Monolithic Perovskite/Perovskite/Silicon Triple-Junction Solar Cells: Fundamentals, Progress, and Prospects
Corresponding Author: Jianghui Zheng
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 8
Abstract
Crystalline silicon (c-Si) solar cells, though dominating the photovoltaic market, are nearing their theoretical power conversion efficiencies (PCE) limit of 29.4%, necessitating the adoption of multi-junction technology to achieve higher performance. Among these, perovskite-on-silicon-based multi-junction solar cells have emerged as a promising alternative, where the perovskite offering tunable bandgaps, superior optoelectronic properties, and cost-effective manufacturing. Recent announced double-junction solar cells (PSDJSCs) have achieved the PCE of 34.85%, surpassing all other double-junction technologies. Encouragingly, the rapid advancements in PSDJSCs have spurred increased research interest in perovskite/perovskite/silicon triple-junction solar cells (PSTJSCs) in 2024. This triple-junction solar cell configuration demonstrates immense potential due to their optimum balance between achieving a high PCE limit and managing device complexity. This review provides a comprehensive analysis of PSTJSCs, covering fundamental principles, and technological milestones. Current challenges, including current mismatch, open-circuit voltage deficits, phase segregation, and stability issues, and their corresponding strategies are also discussed, alongside future directions to achieve long-term stability and high PCE. This work aims to advance the understanding of the development in PSTJSCs, paving the way for their practical implementation.
Highlights:
1 Perovskite/perovskite/silicon triple-junction solar cells (PSTJSCs) are emerging as a promising strategy to exceed the efficiency limits of traditional silicon solar cells.
2 This review systematically analyses the key principles, recent breakthroughs, and remaining challenges in PSTJSC development, including current mismatch, open-circuit voltage loss, phase segregation, and stability.
3 Strategies to address these issues and future directions toward achieving high efficiency and long-term operational stability are comprehensively discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Peng, L. Sun, K. Feng, H. Zhong, J. Liang et al., Extent of global decarbonization of the power sector through energy policies and governance capacity. Commun. Earth Environ. 5, 321 (2024). https://doi.org/10.1038/s43247-024-01494-5
- Y. Zhou, Worldwide carbon neutrality transition? Energy efficiency, renewable, carbon trading and advanced energy policies. Energy Rev. 2(2), 100026 (2023). https://doi.org/10.1016/j.enrev.2023.100026
- L. Kruitwagen, K.T. Story, J. Friedrich, L. Byers, S. Skillman et al., A global inventory of photovoltaic solar energy generating units. Nature 598(7882), 604–610 (2021). https://doi.org/10.1038/s41586-021-03957-7
- International Technology Roadmap for Photovoltaic (ITRPV) 14th edition. (2023). https://www.vdma.eu/en-GB/international-technology-roadmap-photovoltaic
- J.P. Helveston, G. He, M.R. Davidson, Quantifying the cost savings of global solar photovoltaic supply chains. Nature 612(7938), 83–87 (2022). https://doi.org/10.1038/s41586-022-05316-6
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
- Longi sets new world-record for silicon solar cell efficiency, launching 2nd generation ultra-efficient bc-based module (2024) https://www.longi.com/en/news/longi-hi-mo9-bc-world-record
- W. Shockley, The shockley-queisser limit. J. Appl. Phys. 32(3), 510–519 (1961). https://doi.org/10.1063/1.1736034
- R. Wang, T. Huang, J. Xue, J. Tong, K. Zhu et al., Prospects for metal halide perovskite-based tandem solar cells. Nat. Photonics 15(6), 411–425 (2021). https://doi.org/10.1038/s41566-021-00809-8
- M. Heydarian, M. Heydarian, P. Schygulla, S.K. Reichmuth, A.J. Bett et al., Recent progress in monolithic two-terminal perovskite-based triple-junction solar cells. Energy Environ. Sci. 17(5), 1781–1818 (2024). https://doi.org/10.1039/d3ee02822d
- M. Yamaguchi, F. Dimroth, J.F. Geisz, N.J. Ekins-Daukes, Multi-junction solar cells paving the way for super high-efficiency. J. Appl. Phys. 129(24), 240901 (2021). https://doi.org/10.1063/5.0048653
- A.W.Y. Ho-Baillie, J. Zheng, M.A. Mahmud, F.-J. Ma, D.R. McKenzie et al., Recent progress and future prospects of perovskite tandem solar cells. Appl. Phys. Rev. 8(4), 041307 (2021). https://doi.org/10.1063/5.0061483
- F. Guo, N. Li, F.W. Fecher, N. Gasparini, C.O.R. Quiroz et al., A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells. Nat. Commun. 6, 7730 (2015). https://doi.org/10.1038/ncomms8730
- D. König, K. Casalenuovo, Y. Takeda, G. Conibeer, J.F. Guillemoles et al., Hot carrier solar cells: Principles, materials and design. Phys. E Low Dimension. Syst. Nanostruct. 42(10), 2862–2866 (2010). https://doi.org/10.1016/j.physe.2009.12.032
- S.P. Philipps, A.W. Bett, III-V Multi-junction solar cells and concentrating photovoltaic (CPV) systems. Adv. Opt. Technol. 3(5–6), 469–478 (2014). https://doi.org/10.1515/aot-2014-0051
- M. Anaya, G. Lozano, M.E. Calvo, H. Míguez, ABX3 perovskites for tandem solar cells. Joule 1(4), 769–793 (2017). https://doi.org/10.1016/j.joule.2017.09.017
- K. Wang, Z. Jin, L. Liang, H. Bian, D. Bai et al., All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15. Nat. Commun. 9(1), 4544 (2018). https://doi.org/10.1038/s41467-018-06915-6
- H. Shen, D. Walter, Y. Wu, K.C. Fong, D.A. Jacobs et al., Monolithic perovskite/Si tandem solar cells: pathways to over 30% efficiency. Adv. Energy Mater. 10(13), 1902840 (2020). https://doi.org/10.1002/aenm.201902840
- M. Yamaguchi, III–V compound multi-junction solar cells: present and future. Sol. Energy Mater. Sol. Cells 75(1–2), 261–269 (2003). https://doi.org/10.1016/S0927-0248(02)00168-X
- S. Essig, C. Allebé, T. Remo, J.F. Geisz, M.A. Steiner et al., Raising the one-Sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nat. Energy 2(9), 17144 (2017). https://doi.org/10.1038/nenergy.2017.144
- Martin A. Green, Ewan D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe et al., Solar cell efficiency tables (version 65). Prog. Photovoltaics 33(1), 3–15 (2024). https://doi.org/10.1002/pip.3867
- K. Sasaki, T. Agui, K. Nakaido, N. Takahashi, R. Onitsuka et al., Development of InGaP/GaAs/InGaAs inverted triple junction concentrator solar cells. 9TH International Conference on Concentrator Photovoltaic Systems: CPV-9 Miyazaki, Japan. AIP, pp. 22–25 (2013). https://doi.org/10.1063/1.4822190
- P.T. Chiu, D.C. Law, R.L. Woo, S.B. Singer, D. Bhusari et al., 35.8% space and 38.8% terrestrial 5J direct bonded cells. 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC). June 8–13, 2014, Denver, CO, USA. IEEE, pp. 0011–0013 (2014)
- J.F. Geisz, R.M. France, K.L. Schulte, M.A. Steiner, A.G. Norman et al., Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nat. Energy 5(4), 326–335 (2020). https://doi.org/10.1038/s41560-020-0598-5
- J.M. Raya-Armenta, N. Bazmohammadi, J.C. Vasquez, J.M. Guerrero, A short review of radiation-induced degradation of III–V photovoltaic cells for space applications. Sol. Energy Mater. Sol. Cells 233, 111379 (2021). https://doi.org/10.1016/j.solmat.2021.111379
- H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King et al., III–V multijunction solar cells for concentrating photovoltaics. Energy Environ. Sci. 2(2), 174–192 (2009). https://doi.org/10.1039/b809257e
- H. Li, W. Zhang, Perovskite tandem solar cells: from fundamentals to commercial deployment. Chem. Rev. 120(18), 9835–9950 (2020). https://doi.org/10.1021/acs.chemrev.9b00780
- P. Yan, D. Yang, H. Wang, S. Yang, Z. Ge, Recent advances in dopant-free organic hole-transporting materials for efficient, stable and low-cost perovskite solar cells. Energy Environ. Sci. 15(9), 3630–3669 (2022). https://doi.org/10.1039/d2ee01256a
- P. Chen, Y. Xiao, S. Li, X. Jia, D. Luo et al., The promise and challenges of inverted perovskite solar cells. Chem. Rev. 124(19), 10623–10700 (2024). https://doi.org/10.1021/acs.chemrev.4c00073
- S. Teale, M. Degani, B. Chen, E.H. Sargent, G. Grancini, Molecular cation and low-dimensional perovskite surface passivation in perovskite solar cells. Nat. Energy 9(7), 779–792 (2024). https://doi.org/10.1038/s41560-024-01529-3
- NREL. Best research-cell efficiency chart (2025)
- J. Werner, F. Sahli, F. Fu, J.J. Diaz Leon, A. Walter et al., Perovskite/perovskite/silicon monolithic triple-junction solar cells with a fully textured design. ACS Energy Lett. 3(9), 2052–2058 (2018). https://doi.org/10.1021/acsenergylett.8b01165
- S. Liu, Y. Lu, C. Yu, J. Li, R. Luo et al., Triple-junction solar cells with cyanate in ultrawide-bandgap perovskites. Nature 628(8007), 306–312 (2024). https://doi.org/10.1038/s41586-024-07226-1
- F.H. Isikgor, T. Maksudov, X. Chang, B. Adilbekova, Z. Ling et al., Monolithic perovskite–perovskite–organic triple-junction solar cells with a voltage output exceeding 3 V. ACS Energy Lett. 7(12), 4469–4471 (2022). https://doi.org/10.1021/acsenergylett.2c02340
- S. Hu, J. Wang, P. Zhao, J. Pascual, J. Wang et al., Steering perovskite precursor solutions for multijunction photovoltaics. Nature 639(8053), 93–101 (2025). https://doi.org/10.1038/s41586-024-08546-y
- J. Wang, L. Zeng, D. Zhang, A. Maxwell, H. Chen et al., Halide homogenization for low energy loss in 2-eV-bandgap perovskites and increased efficiency in all-perovskite triple-junction solar cells. Nat. Energy 9(1), 70–80 (2024). https://doi.org/10.1038/s41560-023-01406-5
- J. Liu, Y. He, L. Ding, H. Zhang, Q. Li et al., Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature 635(8039), 596–603 (2024). https://doi.org/10.1038/s41586-024-07997-7
- J. Liu, B. Shi, Q. Xu, Y. Li, Y. Li et al., Textured perovskite/silicon tandem solar cells achieving over 30% efficiency promoted by 4-fluorobenzylamine hydroiodide. Nano-Micro Lett. 16(1), 189 (2024). https://doi.org/10.1007/s40820-024-01406-4
