics 13, 390–396 (2019). https://doi.org/10.1038/s41566-019-0394-6
A. Aigner, A. Tittl, J. Wang, T. Weber, Y. Kivshar et al., Plasmonic bound states in the continuum to tailor light–matter coupling. Sci. Adv. 8, eadd4816 (2022). https://doi.org/10.1126/sciadv.add4816
S. Rosas, K.A. Schoeller, E. Chang, H. Mei, M.A. Kats et al., Metasurface-enhanced mid-infrared spectrochemical imaging of tissues. Adv. Mater. 35, 2301208 (2023). https://doi.org/10.1002/adma.202301208
H. Zhou, D. Li, Z. Ren, C. Xu, L.-F. Wang et al., Surface plasmons-phonons for mid-infrared hyperspectral imaging. Sci. Adv. 10, eado3179 (2024). https://doi.org/10.1126/sciadv.ado3179
D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F.J. García de Abajo et al., Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015). https://doi.org/10.1126/science.aab2051
C. Wu, A.B. Khanikaev, R. Adato, N. Arju, A. Ali Yanik et al., Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification ofmolecular monolayers. Nat. Mater. 11, 69–75 (2012). https://doi.org/10.1038/nmat3161
H. Zhou, X. Hui, D. Li, D. Hu, X. Chen et al., Metal-organic framework-surface-enhanced infrared absorption platform enables simultaneous on-chip sensing of greenhouse gases. Adv. Sci. 7, 2001173 (2020). https://doi.org/10.1002/advs.202001173
X. Miao, T.S. Luk, P.Q. Liu, Liquid-metal-based nanophotonic structures for high-performance SEIRA sensing. Adv. Mater. 34, e2107950 (2022). https://doi.org/10.1002/adma.202107950
I. Hwang, M. Kim, J. Yu, J. Lee, J.H. Choi et al., Ultrasensitive molecule detection based on infrared metamaterial absorber with vertical nanogap. Small Methods 5, e2100277 (2021). https://doi.org/10.1002/smtd.202100277
J. Yi, E.-M. You, S.-Y. Ding, Z.-Q. Tian, Unveiling the molecule-plasmon interactions in surface-enhanced infrared absorption spectroscopy. Natl. Sci. Rev. 7, 1228–1238 (2020). https://doi.org/10.1093/nsr/nwaa054
Z. Ren, Z. Zhang, J. Wei, B. Dong, C. Lee, Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy. Nat. Commun. 13, 3859 (2022). https://doi.org/10.1038/s41467-022-31520-z
L. Dong, X. Yang, C. Zhang, B. Cerjan, L. Zhou et al., Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy. Nano Lett. 17, 5768–5774 (2017). https://doi.org/10.1021/acs.nanolett.7b02736
D. Yoo, F. de León-Pérez, M. Pelton, I.-H. Lee, D.A. Mohr et al., Ultrastrong plasmon–phonon coupling via epsilon-near-zero nanocavities. Nat. Photonics 15, 125–130 (2021). https://doi.org/10.1038/s41566-020-00731-5
D. Li, A. Yadav, H. Zhou, K. Roy, P. Thanasekaran et al., Advances and applications of metal-organic frameworks (MOFs) in emerging technologies: a comprehensive review. Glob. Chall. 8, 2300244 (2023). https://doi.org/10.1002/gch2.202300244
D. Li, H. Zhou, X. Hui, X. He, H. Huang et al., Multifunctional chemical sensing platform based on dual-resonant infrared plasmonic perfect absorber for on-chip detection of poly(ethyl cyanoacrylate). Adv. Sci. 8, e2101879 (2021). https://doi.org/10.1002/advs.202101879
K. Chen, R. Adato, H. Altug, Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. ACS Nano 6, 7998–8006 (2012). https://doi.org/10.1021/nn3026468
R.A. Maniyara, D. Rodrigo, R. Yu, J. Canet-Ferrer, D.S. Ghosh et al., Tunable plasmons in ultrathin metal films. Nat. Photonics 13, 328–333 (2019). https://doi.org/10.1038/s41566-019-0366-x
P. Jangid, F.U. Richter, M.L. Tseng, I. Sinev, S. Kruk et al., Spectral tuning of high-harmonic generation with resonance-gradient metasurfaces. Adv. Mater. 36, e2307494 (2024). https://doi.org/10.1002/adma.202307494
F.U. Richter, I. Sinev, S. Zhou, A. Leitis, S.H. Oh et al., Gradient high-Q dielectric metasurfaces for broadband sensing and control of vibrational light–matter coupling. Adv. Mater. 36, e2314279 (2024). https://doi.org/10.1002/adma.202314279