- C. Kan, P. Hang, S. Wang, B. Li, X. Yu et al., Efficient and stable perovskite-silicon tandem solar cells with copper thiocyanate-embedded perovskite on textured silicon. Nat. Photonics 19(1), 63–70 (2024). https://doi.org/10.1038/s41566-024-01561-5
- X. Li, Z. Ying, S. Li, L. Chen, M. Zhang et al., Top-down dual-interface carrier management for highly efficient and stable perovskite/silicon tandem solar cells. Nano-Micro Lett. 17(1), 141 (2025). https://doi.org/10.1007/s40820-024-01631-x
- C. Li, Y. Chen, Y. Li, Z. Zhang, J. Yang et al., Achieving 32% efficiency in perovskite/silicon tandem solar cells with bidentate-anchored superwetting self-assembled molecular layers. Angew. Chem. Int. Ed. 64(23), e202502730 (2025). https://doi.org/10.1002/anie.202502730
- C. Sun, N. University, et al., Wide-bandgap perovskite and perovskite/silicon tandem solar cells through strong hydrogen bonding interaction. ACS Energy Lett. 10(5), 2171–2179 (2025). https://doi.org/10.1021/acsenergylett.5c00147
- L.C. Hirst, N.J. Ekins-Daukes, Fundamental losses in solar cells. Prog. Photovolt. Res. Appl. 19(3), 286–293 (2011). https://doi.org/10.1002/pip.1024
- G.E. Eperon, M.T. Hörantner, H.J. Snaith, Metal halide perovskite tandem and multiple-junction photovoltaics. Nat. Rev. Chem. 1(12), 0095 (2017). https://doi.org/10.1038/s41570-017-0095
- M.T. Hörantner, T. Leijtens, M.E. Ziffer, G.E. Eperon, M.G. Christoforo et al., The potential of multijunction perovskite solar cells. ACS Energy Lett. 2(10), 2506–2513 (2017). https://doi.org/10.1021/acsenergylett.7b00647
- U. Rau, Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76(8), 085303 (2007). https://doi.org/10.1103/physrevb.76.085303
- S.R. Kurtz, P. Faine, J.M. Olson, Modeling of two-junction, series-connected tandem solar cells using top-cell thickness as an adjustable parameter. J. Appl. Phys. 68(4), 1890–1895 (1990). https://doi.org/10.1063/1.347177
- F. Staub, I. Anusca, D.C. Lupascu, U. Rau, T. Kirchartz, Effect of reabsorption and photon recycling on photoluminescence spectra and transients in lead-halide perovskite crystals. J. Phys. Mater. 3(2), 025003 (2020). https://doi.org/10.1088/2515-7639/ab6fd0
- A. Pusch, P. Pearce, N.J. Ekins-Daukes, Analytical expressions for the efficiency limits of radiatively coupled tandem solar cells. IEEE J. Photovolt. 9(3), 679–687 (2019). https://doi.org/10.1109/JPHOTOV.2019.2903180
- M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134
- I. Borriello, G. Cantele, D. Ninno, Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides. Phys. Rev. B 77(23), 235214 (2008). https://doi.org/10.1103/PhysRevB.77.235214
- F.C. Hanusch, E. Wiesenmayer, E. Mankel, A. Binek, P. Angloher et al., Efficient planar heterojunction perovskite solar cells based on formamidinium lead bromide. J. Phys. Chem. Lett. 5(16), 2791–2795 (2014). https://doi.org/10.1021/jz501237m
- T. Jesper Jacobsson, J.-P. Correa-Baena, M. Pazoki, M. Saliba, K. Schenk et al., Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy Environ. Sci. 9(5), 1706–1724 (2016). https://doi.org/10.1039/c6ee00030d
- J. Berry, T. Buonassisi, D.A. Egger, G. Hodes, L. Kronik et al., Hybrid organic–inorganic perovskites (HOIPs): opportunities and challenges. Adv. Mater. 27(35), 5102–5112 (2015). https://doi.org/10.1002/adma.201502294
- J.L. Knutson, J.D. Martin, D.B. Mitzi, Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. Inorg. Chem. 44(13), 4699–4705 (2005). https://doi.org/10.1021/ic050244q
- P. Qin, A.L. Domanski, A.K. Chandiran, R. Berger, H.J. Butt et al., Yttrium-substituted nanocrystalline TiO₂ photoanodes for perovskite based heterojunction solar cells. Nanoscale 6(3), 1508–1514 (2014). https://doi.org/10.1039/c3nr05884k
- N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera et al., Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7(9), 3061–3068 (2014). https://doi.org/10.1039/c4ee01076k
- P. Gao, M. Grätzel, M.K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7(8), 2448–2463 (2014). https://doi.org/10.1039/c4ee00942h
- E.T. Hoke, D.J. Slotcavage, E.R. Dohner, A.R. Bowring, H.I. Karunadasa et al., Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6(1), 613–617 (2015). https://doi.org/10.1039/c4sc03141e
- G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982 (2014). https://doi.org/10.1039/c3ee43822h
- M.R. Filip, G.E. Eperon, H.J. Snaith, F. Giustino, Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 5, 5757 (2014). https://doi.org/10.1038/ncomms6757
- E. Mosconi, A. Amat, M.K. Nazeeruddin, M. Grätzel, F. De Angelis, First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117(27), 13902–13913 (2013). https://doi.org/10.1021/jp4048659
- J. Im, C.C. Stoumpos, H. Jin, A.J. Freeman, M.G. Kanatzidis, Antagonism between spin–orbit coupling and steric effects causes anomalous band gap evolution in the perovskite photovoltaic materials CH3NH3Sn1–xPbxI3. J. Phys. Chem. Lett. 6(17), 3503–3509 (2015). https://doi.org/10.1021/acs.jpclett.5b01738
- F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8(6), 489–494 (2014). https://doi.org/10.1038/nphoton.2014.82
- J. Lacombe, O. Sergeev, K. Chakanga, K. von Maydell, C. Agert, Three dimensional optical modeling of amorphous silicon thin film solar cells using the finite-difference time-domain method including real randomly surface topographies. J. Appl. Phys. 110(2), 023102 (2011). https://doi.org/10.1063/1.3610516
- E. Centurioni, Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers. Appl. Opt. 44(35), 7532–7539 (2005). https://doi.org/10.1364/ao.44.007532
- M.T. Hörantner, H.J. Snaith, Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions. Energy Environ. Sci. 10(9), 1983–1993 (2017). https://doi.org/10.1039/c7ee01232b
- K. Jäger, J. Sutter, M. Hammerschmidt, P.-I. Schneider, C. Becker, Prospects of light management in perovskite/silicon tandem solar cells. Nanophotonics 10(8), 1991–2000 (2021). https://doi.org/10.1515/nanoph-2020-0674
- S. Zandi, M. Razaghi, Finite element simulation of perovskite solar cell: a study on efficiency improvement based on structural and material modification. Sol. Energy 179, 298–306 (2019). https://doi.org/10.1016/j.solener.2018.12.032
- M.I. Hossain, W. Qarony, S. Ma, L. Zeng, D. Knipp et al., Perovskite/silicon tandem solar cells: from detailed balance limit calculations to photon management. Nano-Micro Lett. 11(1), 58 (2019). https://doi.org/10.1007/s40820-019-0287-8
- L. Ba, H. Liu, W. Shen, Perovskite/c-Si tandem solar cells with realistic inverted architecture: Achieving high efficiency by optical optimization. Prog. Photovolt. Res. Appl. 26(11), 924–933 (2018). https://doi.org/10.1002/pip.3037
- J. Li, P. Monk, D. Weile, Time domain integral equation methods in computational electromagnetism. Computational Electromagnetism. Springer International Publishing, (2015), pp 111–189 https://doi.org/10.1007/978-3-319-19306-9_3
- J. Zheng, G. Wang, W. Duan, M.A. Mahmud, H. Yi et al., Monolithic perovskite–perovskite–silicon triple-junction tandem solar cell with an efficiency of over 20%. ACS Energy Lett. 7(9), 3003–3005 (2022). https://doi.org/10.1021/acsenergylett.2c01556
- Y.J. Choi, S.Y. Lim, J.H. Park, S.G. Ji, J.Y. Kim, Atomic layer deposition-free monolithic perovskite/perovskite/silicon triple-junction solar cells. ACS Energy Lett. 8(7), 3141–3146 (2023). https://doi.org/10.1021/acsenergylett.3c00919
- H. Hu, S.X. An, Y. Li, S. Orooji, R. Singh et al., Triple-junction perovskite–perovskite–silicon solar cells with power conversion efficiency of 24.4%. Energy Environ. Sci. 17(8), 2800–2814 (2024). https://doi.org/10.1039/d3ee03687a
- F. Li, D. Wu, L. Shang, R. Xia, H. Zhang et al., Highly efficient monolithic perovskite/perovskite/silicon triple-junction solar cells. Adv. Mater. 36(16), e2311595 (2024). https://doi.org/10.1002/adma.202311595
- F. Xu, E. Aydin, J. Liu, E. Ugur, G.T. Harrison et al., Monolithic perovskite/perovskite/silicon triple-junction solar cells with cation double displacement enabled 2.0 eV perovskites. Joule 8(1), 224–240 (2024). https://doi.org/10.1016/j.joule.2023.11.018
- Y. He, Z. Tang, B. He, C. Han, L. Ding et al., Composition engineering of perovskite absorber assisted efficient textured monolithic perovskite/silicon heterojunction tandem solar cells. RSC Adv. 13(12), 7886–7896 (2023). https://doi.org/10.1039/d2ra05481g
- Y. Li, B. Shi, Q. Xu, L. Yan, N. Ren et al., CsCl induced efficient fully-textured perovskite/crystalline silicon tandem solar cell. Nano Energy 122, 109285 (2024). https://doi.org/10.1016/j.nanoen.2024.109285
- T.C. Yang, P. Fiala, Q. Jeangros, C. Ballif, High-bandgap perovskite materials for multijunction solar cells. Joule 2(8), 1421–1436 (2018). https://doi.org/10.1016/j.joule.2018.05.008
- M. Heydarian, M. Heydarian, A.J. Bett, M. Bivour, F. Schindler et al., Monolithic two-terminal perovskite/perovskite/silicon triple-junction solar cells with open circuit voltage >2.8 V. ACS Energy Lett. 8(10), 4186–4192 (2023). https://doi.org/10.1021/acsenergylett.3c01391
- T. Ye, L. Qiao, T. Wang, P. Wang, L. Zhang et al., Molecular synergistic effect for high efficiency monolithic perovskite/perovskite/silicon triple-junction tandem solar cells. Adv. Energy Mater. 14(44), 2402491 (2024). https://doi.org/10.1002/aenm.202402491
- M. Heydarian, A. Shaji, O. Fischer, M. Günthel, O. Karalis et al., Minimizing open-circuit voltage losses in perovskite/perovskite/silicon triple-junction solar cell with optimized top cell. Sol. RRL 9(3), 2400645 (2025). https://doi.org/10.1002/solr.202400645
- Y. Shao, S. Wang, T. Luo, C. Xu, J. Liu et al., Multi-functional interface engineering for monolithic perovskite/perovskite/crystalline silicon triple-junction tandem solar cells. Chemsuschem 18(11), e202402680 (2025). https://doi.org/10.1002/cssc.202402680
- J. Liu, M. De Bastiani, E. Aydin, G.T. Harrison, Y. Gao et al., Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgF x. Science 377(6603), 302–306 (2022). https://doi.org/10.1126/science.abn8910
- Y. Chen, N. Yang, G. Zheng, F. Pei, W. Zhou et al., Nuclei engineering for even halide distribution in stable perovskite/silicon tandem solar cells. Science 385(6708), 554–560 (2024). https://doi.org/10.1126/science.ado9104
- G. Wang, J. Zheng, W. Duan, J. Yang, M.A. Mahmud et al., Molecular engineering of hole-selective layer for high band gap perovskites for highly efficient and stable perovskite-silicon tandem solar cells. Joule 7(11), 2583–2594 (2023). https://doi.org/10.1016/j.joule.2023.09.007
- J. Liu, E. Aydin, J. Yin, M. De Bastiani, F.H. Isikgor et al., 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule 5(12), 3169–3186 (2021). https://doi.org/10.1016/j.joule.2021.11.003
- J. Zheng, Z. Ying, Z. Yang, Z. Lin, H. Wei et al., Polycrystalline silicon tunnelling recombination layers for high-efficiency perovskite/tunnel oxide passivating contact tandem solar cells. Nat. Energy 8(11), 1250–1261 (2023). https://doi.org/10.1038/s41560-023-01382-w
- L. Li, Y. Wang, X. Wang, R. Lin, X. Luo et al., Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7(8), 708–717 (2022). https://doi.org/10.1038/s41560-022-01045-2
- J. Zheng, W. Duan, Y. Guo, Z.C. Zhao, H. Yi et al., Efficient monolithic perovskite–Si tandem solar cells enabled by an ultra-thin indium tin oxide interlayer. Energy Environ. Sci. 16(3), 1223–1233 (2023). https://doi.org/10.1039/d2ee04007g
- Z. Guo, A.K. Jena, G.M. Kim, T. Miyasaka, The high open-circuit voltage of perovskite solar cells: a review. Energy Environ. Sci. 15(8), 3171–3222 (2022). https://doi.org/10.1039/d2ee00663d
- J. Hu, L. Yang, J. Zhang, A review on strategies to fabricate and stabilize phase-pure α-FAPbI3 perovskite solar cells. Sol. RRL 7(13), 2300187 (2023). https://doi.org/10.1002/solr.202300187
- Z. Huang, Y. Bai, X. Huang, J. Li, Y. Wu et al., Anion-π interactions suppress phase impurities in FAPbI3 solar cells. Nature 623(7987), 531–537 (2023). https://doi.org/10.1038/s41586-023-06637-w
- X. Jiang, X. Wang, X. Wu, S. Zhang, B. Liu et al., Strain regulation via pseudo halide-based ionic liquid toward efficient and stable α-FAPbI3 inverted perovskite solar cells. Adv. Energy Mater. 13(23), 2300700 (2023). https://doi.org/10.1002/aenm.202300700
- Z. Zheng, S. Wang, Y. Hu, Y. Rong, A. Mei et al., Development of formamidinium lead iodide-based perovskite solar cells: efficiency and stability. Chem. Sci. 13(8), 2167–2183 (2022). https://doi.org/10.1039/D1SC04769H
- M. RaeisianAsl, S.F.K.S. Panahi, M. Jamaati, S.S. Tafreshi, A review on theoretical studies of structural and optoelectronic properties of FA-based perovskite materials with a focus on FAPbI3. Int. J. Energy Res. 46(10), 13117–13151 (2022). https://doi.org/10.1002/er.8008
- G. Liu, L. Kong, J. Gong, W. Yang, H.-K. Mao et al., Pressure-induced bandgap optimization in lead-based perovskites with prolonged carrier lifetime and ambient retainability. Adv. Funct. Mater. 27(3), 1604208 (2017). https://doi.org/10.1002/adfm.201604208
- E.I. Marchenko, S.A. Fateev, V.V. Korolev, V. Buchinskiy, N.N. Eremin et al., Structure-related bandgap of hybrid lead halide perovskites and close-packed APbX3 family of phases. J. Mater. Chem. C 10(44), 16838–16846 (2022). https://doi.org/10.1039/d2tc03202c
- H. Min, M. Kim, S.U. Lee, H. Kim, G. Kim et al., Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366(6466), 749–753 (2019). https://doi.org/10.1126/science.aay7044
- G. Kim, H. Min, K.S. Lee, D.Y. Lee, S.M. Yoon et al., Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370(6512), 108–112 (2020). https://doi.org/10.1126/science.abc4417
- H. Lu, Y. Liu, P. Ahlawat, A. Mishra, W.R. Tress et al., Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 370(6512), eabb8985 (2020). https://doi.org/10.1126/science.abb8985
- J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592(7854), 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5
- H. Chen, Y. Chen, T. Zhang, X. Liu, X. Wang et al., Advances to high-performance black-phase FAPbI3 perovskite for efficient and stable photovoltaics. Small Struct. 2(5), 2000130 (2021). https://doi.org/10.1002/sstr.202000130
- K. Li, H. Zhou, Advances to stabilize photoactive phase of FAPbI3 perovskite. Chin. J. Chem. 41(20), 2730–2745 (2023). https://doi.org/10.1002/cjoc.202300128
- Y. Huang, X. Lei, T. He, Y. Jiang, M. Yuan, Recent progress on formamidinium-dominated perovskite photovoltaics. Adv. Energy Mater. 12(4), 2100690 (2022). https://doi.org/10.1002/aenm.202100690
- J. Cao, F. Yan, Recent progress in tin-based perovskite solar cells. Energy Environ. Sci. 14(3), 1286–1325 (2021). https://doi.org/10.1039/d0ee04007j
- A. Yadegarifard, H. Lee, H.-J. Seok, I. Kim, B.-K. Ju et al., FA/Cs-based mixed Pb–Sn perovskite solar cells: a review of recent advances in stability and efficiency. Nano Energy 112, 108481 (2023). https://doi.org/10.1016/j.nanoen.2023.108481
- W. Ke, C.C. Stoumpos, M.G. Kanatzidis, “Unleaded” perovskites: status quo and future prospects of tin-based perovskite solar cells. Adv. Mater. 31(47), 1803230 (2019). https://doi.org/10.1002/adma.201803230
- S. Hu, J. Thiesbrummel, J. Pascual, M. Stolterfoht, A. Wakamiya et al., Narrow bandgap metal halide perovskites for all-perovskite tandem photovoltaics. Chem. Rev. 124(7), 4079–4123 (2024). https://doi.org/10.1021/acs.chemrev.3c00667
- F. Yang, K. Zhu, Advances in mixed tin-lead narrow-bandgap perovskites for single-junction and all-perovskite tandem solar cells. Adv. Mater. 36(31), 2314341 (2024). https://doi.org/10.1002/adma.202314341
- Z. Yang, A. Rajagopal, A.K.Y. Jen, Ideal bandgap organic–inorganic hybrid perovskite solar cells. Adv. Mater. 29(47), 1704418 (2017). https://doi.org/10.1002/adma.201704418
- T. AlZoubi, W.J. Kadhem, M. Al Gharram, G. Makhadmeh, M.A.O. Abdelfattah et al., Advanced optoelectronic modeling and optimization of HTL-free FASnI3/C60 perovskite solar cell architecture for superior performance. Nanomaterials 14(12), 1062 (2024). https://doi.org/10.3390/nano14121062
- B.-B. Yu, Z. Chen, Y. Zhu, Y. Wang, B. Han et al., Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%. Adv. Mater. 33(36), 2102055 (2021). https://doi.org/10.1002/adma.202102055
- S. Lv, W. Gao, Y. Liu, H. Dong, N. Sun et al., Stability of Sn-Pb mixed organic–inorganic halide perovskite solar cells: Progress, challenges, and perspectives. J. Energy Chem. 65, 371–404 (2022). https://doi.org/10.1016/j.jechem.2021.06.011
- A. Halder, K.-W. Yeom, N.-G. Park, Strategies toward suppression of Sn(II) oxidation for stable Sn–Pb perovskite solar cells. ACS Energy Lett. 8(10), 4267–4277 (2023). https://doi.org/10.1021/acsenergylett.3c01610
- J. Liu, H. Yao, S. Wang, C. Wu, L. Ding et al., Origins and suppression of Sn(II)/Sn(IV) oxidation in tin halide perovskite solar cells. Adv. Energy Mater. 13(23), 2300696 (2023). https://doi.org/10.1002/aenm.202300696
- H. Dong, C. Ran, W. Gao, N. Sun, X. Liu et al., Crystallization dynamics of Sn-based perovskite thin films: toward efficient and stable photovoltaic devices. Adv. Energy Mater. 12(1), 2102213 (2022). https://doi.org/10.1002/aenm.202102213
- T.J. MacDonald, L. Lanzetta, X. Liang, D. Ding, S.A. Haque, Engineering stable lead-free tin halide perovskite solar cells: lessons from materials chemistry. Adv. Mater. 35(25), 2206684 (2023). https://doi.org/10.1002/adma.202206684
- E.W. Diau, E. Jokar, M. Rameez, Strategies to improve performance and stability for tin-based perovskite solar cells. ACS Energy Lett. 4(8), 1930–1937 (2019). https://doi.org/10.1021/acsenergylett.9b01179
- L. Chen, S. Fu, Y. Li, N. Sun, Y. Yan et al., On the durability of tin-containing perovskite solar cells. Adv. Sci. 11(1), e2304811 (2024). https://doi.org/10.1002/advs.202304811
- P. Li, X. Cao, J. Li, B. Jiao, X. Hou et al., Ligand engineering in tin-based perovskite solar cells. Nano-Micro Lett. 15(1), 167 (2023). https://doi.org/10.1007/s40820-023-01143-0
- M. Wright, B. Vicari Stefani, T.W. Jones, B. Hallam, A. Soeriyadi et al., Design considerations for the bottom cell in perovskite/silicon tandems: a terawatt scalability perspective. Energy Environ. Sci. 16(10), 4164–4190 (2023). https://doi.org/10.1039/d3ee00952a
- G. Hashmi, M. Hasanuzzaman, M.K. Basher, M. Hoq, M.H. Rahman, Texturization of as-cut p-type monocrystalline silicon wafer using different wet chemical solutions. Appl. Phys. A Mater. Sci. Process. 124(6), 415 (2018). https://doi.org/10.1007/s00339-018-1818-8
- F. Fu, J. Li, T.C. Yang, H. Liang, A. Faes et al., Monolithic perovskite-silicon tandem solar cells: from the lab to fab? Adv. Mater. 34(24), 2106540 (2022). https://doi.org/10.1002/adma.202106540
- D.H. MacDonald, A. Cuevas, M.J. Kerr, C. Samundsett, D. Ruby et al., Texturing industrial multicrystalline silicon solar cells. Sol. Energy 76(1–3), 277–283 (2004). https://doi.org/10.1016/j.solener.2003.08.019
- D.Z. Dimitrov, C.-H. Du, Crystalline silicon solar cells with micro/nano texture. Appl. Surf. Sci. 266, 1–4 (2013). https://doi.org/10.1016/j.apsusc.2012.10.081
- X. Luo, H. Luo, H. Li, R. Xia, X. Zheng et al., Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon. Adv. Mater. 35(9), e2207883 (2023). https://doi.org/10.1002/adma.202207883
- P. Tockhorn, J. Sutter, A. Cruz, P. Wagner, K. Jäger et al., Nano-optical designs for high-efficiency monolithic perovskite-silicon tandem solar cells. Nat. Nanotechnol. 17(11), 1214–1221 (2022). https://doi.org/10.1038/s41565-022-01228-8
- A. Harter, S. Mariotti, L. Korte, R. Schlatmann, S. Albrecht et al., Double-sided nano-textured surfaces for industry compatible high-performance silicon heterojunction and perovskite/silicon tandem solar cells. Prog. Photovolt. Res. Appl. 31(8), 813–823 (2023). https://doi.org/10.1002/pip.3685
- A. Alasfour, Z.J. Yu, W. Weigand, D. Quispe, Z.C. Holman, Sub-micrometer random-pyramid texturing of silicon solar wafers with excellent surface passivation and low reflectance. Sol. Energy Mater. Sol. Cells 218, 110761 (2020). https://doi.org/10.1016/j.solmat.2020.110761