A. Leitis, A. Tittl, M. Liu, B.H. Lee, M.B. Gu et al., Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Sci. Adv. 5, eaaw2871 (2019). https://doi.org/10.1126/sciadv.aaw2871
J. Wang, T. Weber, A. Aigner, S.A. Maier, A. Tittl, Mirror-coupled plasmonic bound states in the continuum for tunable perfect absorption. Laser Photonics Rev. 17, 2300294 (2023). https://doi.org/10.1002/lpor.202300294
Z. Chen, D. Li, H. Zhou, T. Liu, X. Mu, A hybrid graphene metamaterial absorber for enhanced modulation and molecular fingerprint retrieval. Nanoscale 15, 14100–14108 (2023). https://doi.org/10.1039/d3nr02830e
J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert et al., Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals. Phys. Chem. Chem. Phys. 17, 21169–21175 (2015). https://doi.org/10.1039/c4cp04851b
J.-H. Park, A. Ndao, W. Cai, L. Hsu, A. Kodigala et al., Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing. Nat. Phys. 16, 462–468 (2020). https://doi.org/10.1038/s41567-020-0796-x
R. Adato, A. Artar, S. Erramilli, H. Altug, Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems. Nano Lett. 13, 2584–2591 (2013). https://doi.org/10.1021/nl400689q
H. Zhou, Z. Ren, C. Xu, L. Xu, C. Lee, MOF/polymer-integrated multi-hotspot mid-infrared nanoantennas for sensitive detection of CO2 gas. Nano-Micro Lett. 14, 207 (2022). https://doi.org/10.1007/s40820-022-00950-1
J. Wei, Y. Li, Y. Chang, D.M.N. Hasan, B. Dong et al., Ultrasensitive transmissive infrared spectroscopy via loss engineering of metallic nanoantennas for compact devices. ACS Appl. Mater. Interfaces 11, 47270–47278 (2019). https://doi.org/10.1021/acsami.9b18002
D. Li, H. Zhou, Z. Chen, Z. Ren, C. Xu et al., Ultrasensitive molecular fingerprint retrieval using strongly detuned overcoupled plasmonic nanoantennas. Adv. Mater. 35, e2301787 (2023). https://doi.org/10.1002/adma.202301787
H. Zhou, D. Li, Z. Ren, X. Mu, C. Lee, Loss-induced phase transition in mid-infrared plasmonic metamaterials for ultrasensitive vibrational spectroscopy. InfoMat 4, e12349 (2022). https://doi.org/10.1002/inf2.12349
J. Xu, Z. Ren, B. Dong, X. Liu, C. Wang et al., Nanometer-scale heterogeneous interfacial sapphire wafer bonding for enabling plasmonic-enhanced nanofluidic mid-infrared spectroscopy. ACS Nano 14, 12159–12172 (2020). https://doi.org/10.1021/acsnano.0c05794
H. Zhou, Z. Ren, D. Li, C. Xu, X. Mu et al., Dynamic construction of refractive index-dependent vibrations using surface plasmon-phonon polaritons. Nat. Commun. 14, 7316 (2023). https://doi.org/10.1038/s41467-023-43127-z
B. Cerjan, X. Yang, P. Nordlander, N.J. Halas, Asymmetric aluminum antennas for self-calibrating surface-enhanced infrared absorption spectroscopy. ACS Photonics 3, 354–360 (2016). https://doi.org/10.1021/acsphotonics.6b00024
K. Chen, T.D. Dao, S. Ishii, M. Aono, T. Nagao, Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy. Adv. Funct. Mater. 25, 6637–6643 (2015). https://doi.org/10.1002/adfm.201501151
F. Neubrech, A. Pucci, T.W. Cornelius, S. Karim, A. García-Etxarri et al., Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys. Rev. Lett. 101, 157403 (2008). https://doi.org/10.1103/PhysRevLett.101.157403
M. Bertolotti, Waves and fields in optoelectronics. Opt. Acta Int. J. Opt. 32, 748 (1985). https://doi.org/10.1080/716099690
P.A. Thomas, W.J. Tan, H.A. Fernandez, W.L. Barnes, A new signature for strong light–matter coupling using spectroscopic ellipsometry. Nano Lett. 20, 6412–6419 (2020). https://doi.org/10.1021/acs.nanolett.0c01963
M.F. Limonov, M.V. Rybin, A.N. Poddubny, Y.S. Kivshar, Fano resonances in photonics. Nat. Photonics 11(9), 543–554 (2017). https://doi.org/10.1038/nphoton.2017.142