- F. Sahli, J. Werner, B.A. Kamino, M. Bräuninger, R. Monnard et al., Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17(9), 820–826 (2018). https://doi.org/10.1038/s41563-018-0115-4
- L. Mao, T. Yang, H. Zhang, J. Shi, Y. Hu et al., Fully textured, production-line compatible monolithic perovskite/silicon tandem solar cells approaching 29% efficiency. Adv. Mater. 34(40), e2206193 (2022). https://doi.org/10.1002/adma.202206193
- F. Hou, X. Ren, H. Guo, X. Ning, Y. Wang et al., Monolithic perovskite/silicon tandem solar cells: a review of the present status and solutions toward commercial application. Nano Energy 124, 109476 (2024). https://doi.org/10.1016/j.nanoen.2024.109476
- Y. Shi, J.J. Berry, F. Zhang, Perovskite/silicon tandem solar cells: insights and outlooks. ACS Energy Lett. 9(3), 1305–1330 (2024). https://doi.org/10.1021/acsenergylett.4c00172
- Z. Wu, E. Bi, C. Li, L. Chen, Z. Song et al., Scalable two-step production of high-efficiency perovskite solar cells and modules. Sol. RRL 7(1), 2200571 (2023). https://doi.org/10.1002/solr.202200571
- J.-H. Lee, B.S. Kim, J. Park, J.-W. Lee, K. Kim, Opportunities and challenges for perovskite solar cells based on vacuum thermal evaporation. Adv. Mater. Technol. 8(20), 2200928 (2023). https://doi.org/10.1002/admt.202200928
- Z. Wang, M. Lyu, B.W. Zhang, M. Xiao, C. Zhang et al., Thermally evaporated metal halide perovskites and their analogues: film fabrication, applications and beyond. Small Meth. 9(2), 2301633 (2025). https://doi.org/10.1002/smtd.202301633
- Y. Tong, A. Najar, L. Wang, L. Liu, M. Du et al., Wide-bandgap organic-inorganic lead halide perovskite solar cells. Adv. Sci. 9(14), e2105085 (2022). https://doi.org/10.1002/advs.202105085
- K. Suchan, T.J. Jacobsson, C. Rehermann, E.L. Unger, T. Kirchartz et al., Rationalizing performance losses of wide bandgap perovskite solar cells evident in data from the perovskite database. Adv. Energy Mater. 14(5), 2303420 (2024). https://doi.org/10.1002/aenm.202303420
- M. Stolterfoht, C.M. Wolff, J.A. Márquez, S. Zhang, C.J. Hages et al., Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3(10), 847–854 (2018). https://doi.org/10.1038/s41560-018-0219-8
- O. Almora, G.C. Bazan, C.I. Cabrera, L.A. Castriotta, S. Erten-Ela et al., Device performance of emerging photovoltaic materials (version 5). Adv. Energy Mater. 15(12), 2404386 (2024). https://doi.org/10.1002/aenm.202404386
- W. Yang, H. Long, X. Sha, J. Sun, Y. Zhao et al., Unlocking voltage potentials of mixed-halide perovskite solar cells via phase segregation suppression. Adv. Funct. Mater. 32(12), 2110698 (2022). https://doi.org/10.1002/adfm.202110698
- A. Rajagopal, R.J. Stoddard, S.B. Jo, H.W. Hillhouse, A.K. Jen, Overcoming the photovoltage plateau in large bandgap perovskite photovoltaics. Nano Lett. 18(6), 3985–3993 (2018). https://doi.org/10.1021/acs.nanolett.8b01480
- Y. An, N. Zhang, Z. Zeng, Y. Cai, W. Jiang et al., Optimizing crystallization in wide-bandgap mixed halide perovskites for high-efficiency solar cells. Adv. Mater. 36(17), 2306568 (2024). https://doi.org/10.1002/adma.202306568
- Y.J. Ahn, H.J. Kim, I.J. Park, J.Y. Kim, Recent advances and opportunities in perovskite-based triple-junction tandem solar cells. Sustain. Energy Fuels 8(23), 5352–5365 (2024). https://doi.org/10.1039/d4se01051e
- G.F. Samu, Á. Balog, F. De Angelis, D. Meggiolaro, P.V. Kamat et al., Electrochemical hole injection selectively expels iodide from mixed halide perovskite films. J. Am. Chem. Soc. 141(27), 10812–10820 (2019). https://doi.org/10.1021/jacs.9b04568
- G. Yang, Z. Ni, Z.J. Yu, B.W. Larson, Z. Yu et al., Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells. Nat. Photon. 16(8), 588–594 (2022). https://doi.org/10.1038/s41566-022-01033-8
- Y. Zhou, I. Poli, D. Meggiolaro, F. De Angelis, A. Petrozza, Defect activity in metal halide perovskites with wide and narrow bandgap. Nat. Rev. Mater. 6(11), 986–1002 (2021). https://doi.org/10.1038/s41578-021-00331-x
- T. Nie, Z. Fang, X. Ren, Y. Duan, S.F. Liu, Recent advances in wide-bandgap organic-inorganic halide perovskite solar cells and tandem application. Nano-Micro Lett. 15(1), 70 (2023). https://doi.org/10.1007/s40820-023-01040-6
- A.J. Ramadan, R.D.J. Oliver, M.B. Johnston, H.J. Snaith, Methylammonium-free wide-bandgap metal halide perovskites for tandem photovoltaics. Nat. Rev. Mater. 8(12), 822–838 (2023). https://doi.org/10.1038/s41578-023-00610-9
- F. Xu, M. Zhang, Z. Li, X. Yang, R. Zhu, Challenges and perspectives toward future wide-bandgap mixed-halide perovskite photovoltaics. Adv. Energy Mater. 13(13), 2203911 (2023). https://doi.org/10.1002/aenm.202203911
- Z. Cheng, M. Zhang, Y. Zhang, W. Qi, Z. Wang et al., Stable wide-bandgap perovskite solar cells for tandem applications. Nano Energy 127, 109708 (2024). https://doi.org/10.1016/j.nanoen.2024.109708
- C.M. Wolff, P. Caprioglio, M. Stolterfoht, D. Neher, Nonradiative recombination in perovskite solar cells: the role of interfaces. Adv. Mater. 31(52), e1902762 (2019). https://doi.org/10.1002/adma.201902762
- H. Chen, A. Maxwell, C. Li, S. Teale, B. Chen et al., Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613(7945), 676–681 (2023). https://doi.org/10.1038/s41586-022-05541-z
- T. Li, J. Xu, R. Lin, S. Teale, H. Li et al., Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems. Nat. Energy 8(6), 610–620 (2023). https://doi.org/10.1038/s41560-023-01250-7
- N. Ahn, M. Choi, Towards long-term stable perovskite solar cells: degradation mechanisms and stabilization techniques. Adv. Sci. 11(4), 2306110 (2024). https://doi.org/10.1002/advs.202306110
- L. Duan, A. Uddin, Defects and stability of perovskite solar cells: a critical analysis. Mater. Chem. Front. 6(4), 400–417 (2022). https://doi.org/10.1039/d1qm01250a
- T.A. Chowdhury, M.A. Bin Zafar, M. Sajjad-Ul Islam, M. Shahinuzzaman, M.A. Islam et al., Stability of perovskite solar cells: issues and prospects. RSC Adv. 13(3), 1787–1810 (2023). https://doi.org/10.1039/d2ra05903g
- G. Nazir, S.-Y. Lee, J.-H. Lee, A. Rehman, J.-K. Lee et al., Stabilization of perovskite solar cells: recent developments and future perspectives. Adv. Mater. 34(50), 2204380 (2022). https://doi.org/10.1002/adma.202204380
- H. Zhang, L. Pfeifer, S.M. Zakeeruddin, J. Chu, M. Grätzel, Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 7(9), 632–652 (2023). https://doi.org/10.1038/s41570-023-00510-0
- A.R. bin Mohd Yusoff, M. Vasilopoulou, D.G. Georgiadou, L.C. Palilis, A. Abate et al., Passivation and process engineering approaches of halide perovskite films for high efficiency and stability perovskite solar cells. Energy Environ. Sci. 14(5), 2906–2953 (2021). https://doi.org/10.1039/d1ee00062d
- X. Ren, J. Wang, Y. Lin, Y. Wang, H. Xie et al., Mobile iodides capture for highly photolysis- and reverse-bias-stable perovskite solar cells. Nat. Mater. 23(6), 810–817 (2024). https://doi.org/10.1038/s41563-024-01876-2
- H. Kim, S.M. Yoo, B. Ding, H. Kanda, N. Shibayama et al., Shallow-level defect passivation by 6H perovskite polytype for highly efficient and stable perovskite solar cells. Nat. Commun. 15(1), 5632 (2024). https://doi.org/10.1038/s41467-024-50016-6
- J. Zhou, L. Tan, Y. Liu, H. Li, X. Liu et al., Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material. Joule 8(6), 1691–1706 (2024). https://doi.org/10.1016/j.joule.2024.02.019
- P. Caprioglio, S. Caicedo-Dávila, T.C. Yang, C.M. Wolff, F. Peña-Camargo et al., Nano-emitting heterostructures violate optical reciprocity and enable efficient photoluminescence in halide-segregated methylammonium-free wide bandgap perovskites. ACS Energy Lett. 6(2), 419–428 (2021). https://doi.org/10.1021/acsenergylett.0c02270
- L. Tian, J. Xue, R. Wang, Halide segregation in mixed halide perovskites: visualization and mechanisms. Electronics 11(5), 700 (2022). https://doi.org/10.3390/electronics11050700
- K.A. Bush, K. Frohna, R. Prasanna, R.E. Beal, T. Leijtens et al., Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. ACS Energy Lett. 3(2), 428–435 (2018). https://doi.org/10.1021/acsenergylett.7b01255
- S. Wu, M. Liu, A.K.Y. Jen, Prospects and challenges for perovskite-organic tandem solar cells. Joule 7(3), 484–502 (2023). https://doi.org/10.1016/j.joule.2023.02.014
- D.J. Slotcavage, H.I. Karunadasa, M.D. McGehee, Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1(6), 1199–1205 (2016). https://doi.org/10.1021/acsenergylett.6b00495
- L. Duan, D. Walter, N. Chang, J. Bullock, D. Kang et al., Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nat. Rev. Mater. 8(4), 261–281 (2023). https://doi.org/10.1038/s41578-022-00521-1
- P. Chen, Y. Xiao, J. Hu, S. Li, D. Luo et al., Multifunctional ytterbium oxide buffer for perovskite solar cells. Nature 625(7995), 516–522 (2024). https://doi.org/10.1038/s41586-023-06892-x
- S. Li, Y. Xiao, R. Su, W. Xu, D. Luo et al., Coherent growth of high-Miller-index facets enhances perovskite solar cells. Nature 635(8040), 874–881 (2024). https://doi.org/10.1038/s41586-024-08159-5
- Z. Fang, T. Nie, S. Liu, J. Ding, Overcoming phase segregation in wide-bandgap perovskites: from progress to perspective. Adv. Funct. Mater. 34(42), 2404402 (2024). https://doi.org/10.1002/adfm.202404402
- N. Porotnikova, D. Osinkin, Segregation and interdiffusion processes in perovskites: a review of recent advances. J. Mater. Chem. A 12(5), 2620–2646 (2024). https://doi.org/10.1039/d3ta06708d
- Z. Cui, Q. Zhang, Y. Bai, Q. Chen, Issues of phase segregation in wide-bandgap perovskites. Mater. Chem. Front. 7(10), 1896–1911 (2023). https://doi.org/10.1039/d2qm01341j
- M.V. Khenkin, E.A. Katz, A. Abate, G. Bardizza, J.J. Berry et al., Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5(1), 35–49 (2020). https://doi.org/10.1038/s41560-019-0529-5
- M. Kaltenbrunner, G. Adam, E.D. Głowacki, M. Drack, R. Schwödiauer et al., Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat. Mater. 14(10), 1032–1039 (2015). https://doi.org/10.1038/nmat4388
- B. Salhi, Y.S. Wudil, M.K. Hossain, A. Al-Ahmed, F.A. Al-Sulaiman, Review of recent developments and persistent challenges in stability of perovskite solar cells. Renew. Sustain. Energy Rev. 90, 210–222 (2018). https://doi.org/10.1016/j.rser.2018.03.058
- Q. Lu, Z. Yang, X. Meng, Y. Yue, M.A. Ahmad et al., A review on encapsulation technology from organic light emitting diodes to organic and perovskite solar cells. Adv. Funct. Mater. 31(23), 2100151 (2021). https://doi.org/10.1002/adfm.202100151
- J. Li, R. Xia, W. Qi, X. Zhou, J. Cheng et al., Encapsulation of perovskite solar cells for enhanced stability: Structures, materials and characterization. J. Power. Sources 485, 229313 (2021). https://doi.org/10.1016/j.jpowsour.2020.229313
- A. Naikaew, P. Kumnorkaew, W. Wattanathana, K.Z. Swe, P. Pansa-Ngat et al., Investigation of double-layered Pb-Sn perovskite absorbers: formation, structure, band alignment, and stability. J. Phys. Chem. C 126(3), 1623–1634 (2022). https://doi.org/10.1021/acs.jpcc.1c08811
- M. Hao, S. Ding, S. Gaznaghi, H. Cheng, L. Wang, Perovskite quantum dot solar cells: current status and future outlook. ACS Energy Lett. 9(1), 308–322 (2024). https://doi.org/10.1021/acsenergylett.3c01983
References
X. Peng, L. Sun, K. Feng, H. Zhong, J. Liang et al., Extent of global decarbonization of the power sector through energy policies and governance capacity. Commun. Earth Environ. 5, 321 (2024). https://doi.org/10.1038/s43247-024-01494-5
Y. Zhou, Worldwide carbon neutrality transition? Energy efficiency, renewable, carbon trading and advanced energy policies. Energy Rev. 2(2), 100026 (2023). https://doi.org/10.1016/j.enrev.2023.100026
L. Kruitwagen, K.T. Story, J. Friedrich, L. Byers, S. Skillman et al., A global inventory of photovoltaic solar energy generating units. Nature 598(7882), 604–610 (2021). https://doi.org/10.1038/s41586-021-03957-7
International Technology Roadmap for Photovoltaic (ITRPV) 14th edition. (2023). https://www.vdma.eu/en-GB/international-technology-roadmap-photovoltaic
J.P. Helveston, G. He, M.R. Davidson, Quantifying the cost savings of global solar photovoltaic supply chains. Nature 612(7938), 83–87 (2022). https://doi.org/10.1038/s41586-022-05316-6
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
Longi sets new world-record for silicon solar cell efficiency, launching 2nd generation ultra-efficient bc-based module (2024) https://www.longi.com/en/news/longi-hi-mo9-bc-world-record
W. Shockley, The shockley-queisser limit. J. Appl. Phys. 32(3), 510–519 (1961). https://doi.org/10.1063/1.1736034
R. Wang, T. Huang, J. Xue, J. Tong, K. Zhu et al., Prospects for metal halide perovskite-based tandem solar cells. Nat. Photonics 15(6), 411–425 (2021). https://doi.org/10.1038/s41566-021-00809-8
M. Heydarian, M. Heydarian, P. Schygulla, S.K. Reichmuth, A.J. Bett et al., Recent progress in monolithic two-terminal perovskite-based triple-junction solar cells. Energy Environ. Sci. 17(5), 1781–1818 (2024). https://doi.org/10.1039/d3ee02822d
M. Yamaguchi, F. Dimroth, J.F. Geisz, N.J. Ekins-Daukes, Multi-junction solar cells paving the way for super high-efficiency. J. Appl. Phys. 129(24), 240901 (2021). https://doi.org/10.1063/5.0048653
A.W.Y. Ho-Baillie, J. Zheng, M.A. Mahmud, F.-J. Ma, D.R. McKenzie et al., Recent progress and future prospects of perovskite tandem solar cells. Appl. Phys. Rev. 8(4), 041307 (2021). https://doi.org/10.1063/5.0061483
F. Guo, N. Li, F.W. Fecher, N. Gasparini, C.O.R. Quiroz et al., A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells. Nat. Commun. 6, 7730 (2015). https://doi.org/10.1038/ncomms8730
D. König, K. Casalenuovo, Y. Takeda, G. Conibeer, J.F. Guillemoles et al., Hot carrier solar cells: Principles, materials and design. Phys. E Low Dimension. Syst. Nanostruct. 42(10), 2862–2866 (2010). https://doi.org/10.1016/j.physe.2009.12.032
S.P. Philipps, A.W. Bett, III-V Multi-junction solar cells and concentrating photovoltaic (CPV) systems. Adv. Opt. Technol. 3(5–6), 469–478 (2014). https://doi.org/10.1515/aot-2014-0051
M. Anaya, G. Lozano, M.E. Calvo, H. Míguez, ABX3 perovskites for tandem solar cells. Joule 1(4), 769–793 (2017). https://doi.org/10.1016/j.joule.2017.09.017
K. Wang, Z. Jin, L. Liang, H. Bian, D. Bai et al., All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15. Nat. Commun. 9(1), 4544 (2018). https://doi.org/10.1038/s41467-018-06915-6
H. Shen, D. Walter, Y. Wu, K.C. Fong, D.A. Jacobs et al., Monolithic perovskite/Si tandem solar cells: pathways to over 30% efficiency. Adv. Energy Mater. 10(13), 1902840 (2020). https://doi.org/10.1002/aenm.201902840
M. Yamaguchi, III–V compound multi-junction solar cells: present and future. Sol. Energy Mater. Sol. Cells 75(1–2), 261–269 (2003). https://doi.org/10.1016/S0927-0248(02)00168-X
S. Essig, C. Allebé, T. Remo, J.F. Geisz, M.A. Steiner et al., Raising the one-Sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nat. Energy 2(9), 17144 (2017). https://doi.org/10.1038/nenergy.2017.144
Martin A. Green, Ewan D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe et al., Solar cell efficiency tables (version 65). Prog. Photovoltaics 33(1), 3–15 (2024). https://doi.org/10.1002/pip.3867
K. Sasaki, T. Agui, K. Nakaido, N. Takahashi, R. Onitsuka et al., Development of InGaP/GaAs/InGaAs inverted triple junction concentrator solar cells. 9TH International Conference on Concentrator Photovoltaic Systems: CPV-9 Miyazaki, Japan. AIP, pp. 22–25 (2013). https://doi.org/10.1063/1.4822190
P.T. Chiu, D.C. Law, R.L. Woo, S.B. Singer, D. Bhusari et al., 35.8% space and 38.8% terrestrial 5J direct bonded cells. 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC). June 8–13, 2014, Denver, CO, USA. IEEE, pp. 0011–0013 (2014)
J.F. Geisz, R.M. France, K.L. Schulte, M.A. Steiner, A.G. Norman et al., Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nat. Energy 5(4), 326–335 (2020). https://doi.org/10.1038/s41560-020-0598-5
J.M. Raya-Armenta, N. Bazmohammadi, J.C. Vasquez, J.M. Guerrero, A short review of radiation-induced degradation of III–V photovoltaic cells for space applications. Sol. Energy Mater. Sol. Cells 233, 111379 (2021). https://doi.org/10.1016/j.solmat.2021.111379
H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King et al., III–V multijunction solar cells for concentrating photovoltaics. Energy Environ. Sci. 2(2), 174–192 (2009). https://doi.org/10.1039/b809257e
H. Li, W. Zhang, Perovskite tandem solar cells: from fundamentals to commercial deployment. Chem. Rev. 120(18), 9835–9950 (2020). https://doi.org/10.1021/acs.chemrev.9b00780
P. Yan, D. Yang, H. Wang, S. Yang, Z. Ge, Recent advances in dopant-free organic hole-transporting materials for efficient, stable and low-cost perovskite solar cells. Energy Environ. Sci. 15(9), 3630–3669 (2022). https://doi.org/10.1039/d2ee01256a
P. Chen, Y. Xiao, S. Li, X. Jia, D. Luo et al., The promise and challenges of inverted perovskite solar cells. Chem. Rev. 124(19), 10623–10700 (2024). https://doi.org/10.1021/acs.chemrev.4c00073
S. Teale, M. Degani, B. Chen, E.H. Sargent, G. Grancini, Molecular cation and low-dimensional perovskite surface passivation in perovskite solar cells. Nat. Energy 9(7), 779–792 (2024). https://doi.org/10.1038/s41560-024-01529-3
NREL. Best research-cell efficiency chart (2025)
J. Werner, F. Sahli, F. Fu, J.J. Diaz Leon, A. Walter et al., Perovskite/perovskite/silicon monolithic triple-junction solar cells with a fully textured design. ACS Energy Lett. 3(9), 2052–2058 (2018). https://doi.org/10.1021/acsenergylett.8b01165
S. Liu, Y. Lu, C. Yu, J. Li, R. Luo et al., Triple-junction solar cells with cyanate in ultrawide-bandgap perovskites. Nature 628(8007), 306–312 (2024). https://doi.org/10.1038/s41586-024-07226-1
F.H. Isikgor, T. Maksudov, X. Chang, B. Adilbekova, Z. Ling et al., Monolithic perovskite–perovskite–organic triple-junction solar cells with a voltage output exceeding 3 V. ACS Energy Lett. 7(12), 4469–4471 (2022). https://doi.org/10.1021/acsenergylett.2c02340
S. Hu, J. Wang, P. Zhao, J. Pascual, J. Wang et al., Steering perovskite precursor solutions for multijunction photovoltaics. Nature 639(8053), 93–101 (2025). https://doi.org/10.1038/s41586-024-08546-y
J. Wang, L. Zeng, D. Zhang, A. Maxwell, H. Chen et al., Halide homogenization for low energy loss in 2-eV-bandgap perovskites and increased efficiency in all-perovskite triple-junction solar cells. Nat. Energy 9(1), 70–80 (2024). https://doi.org/10.1038/s41560-023-01406-5
J. Liu, Y. He, L. Ding, H. Zhang, Q. Li et al., Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature 635(8039), 596–603 (2024). https://doi.org/10.1038/s41586-024-07997-7
J. Liu, B. Shi, Q. Xu, Y. Li, Y. Li et al., Textured perovskite/silicon tandem solar cells achieving over 30% efficiency promoted by 4-fluorobenzylamine hydroiodide. Nano-Micro Lett. 16(1), 189 (2024). https://doi.org/10.1007/s40820-024-01406-4
C. Kan, P. Hang, S. Wang, B. Li, X. Yu et al., Efficient and stable perovskite-silicon tandem solar cells with copper thiocyanate-embedded perovskite on textured silicon. Nat. Photonics 19(1), 63–70 (2024). https://doi.org/10.1038/s41566-024-01561-5
X. Li, Z. Ying, S. Li, L. Chen, M. Zhang et al., Top-down dual-interface carrier management for highly efficient and stable perovskite/silicon tandem solar cells. Nano-Micro Lett. 17(1), 141 (2025). https://doi.org/10.1007/s40820-024-01631-x
C. Li, Y. Chen, Y. Li, Z. Zhang, J. Yang et al., Achieving 32% efficiency in perovskite/silicon tandem solar cells with bidentate-anchored superwetting self-assembled molecular layers. Angew. Chem. Int. Ed. 64(23), e202502730 (2025). https://doi.org/10.1002/anie.202502730
C. Sun, N. University, et al., Wide-bandgap perovskite and perovskite/silicon tandem solar cells through strong hydrogen bonding interaction. ACS Energy Lett. 10(5), 2171–2179 (2025). https://doi.org/10.1021/acsenergylett.5c00147