I. Dolado, C. Maciel-Escudero, E. Nikulina, E. Modin, F. Calavalle et al., Remote near-field spectroscopy of vibrational strong coupling between organic molecules and phononic nanoresonators. Nat. Commun. 13, 6850 (2022). https://doi.org/10.1038/s41467-022-34393-4
H. Durmaz, Y. Li, A.E. Cetin, A multiple-band perfect absorber for SEIRA applications. Sens. Actuat. B Chem. 275, 174–179 (2018). https://doi.org/10.1016/j.snb.2018.08.053
L. Liu, S. Iketani, Y. Guo, J.F.-W. Chan, M. Wang et al., Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 602, 676–681 (2022). https://doi.org/10.1038/s41586-021-04388-0
F. Zhu, C. Zhuang, K. Chu, L. Zhang, H. Zhao et al., Safety and immunogenicity of a live-attenuated influenza virus vector-based intranasal SARS-CoV-2 vaccine in adults: randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Respir. Med. 10, 749–760 (2022). https://doi.org/10.1016/S2213-2600(22)00131-X
J. Cheong, H. Yu, C.Y. Lee, J.U. Lee, H.J. Choi et al., Fast detection of SARS-CoV-2 RNA via the integration of plasmonic thermocycling and fluorescence detection in a portable device. Nat. Biomed. Eng. 4, 1159–1167 (2020). https://doi.org/10.1038/s41551-020-00654-0
L. Wang, X. Wang, Y. Wu, M. Guo, C. Gu et al., Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples. Nat. Biomed. Eng. 6, 276–285 (2022). https://doi.org/10.1038/s41551-021-00833-7
D. Li, H. Zhou, X. Hui, X. He, X. Mu, Plasmonic biosensor augmented by a genetic algorithm for ultra-rapid, label-free, and multi-functional detection of COVID-19. Anal. Chem. 93, 9437–9444 (2021). https://doi.org/10.1021/acs.analchem.1c01078
S.X. Leong, Y.X. Leong, E.X. Tan, H.Y.F. Sim, C.S.L. Koh et al., Noninvasive and point-of-care surface-enhanced Raman scattering (SERS)-based Breathalyzer for mass screening of coronavirus disease 2019 (COVID-19) under 5 min. ACS Nano 16, 2629–2639 (2022). https://doi.org/10.1021/acsnano.1c09371
H. Yao, Y. Song, Y. Chen, N. Wu, J. Xu et al., Molecular architecture of the SARS-CoV-2 virus. Cell 183, 730-738.e13 (2020). https://doi.org/10.1016/j.cell.2020.09.018
X.X. Han, R.S. Rodriguez, C.L. Haynes, Y. Ozaki, B. Zhao, Surface-enhanced Raman spectroscopy. Nat. Rev. Meth. Primers 1, 87 (2022). https://doi.org/10.1038/s43586-021-00083-6
X. Liu, Z. Zhang, J. Zhou, W. Liu, G. Zhou et al., Artificial intelligence-enhanced waveguide “photonic nose”-augmented sensing platform for VOC gases in mid-infrared. Small 20, e2400035 (2024). https://doi.org/10.1002/smll.202400035
W. Liu, Y. Ma, X. Liu, J. Zhou, C. Xu et al., Larger-than-unity external optical field confinement enabled by metamaterial-assisted comb waveguide for ultrasensitive long-wave infrared gas spectroscopy. Nano Lett. 22, 6112–6120 (2022). https://doi.org/10.1021/acs.nanolett.2c01198
J. Zhou, Z. Zhang, B. Dong, Z. Ren, W. Liu et al., Midinfrared spectroscopic analysis of aqueous mixtures using artificial-intelligence-enhanced metamaterial waveguide sensing platform. ACS Nano 17, 711–724 (2023). https://doi.org/10.1021/acsnano.2c10163
J. Hu, D. Mengu, D.C. Tzarouchis, B. Edwards, N. Engheta et al., Diffractive optical computing in free space. Nat. Commun. 15, 1525 (2024). https://doi.org/10.1038/s41467-024-45982-w
Z. Zhang, X. Liu, H. Zhou, S. Xu, C. Lee, Advances in machine-learning enhanced nanosensors: from cloud artificial intelligence toward future edge computing at chip level. Small Struct. 5, 2300325 (2024). https://doi.org/10.1002/sstr.202300325
A. Bylinkin, M. Schnell, M. Autore, F. Calavalle, P. Li et al., Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat. Photonics 15, 197–202 (2021). https://doi.org/10.1038/s41566-020-00725-3