L.C. Hirst, N.J. Ekins-Daukes, Fundamental losses in solar cells. Prog. Photovolt. Res. Appl. 19(3), 286–293 (2011). https://doi.org/10.1002/pip.1024
G.E. Eperon, M.T. Hörantner, H.J. Snaith, Metal halide perovskite tandem and multiple-junction photovoltaics. Nat. Rev. Chem. 1(12), 0095 (2017). https://doi.org/10.1038/s41570-017-0095
M.T. Hörantner, T. Leijtens, M.E. Ziffer, G.E. Eperon, M.G. Christoforo et al., The potential of multijunction perovskite solar cells. ACS Energy Lett. 2(10), 2506–2513 (2017). https://doi.org/10.1021/acsenergylett.7b00647
U. Rau, Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76(8), 085303 (2007). https://doi.org/10.1103/physrevb.76.085303
S.R. Kurtz, P. Faine, J.M. Olson, Modeling of two-junction, series-connected tandem solar cells using top-cell thickness as an adjustable parameter. J. Appl. Phys. 68(4), 1890–1895 (1990). https://doi.org/10.1063/1.347177
F. Staub, I. Anusca, D.C. Lupascu, U. Rau, T. Kirchartz, Effect of reabsorption and photon recycling on photoluminescence spectra and transients in lead-halide perovskite crystals. J. Phys. Mater. 3(2), 025003 (2020). https://doi.org/10.1088/2515-7639/ab6fd0
A. Pusch, P. Pearce, N.J. Ekins-Daukes, Analytical expressions for the efficiency limits of radiatively coupled tandem solar cells. IEEE J. Photovolt. 9(3), 679–687 (2019). https://doi.org/10.1109/JPHOTOV.2019.2903180
M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134
I. Borriello, G. Cantele, D. Ninno, Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides. Phys. Rev. B 77(23), 235214 (2008). https://doi.org/10.1103/PhysRevB.77.235214
F.C. Hanusch, E. Wiesenmayer, E. Mankel, A. Binek, P. Angloher et al., Efficient planar heterojunction perovskite solar cells based on formamidinium lead bromide. J. Phys. Chem. Lett. 5(16), 2791–2795 (2014). https://doi.org/10.1021/jz501237m
T. Jesper Jacobsson, J.-P. Correa-Baena, M. Pazoki, M. Saliba, K. Schenk et al., Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy Environ. Sci. 9(5), 1706–1724 (2016). https://doi.org/10.1039/c6ee00030d
J. Berry, T. Buonassisi, D.A. Egger, G. Hodes, L. Kronik et al., Hybrid organic–inorganic perovskites (HOIPs): opportunities and challenges. Adv. Mater. 27(35), 5102–5112 (2015). https://doi.org/10.1002/adma.201502294
J.L. Knutson, J.D. Martin, D.B. Mitzi, Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. Inorg. Chem. 44(13), 4699–4705 (2005). https://doi.org/10.1021/ic050244q
P. Qin, A.L. Domanski, A.K. Chandiran, R. Berger, H.J. Butt et al., Yttrium-substituted nanocrystalline TiO₂ photoanodes for perovskite based heterojunction solar cells. Nanoscale 6(3), 1508–1514 (2014). https://doi.org/10.1039/c3nr05884k
N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera et al., Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7(9), 3061–3068 (2014). https://doi.org/10.1039/c4ee01076k
P. Gao, M. Grätzel, M.K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7(8), 2448–2463 (2014). https://doi.org/10.1039/c4ee00942h
E.T. Hoke, D.J. Slotcavage, E.R. Dohner, A.R. Bowring, H.I. Karunadasa et al., Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6(1), 613–617 (2015). https://doi.org/10.1039/c4sc03141e
G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982 (2014). https://doi.org/10.1039/c3ee43822h
M.R. Filip, G.E. Eperon, H.J. Snaith, F. Giustino, Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 5, 5757 (2014). https://doi.org/10.1038/ncomms6757
E. Mosconi, A. Amat, M.K. Nazeeruddin, M. Grätzel, F. De Angelis, First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117(27), 13902–13913 (2013). https://doi.org/10.1021/jp4048659
J. Im, C.C. Stoumpos, H. Jin, A.J. Freeman, M.G. Kanatzidis, Antagonism between spin–orbit coupling and steric effects causes anomalous band gap evolution in the perovskite photovoltaic materials CH3NH3Sn1–xPbxI3. J. Phys. Chem. Lett. 6(17), 3503–3509 (2015). https://doi.org/10.1021/acs.jpclett.5b01738
F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8(6), 489–494 (2014). https://doi.org/10.1038/nphoton.2014.82
J. Lacombe, O. Sergeev, K. Chakanga, K. von Maydell, C. Agert, Three dimensional optical modeling of amorphous silicon thin film solar cells using the finite-difference time-domain method including real randomly surface topographies. J. Appl. Phys. 110(2), 023102 (2011). https://doi.org/10.1063/1.3610516
E. Centurioni, Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers. Appl. Opt. 44(35), 7532–7539 (2005). https://doi.org/10.1364/ao.44.007532
M.T. Hörantner, H.J. Snaith, Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions. Energy Environ. Sci. 10(9), 1983–1993 (2017). https://doi.org/10.1039/c7ee01232b
K. Jäger, J. Sutter, M. Hammerschmidt, P.-I. Schneider, C. Becker, Prospects of light management in perovskite/silicon tandem solar cells. Nanophotonics 10(8), 1991–2000 (2021). https://doi.org/10.1515/nanoph-2020-0674
S. Zandi, M. Razaghi, Finite element simulation of perovskite solar cell: a study on efficiency improvement based on structural and material modification. Sol. Energy 179, 298–306 (2019). https://doi.org/10.1016/j.solener.2018.12.032
M.I. Hossain, W. Qarony, S. Ma, L. Zeng, D. Knipp et al., Perovskite/silicon tandem solar cells: from detailed balance limit calculations to photon management. Nano-Micro Lett. 11(1), 58 (2019). https://doi.org/10.1007/s40820-019-0287-8
L. Ba, H. Liu, W. Shen, Perovskite/c-Si tandem solar cells with realistic inverted architecture: Achieving high efficiency by optical optimization. Prog. Photovolt. Res. Appl. 26(11), 924–933 (2018). https://doi.org/10.1002/pip.3037
J. Li, P. Monk, D. Weile, Time domain integral equation methods in computational electromagnetism. Computational Electromagnetism. Springer International Publishing, (2015), pp 111–189 https://doi.org/10.1007/978-3-319-19306-9_3
J. Zheng, G. Wang, W. Duan, M.A. Mahmud, H. Yi et al., Monolithic perovskite–perovskite–silicon triple-junction tandem solar cell with an efficiency of over 20%. ACS Energy Lett. 7(9), 3003–3005 (2022). https://doi.org/10.1021/acsenergylett.2c01556
Y.J. Choi, S.Y. Lim, J.H. Park, S.G. Ji, J.Y. Kim, Atomic layer deposition-free monolithic perovskite/perovskite/silicon triple-junction solar cells. ACS Energy Lett. 8(7), 3141–3146 (2023). https://doi.org/10.1021/acsenergylett.3c00919
H. Hu, S.X. An, Y. Li, S. Orooji, R. Singh et al., Triple-junction perovskite–perovskite–silicon solar cells with power conversion efficiency of 24.4%. Energy Environ. Sci. 17(8), 2800–2814 (2024). https://doi.org/10.1039/d3ee03687a
F. Li, D. Wu, L. Shang, R. Xia, H. Zhang et al., Highly efficient monolithic perovskite/perovskite/silicon triple-junction solar cells. Adv. Mater. 36(16), e2311595 (2024). https://doi.org/10.1002/adma.202311595
F. Xu, E. Aydin, J. Liu, E. Ugur, G.T. Harrison et al., Monolithic perovskite/perovskite/silicon triple-junction solar cells with cation double displacement enabled 2.0 eV perovskites. Joule 8(1), 224–240 (2024). https://doi.org/10.1016/j.joule.2023.11.018
Y. He, Z. Tang, B. He, C. Han, L. Ding et al., Composition engineering of perovskite absorber assisted efficient textured monolithic perovskite/silicon heterojunction tandem solar cells. RSC Adv. 13(12), 7886–7896 (2023). https://doi.org/10.1039/d2ra05481g
Y. Li, B. Shi, Q. Xu, L. Yan, N. Ren et al., CsCl induced efficient fully-textured perovskite/crystalline silicon tandem solar cell. Nano Energy 122, 109285 (2024). https://doi.org/10.1016/j.nanoen.2024.109285
T.C. Yang, P. Fiala, Q. Jeangros, C. Ballif, High-bandgap perovskite materials for multijunction solar cells. Joule 2(8), 1421–1436 (2018). https://doi.org/10.1016/j.joule.2018.05.008
M. Heydarian, M. Heydarian, A.J. Bett, M. Bivour, F. Schindler et al., Monolithic two-terminal perovskite/perovskite/silicon triple-junction solar cells with open circuit voltage >2.8 V. ACS Energy Lett. 8(10), 4186–4192 (2023). https://doi.org/10.1021/acsenergylett.3c01391
T. Ye, L. Qiao, T. Wang, P. Wang, L. Zhang et al., Molecular synergistic effect for high efficiency monolithic perovskite/perovskite/silicon triple-junction tandem solar cells. Adv. Energy Mater. 14(44), 2402491 (2024). https://doi.org/10.1002/aenm.202402491
M. Heydarian, A. Shaji, O. Fischer, M. Günthel, O. Karalis et al., Minimizing open-circuit voltage losses in perovskite/perovskite/silicon triple-junction solar cell with optimized top cell. Sol. RRL 9(3), 2400645 (2025). https://doi.org/10.1002/solr.202400645
Y. Shao, S. Wang, T. Luo, C. Xu, J. Liu et al., Multi-functional interface engineering for monolithic perovskite/perovskite/crystalline silicon triple-junction tandem solar cells. Chemsuschem 18(11), e202402680 (2025). https://doi.org/10.1002/cssc.202402680
J. Liu, M. De Bastiani, E. Aydin, G.T. Harrison, Y. Gao et al., Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgF x. Science 377(6603), 302–306 (2022). https://doi.org/10.1126/science.abn8910
Y. Chen, N. Yang, G. Zheng, F. Pei, W. Zhou et al., Nuclei engineering for even halide distribution in stable perovskite/silicon tandem solar cells. Science 385(6708), 554–560 (2024). https://doi.org/10.1126/science.ado9104
G. Wang, J. Zheng, W. Duan, J. Yang, M.A. Mahmud et al., Molecular engineering of hole-selective layer for high band gap perovskites for highly efficient and stable perovskite-silicon tandem solar cells. Joule 7(11), 2583–2594 (2023). https://doi.org/10.1016/j.joule.2023.09.007
J. Liu, E. Aydin, J. Yin, M. De Bastiani, F.H. Isikgor et al., 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule 5(12), 3169–3186 (2021). https://doi.org/10.1016/j.joule.2021.11.003
J. Zheng, Z. Ying, Z. Yang, Z. Lin, H. Wei et al., Polycrystalline silicon tunnelling recombination layers for high-efficiency perovskite/tunnel oxide passivating contact tandem solar cells. Nat. Energy 8(11), 1250–1261 (2023). https://doi.org/10.1038/s41560-023-01382-w
L. Li, Y. Wang, X. Wang, R. Lin, X. Luo et al., Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7(8), 708–717 (2022). https://doi.org/10.1038/s41560-022-01045-2
J. Zheng, W. Duan, Y. Guo, Z.C. Zhao, H. Yi et al., Efficient monolithic perovskite–Si tandem solar cells enabled by an ultra-thin indium tin oxide interlayer. Energy Environ. Sci. 16(3), 1223–1233 (2023). https://doi.org/10.1039/d2ee04007g
Z. Guo, A.K. Jena, G.M. Kim, T. Miyasaka, The high open-circuit voltage of perovskite solar cells: a review. Energy Environ. Sci. 15(8), 3171–3222 (2022). https://doi.org/10.1039/d2ee00663d
J. Hu, L. Yang, J. Zhang, A review on strategies to fabricate and stabilize phase-pure α-FAPbI3 perovskite solar cells. Sol. RRL 7(13), 2300187 (2023). https://doi.org/10.1002/solr.202300187
Z. Huang, Y. Bai, X. Huang, J. Li, Y. Wu et al., Anion-π interactions suppress phase impurities in FAPbI3 solar cells. Nature 623(7987), 531–537 (2023). https://doi.org/10.1038/s41586-023-06637-w
X. Jiang, X. Wang, X. Wu, S. Zhang, B. Liu et al., Strain regulation via pseudo halide-based ionic liquid toward efficient and stable α-FAPbI3 inverted perovskite solar cells. Adv. Energy Mater. 13(23), 2300700 (2023). https://doi.org/10.1002/aenm.202300700
Z. Zheng, S. Wang, Y. Hu, Y. Rong, A. Mei et al., Development of formamidinium lead iodide-based perovskite solar cells: efficiency and stability. Chem. Sci. 13(8), 2167–2183 (2022). https://doi.org/10.1039/D1SC04769H
M. RaeisianAsl, S.F.K.S. Panahi, M. Jamaati, S.S. Tafreshi, A review on theoretical studies of structural and optoelectronic properties of FA-based perovskite materials with a focus on FAPbI3. Int. J. Energy Res. 46(10), 13117–13151 (2022). https://doi.org/10.1002/er.8008
G. Liu, L. Kong, J. Gong, W. Yang, H.-K. Mao et al., Pressure-induced bandgap optimization in lead-based perovskites with prolonged carrier lifetime and ambient retainability. Adv. Funct. Mater. 27(3), 1604208 (2017). https://doi.org/10.1002/adfm.201604208
E.I. Marchenko, S.A. Fateev, V.V. Korolev, V. Buchinskiy, N.N. Eremin et al., Structure-related bandgap of hybrid lead halide perovskites and close-packed APbX3 family of phases. J. Mater. Chem. C 10(44), 16838–16846 (2022). https://doi.org/10.1039/d2tc03202c
H. Min, M. Kim, S.U. Lee, H. Kim, G. Kim et al., Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366(6466), 749–753 (2019). https://doi.org/10.1126/science.aay7044
G. Kim, H. Min, K.S. Lee, D.Y. Lee, S.M. Yoon et al., Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370(6512), 108–112 (2020). https://doi.org/10.1126/science.abc4417
H. Lu, Y. Liu, P. Ahlawat, A. Mishra, W.R. Tress et al., Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 370(6512), eabb8985 (2020). https://doi.org/10.1126/science.abb8985
J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592(7854), 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5
H. Chen, Y. Chen, T. Zhang, X. Liu, X. Wang et al., Advances to high-performance black-phase FAPbI3 perovskite for efficient and stable photovoltaics. Small Struct. 2(5), 2000130 (2021). https://doi.org/10.1002/sstr.202000130
K. Li, H. Zhou, Advances to stabilize photoactive phase of FAPbI3 perovskite. Chin. J. Chem. 41(20), 2730–2745 (2023). https://doi.org/10.1002/cjoc.202300128
Y. Huang, X. Lei, T. He, Y. Jiang, M. Yuan, Recent progress on formamidinium-dominated perovskite photovoltaics. Adv. Energy Mater. 12(4), 2100690 (2022). https://doi.org/10.1002/aenm.202100690
J. Cao, F. Yan, Recent progress in tin-based perovskite solar cells. Energy Environ. Sci. 14(3), 1286–1325 (2021). https://doi.org/10.1039/d0ee04007j
A. Yadegarifard, H. Lee, H.-J. Seok, I. Kim, B.-K. Ju et al., FA/Cs-based mixed Pb–Sn perovskite solar cells: a review of recent advances in stability and efficiency. Nano Energy 112, 108481 (2023). https://doi.org/10.1016/j.nanoen.2023.108481
W. Ke, C.C. Stoumpos, M.G. Kanatzidis, “Unleaded” perovskites: status quo and future prospects of tin-based perovskite solar cells. Adv. Mater. 31(47), 1803230 (2019). https://doi.org/10.1002/adma.201803230
S. Hu, J. Thiesbrummel, J. Pascual, M. Stolterfoht, A. Wakamiya et al., Narrow bandgap metal halide perovskites for all-perovskite tandem photovoltaics. Chem. Rev. 124(7), 4079–4123 (2024). https://doi.org/10.1021/acs.chemrev.3c00667
F. Yang, K. Zhu, Advances in mixed tin-lead narrow-bandgap perovskites for single-junction and all-perovskite tandem solar cells. Adv. Mater. 36(31), 2314341 (2024). https://doi.org/10.1002/adma.202314341
Z. Yang, A. Rajagopal, A.K.Y. Jen, Ideal bandgap organic–inorganic hybrid perovskite solar cells. Adv. Mater. 29(47), 1704418 (2017). https://doi.org/10.1002/adma.201704418
T. AlZoubi, W.J. Kadhem, M. Al Gharram, G. Makhadmeh, M.A.O. Abdelfattah et al., Advanced optoelectronic modeling and optimization of HTL-free FASnI3/C60 perovskite solar cell architecture for superior performance. Nanomaterials 14(12), 1062 (2024). https://doi.org/10.3390/nano14121062
B.-B. Yu, Z. Chen, Y. Zhu, Y. Wang, B. Han et al., Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%. Adv. Mater. 33(36), 2102055 (2021). https://doi.org/10.1002/adma.202102055
S. Lv, W. Gao, Y. Liu, H. Dong, N. Sun et al., Stability of Sn-Pb mixed organic–inorganic halide perovskite solar cells: Progress, challenges, and perspectives. J. Energy Chem. 65, 371–404 (2022). https://doi.org/10.1016/j.jechem.2021.06.011
A. Halder, K.-W. Yeom, N.-G. Park, Strategies toward suppression of Sn(II) oxidation for stable Sn–Pb perovskite solar cells. ACS Energy Lett. 8(10), 4267–4277 (2023). https://doi.org/10.1021/acsenergylett.3c01610
J. Liu, H. Yao, S. Wang, C. Wu, L. Ding et al., Origins and suppression of Sn(II)/Sn(IV) oxidation in tin halide perovskite solar cells. Adv. Energy Mater. 13(23), 2300696 (2023). https://doi.org/10.1002/aenm.202300696
H. Dong, C. Ran, W. Gao, N. Sun, X. Liu et al., Crystallization dynamics of Sn-based perovskite thin films: toward efficient and stable photovoltaic devices. Adv. Energy Mater. 12(1), 2102213 (2022). https://doi.org/10.1002/aenm.202102213
T.J. MacDonald, L. Lanzetta, X. Liang, D. Ding, S.A. Haque, Engineering stable lead-free tin halide perovskite solar cells: lessons from materials chemistry. Adv. Mater. 35(25), 2206684 (2023). https://doi.org/10.1002/adma.202206684
E.W. Diau, E. Jokar, M. Rameez, Strategies to improve performance and stability for tin-based perovskite solar cells. ACS Energy Lett. 4(8), 1930–1937 (2019). https://doi.org/10.1021/acsenergylett.9b01179
L. Chen, S. Fu, Y. Li, N. Sun, Y. Yan et al., On the durability of tin-containing perovskite solar cells. Adv. Sci. 11(1), e2304811 (2024). https://doi.org/10.1002/advs.202304811
P. Li, X. Cao, J. Li, B. Jiao, X. Hou et al., Ligand engineering in tin-based perovskite solar cells. Nano-Micro Lett. 15(1), 167 (2023). https://doi.org/10.1007/s40820-023-01143-0
M. Wright, B. Vicari Stefani, T.W. Jones, B. Hallam, A. Soeriyadi et al., Design considerations for the bottom cell in perovskite/silicon tandems: a terawatt scalability perspective. Energy Environ. Sci. 16(10), 4164–4190 (2023). https://doi.org/10.1039/d3ee00952a
G. Hashmi, M. Hasanuzzaman, M.K. Basher, M. Hoq, M.H. Rahman, Texturization of as-cut p-type monocrystalline silicon wafer using different wet chemical solutions. Appl. Phys. A Mater. Sci. Process. 124(6), 415 (2018). https://doi.org/10.1007/s00339-018-1818-8
F. Fu, J. Li, T.C. Yang, H. Liang, A. Faes et al., Monolithic perovskite-silicon tandem solar cells: from the lab to fab? Adv. Mater. 34(24), 2106540 (2022). https://doi.org/10.1002/adma.202106540
D.H. MacDonald, A. Cuevas, M.J. Kerr, C. Samundsett, D. Ruby et al., Texturing industrial multicrystalline silicon solar cells. Sol. Energy 76(1–3), 277–283 (2004). https://doi.org/10.1016/j.solener.2003.08.019
D.Z. Dimitrov, C.-H. Du, Crystalline silicon solar cells with micro/nano texture. Appl. Surf. Sci. 266, 1–4 (2013). https://doi.org/10.1016/j.apsusc.2012.10.081
X. Luo, H. Luo, H. Li, R. Xia, X. Zheng et al., Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon. Adv. Mater. 35(9), e2207883 (2023). https://doi.org/10.1002/adma.202207883
P. Tockhorn, J. Sutter, A. Cruz, P. Wagner, K. Jäger et al., Nano-optical designs for high-efficiency monolithic perovskite-silicon tandem solar cells. Nat. Nanotechnol. 17(11), 1214–1221 (2022). https://doi.org/10.1038/s41565-022-01228-8
A. Harter, S. Mariotti, L. Korte, R. Schlatmann, S. Albrecht et al., Double-sided nano-textured surfaces for industry compatible high-performance silicon heterojunction and perovskite/silicon tandem solar cells. Prog. Photovolt. Res. Appl. 31(8), 813–823 (2023). https://doi.org/10.1002/pip.3685
A. Alasfour, Z.J. Yu, W. Weigand, D. Quispe, Z.C. Holman, Sub-micrometer random-pyramid texturing of silicon solar wafers with excellent surface passivation and low reflectance. Sol. Energy Mater. Sol. Cells 218, 110761 (2020). https://doi.org/10.1016/j.solmat.2020.110761
F. Sahli, J. Werner, B.A. Kamino, M. Bräuninger, R. Monnard et al., Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17(9), 820–826 (2018). https://doi.org/10.1038/s41563-018-0115-4
L. Mao, T. Yang, H. Zhang, J. Shi, Y. Hu et al., Fully textured, production-line compatible monolithic perovskite/silicon tandem solar cells approaching 29% efficiency. Adv. Mater. 34(40), e2206193 (2022). https://doi.org/10.1002/adma.202206193
F. Hou, X. Ren, H. Guo, X. Ning, Y. Wang et al., Monolithic perovskite/silicon tandem solar cells: a review of the present status and solutions toward commercial application. Nano Energy 124, 109476 (2024). https://doi.org/10.1016/j.nanoen.2024.109476
Y. Shi, J.J. Berry, F. Zhang, Perovskite/silicon tandem solar cells: insights and outlooks. ACS Energy Lett. 9(3), 1305–1330 (2024). https://doi.org/10.1021/acsenergylett.4c00172
Z. Wu, E. Bi, C. Li, L. Chen, Z. Song et al., Scalable two-step production of high-efficiency perovskite solar cells and modules. Sol. RRL 7(1), 2200571 (2023). https://doi.org/10.1002/solr.202200571
J.-H. Lee, B.S. Kim, J. Park, J.-W. Lee, K. Kim, Opportunities and challenges for perovskite solar cells based on vacuum thermal evaporation. Adv. Mater. Technol. 8(20), 2200928 (2023). https://doi.org/10.1002/admt.202200928
Z. Wang, M. Lyu, B.W. Zhang, M. Xiao, C. Zhang et al., Thermally evaporated metal halide perovskites and their analogues: film fabrication, applications and beyond. Small Meth. 9(2), 2301633 (2025). https://doi.org/10.1002/smtd.202301633
Y. Tong, A. Najar, L. Wang, L. Liu, M. Du et al., Wide-bandgap organic-inorganic lead halide perovskite solar cells. Adv. Sci. 9(14), e2105085 (2022). https://doi.org/10.1002/advs.202105085
K. Suchan, T.J. Jacobsson, C. Rehermann, E.L. Unger, T. Kirchartz et al., Rationalizing performance losses of wide bandgap perovskite solar cells evident in data from the perovskite database. Adv. Energy Mater. 14(5), 2303420 (2024). https://doi.org/10.1002/aenm.202303420
M. Stolterfoht, C.M. Wolff, J.A. Márquez, S. Zhang, C.J. Hages et al., Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3(10), 847–854 (2018). https://doi.org/10.1038/s41560-018-0219-8
O. Almora, G.C. Bazan, C.I. Cabrera, L.A. Castriotta, S. Erten-Ela et al., Device performance of emerging photovoltaic materials (version 5). Adv. Energy Mater. 15(12), 2404386 (2024). https://doi.org/10.1002/aenm.202404386
W. Yang, H. Long, X. Sha, J. Sun, Y. Zhao et al., Unlocking voltage potentials of mixed-halide perovskite solar cells via phase segregation suppression. Adv. Funct. Mater. 32(12), 2110698 (2022). https://doi.org/10.1002/adfm.202110698
A. Rajagopal, R.J. Stoddard, S.B. Jo, H.W. Hillhouse, A.K. Jen, Overcoming the photovoltage plateau in large bandgap perovskite photovoltaics. Nano Lett. 18(6), 3985–3993 (2018). https://doi.org/10.1021/acs.nanolett.8b01480
Y. An, N. Zhang, Z. Zeng, Y. Cai, W. Jiang et al., Optimizing crystallization in wide-bandgap mixed halide perovskites for high-efficiency solar cells. Adv. Mater. 36(17), 2306568 (2024). https://doi.org/10.1002/adma.202306568
Y.J. Ahn, H.J. Kim, I.J. Park, J.Y. Kim, Recent advances and opportunities in perovskite-based triple-junction tandem solar cells. Sustain. Energy Fuels 8(23), 5352–5365 (2024). https://doi.org/10.1039/d4se01051e
G.F. Samu, Á. Balog, F. De Angelis, D. Meggiolaro, P.V. Kamat et al., Electrochemical hole injection selectively expels iodide from mixed halide perovskite films. J. Am. Chem. Soc. 141(27), 10812–10820 (2019). https://doi.org/10.1021/jacs.9b04568
G. Yang, Z. Ni, Z.J. Yu, B.W. Larson, Z. Yu et al., Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells. Nat. Photon. 16(8), 588–594 (2022). https://doi.org/10.1038/s41566-022-01033-8
Y. Zhou, I. Poli, D. Meggiolaro, F. De Angelis, A. Petrozza, Defect activity in metal halide perovskites with wide and narrow bandgap. Nat. Rev. Mater. 6(11), 986–1002 (2021). https://doi.org/10.1038/s41578-021-00331-x
T. Nie, Z. Fang, X. Ren, Y. Duan, S.F. Liu, Recent advances in wide-bandgap organic-inorganic halide perovskite solar cells and tandem application. Nano-Micro Lett. 15(1), 70 (2023). https://doi.org/10.1007/s40820-023-01040-6
A.J. Ramadan, R.D.J. Oliver, M.B. Johnston, H.J. Snaith, Methylammonium-free wide-bandgap metal halide perovskites for tandem photovoltaics. Nat. Rev. Mater. 8(12), 822–838 (2023). https://doi.org/10.1038/s41578-023-00610-9
F. Xu, M. Zhang, Z. Li, X. Yang, R. Zhu, Challenges and perspectives toward future wide-bandgap mixed-halide perovskite photovoltaics. Adv. Energy Mater. 13(13), 2203911 (2023). https://doi.org/10.1002/aenm.202203911
Z. Cheng, M. Zhang, Y. Zhang, W. Qi, Z. Wang et al., Stable wide-bandgap perovskite solar cells for tandem applications. Nano Energy 127, 109708 (2024). https://doi.org/10.1016/j.nanoen.2024.109708
C.M. Wolff, P. Caprioglio, M. Stolterfoht, D. Neher, Nonradiative recombination in perovskite solar cells: the role of interfaces. Adv. Mater. 31(52), e1902762 (2019). https://doi.org/10.1002/adma.201902762
H. Chen, A. Maxwell, C. Li, S. Teale, B. Chen et al., Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613(7945), 676–681 (2023). https://doi.org/10.1038/s41586-022-05541-z
T. Li, J. Xu, R. Lin, S. Teale, H. Li et al., Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems. Nat. Energy 8(6), 610–620 (2023). https://doi.org/10.1038/s41560-023-01250-7
N. Ahn, M. Choi, Towards long-term stable perovskite solar cells: degradation mechanisms and stabilization techniques. Adv. Sci. 11(4), 2306110 (2024). https://doi.org/10.1002/advs.202306110
L. Duan, A. Uddin, Defects and stability of perovskite solar cells: a critical analysis. Mater. Chem. Front. 6(4), 400–417 (2022). https://doi.org/10.1039/d1qm01250a
T.A. Chowdhury, M.A. Bin Zafar, M. Sajjad-Ul Islam, M. Shahinuzzaman, M.A. Islam et al., Stability of perovskite solar cells: issues and prospects. RSC Adv. 13(3), 1787–1810 (2023). https://doi.org/10.1039/d2ra05903g
G. Nazir, S.-Y. Lee, J.-H. Lee, A. Rehman, J.-K. Lee et al., Stabilization of perovskite solar cells: recent developments and future perspectives. Adv. Mater. 34(50), 2204380 (2022). https://doi.org/10.1002/adma.202204380
H. Zhang, L. Pfeifer, S.M. Zakeeruddin, J. Chu, M. Grätzel, Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 7(9), 632–652 (2023). https://doi.org/10.1038/s41570-023-00510-0
A.R. bin Mohd Yusoff, M. Vasilopoulou, D.G. Georgiadou, L.C. Palilis, A. Abate et al., Passivation and process engineering approaches of halide perovskite films for high efficiency and stability perovskite solar cells. Energy Environ. Sci. 14(5), 2906–2953 (2021). https://doi.org/10.1039/d1ee00062d
X. Ren, J. Wang, Y. Lin, Y. Wang, H. Xie et al., Mobile iodides capture for highly photolysis- and reverse-bias-stable perovskite solar cells. Nat. Mater. 23(6), 810–817 (2024). https://doi.org/10.1038/s41563-024-01876-2
H. Kim, S.M. Yoo, B. Ding, H. Kanda, N. Shibayama et al., Shallow-level defect passivation by 6H perovskite polytype for highly efficient and stable perovskite solar cells. Nat. Commun. 15(1), 5632 (2024). https://doi.org/10.1038/s41467-024-50016-6
J. Zhou, L. Tan, Y. Liu, H. Li, X. Liu et al., Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material. Joule 8(6), 1691–1706 (2024). https://doi.org/10.1016/j.joule.2024.02.019
P. Caprioglio, S. Caicedo-Dávila, T.C. Yang, C.M. Wolff, F. Peña-Camargo et al., Nano-emitting heterostructures violate optical reciprocity and enable efficient photoluminescence in halide-segregated methylammonium-free wide bandgap perovskites. ACS Energy Lett. 6(2), 419–428 (2021). https://doi.org/10.1021/acsenergylett.0c02270
L. Tian, J. Xue, R. Wang, Halide segregation in mixed halide perovskites: visualization and mechanisms. Electronics 11(5), 700 (2022). https://doi.org/10.3390/electronics11050700
K.A. Bush, K. Frohna, R. Prasanna, R.E. Beal, T. Leijtens et al., Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. ACS Energy Lett. 3(2), 428–435 (2018). https://doi.org/10.1021/acsenergylett.7b01255
S. Wu, M. Liu, A.K.Y. Jen, Prospects and challenges for perovskite-organic tandem solar cells. Joule 7(3), 484–502 (2023). https://doi.org/10.1016/j.joule.2023.02.014
D.J. Slotcavage, H.I. Karunadasa, M.D. McGehee, Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1(6), 1199–1205 (2016). https://doi.org/10.1021/acsenergylett.6b00495
L. Duan, D. Walter, N. Chang, J. Bullock, D. Kang et al., Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nat. Rev. Mater. 8(4), 261–281 (2023). https://doi.org/10.1038/s41578-022-00521-1
P. Chen, Y. Xiao, J. Hu, S. Li, D. Luo et al., Multifunctional ytterbium oxide buffer for perovskite solar cells. Nature 625(7995), 516–522 (2024). https://doi.org/10.1038/s41586-023-06892-x
S. Li, Y. Xiao, R. Su, W. Xu, D. Luo et al., Coherent growth of high-Miller-index facets enhances perovskite solar cells. Nature 635(8040), 874–881 (2024). https://doi.org/10.1038/s41586-024-08159-5
Z. Fang, T. Nie, S. Liu, J. Ding, Overcoming phase segregation in wide-bandgap perovskites: from progress to perspective. Adv. Funct. Mater. 34(42), 2404402 (2024). https://doi.org/10.1002/adfm.202404402
N. Porotnikova, D. Osinkin, Segregation and interdiffusion processes in perovskites: a review of recent advances. J. Mater. Chem. A 12(5), 2620–2646 (2024). https://doi.org/10.1039/d3ta06708d
Z. Cui, Q. Zhang, Y. Bai, Q. Chen, Issues of phase segregation in wide-bandgap perovskites. Mater. Chem. Front. 7(10), 1896–1911 (2023). https://doi.org/10.1039/d2qm01341j
M.V. Khenkin, E.A. Katz, A. Abate, G. Bardizza, J.J. Berry et al., Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5(1), 35–49 (2020). https://doi.org/10.1038/s41560-019-0529-5
M. Kaltenbrunner, G. Adam, E.D. Głowacki, M. Drack, R. Schwödiauer et al., Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat. Mater. 14(10), 1032–1039 (2015). https://doi.org/10.1038/nmat4388
B. Salhi, Y.S. Wudil, M.K. Hossain, A. Al-Ahmed, F.A. Al-Sulaiman, Review of recent developments and persistent challenges in stability of perovskite solar cells. Renew. Sustain. Energy Rev. 90, 210–222 (2018). https://doi.org/10.1016/j.rser.2018.03.058
Q. Lu, Z. Yang, X. Meng, Y. Yue, M.A. Ahmad et al., A review on encapsulation technology from organic light emitting diodes to organic and perovskite solar cells. Adv. Funct. Mater. 31(23), 2100151 (2021). https://doi.org/10.1002/adfm.202100151
J. Li, R. Xia, W. Qi, X. Zhou, J. Cheng et al., Encapsulation of perovskite solar cells for enhanced stability: Structures, materials and characterization. J. Power. Sources 485, 229313 (2021). https://doi.org/10.1016/j.jpowsour.2020.229313
A. Naikaew, P. Kumnorkaew, W. Wattanathana, K.Z. Swe, P. Pansa-Ngat et al., Investigation of double-layered Pb-Sn perovskite absorbers: formation, structure, band alignment, and stability. J. Phys. Chem. C 126(3), 1623–1634 (2022). https://doi.org/10.1021/acs.jpcc.1c08811
M. Hao, S. Ding, S. Gaznaghi, H. Cheng, L. Wang, Perovskite quantum dot solar cells: current status and future outlook. ACS Energy Lett. 9(1), 308–322 (2024). https://doi.org/10.1021/acsenergylett.3c01983