MOF/Polymer-Integrated Multi-Hotspot Mid-Infrared Nanoantennas for Sensitive Detection of CO2 Gas
Corresponding Author: Chengkuo Lee
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 207
Abstract
Metal–organic frameworks (MOFs) have been extensively used for gas sorption, storage and separation owing to ultrahigh porosity, exceptional thermal stability, and wide structural diversity. However, when it comes to ultra-low concentration gas detection, technical bottlenecks of MOFs appear due to the poor adsorption capacity at ppm-/ppb-level concentration and the limited sensitivity for signal transduction. Here, we present hybrid MOF-polymer physi-chemisorption mechanisms integrated with infrared (IR) nanoantennas for highly selective and ultrasensitive CO2 detection. To improve the adsorption capacity for trace amounts of gas molecules, MOFs are decorated with amino groups to introduce the chemisorption while maintaining the structural integrity for physisorption. Additionally, leveraging all major optimization methods, a multi-hotspot strategy is proposed to improve the sensitivity of nanoantennas by enhancing the near field and engineering the radiative and absorptive loss. As a benefit, we demonstrate the competitive advantages of our strategy against the state-of-the-art miniaturized IR CO2 sensors, including low detection limit, high sensitivity (0.18%/ppm), excellent reversibility (variation within 2%), and high selectivity (against C2H5OH, CH3OH, N2). This work provides valuable insights into the integration of advanced porous materials and nanophotonic devices, which can be further adopted in ultra-low concentration gas monitoring in industry and environmental applications.
Highlights:
1 A loss-engineered multi-hotspot strategy is proposed by integrating all major optimization methods to improve the sensitivity and signal intensity of plasmonic nanoantennas for mid-infrared (MIR) absorption-based molecule sensing.
2 The physi-chemisorption mechanism of hybrid metal–organic framework (MOF)-polymers is demonstrated to break through the limit of detection for MIR gas sensing.
3 MOFs and nanoantennas are successfully integrated to achieve high-performance gas detection, including low detection limit, high sensitivity (0.18%/ppm), excellent reversibility (variation within 2%), high selectivity, and nm-level optical interaction length.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341(6149), 1230444 (2013). https://doi.org/10.1126/science.1230444
- Y.J. Sun, L.W. Zheng, Y. Yang, X. Qian, T. Fu et al., Metal-organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett. 12, 103 (2020). https://doi.org/10.1007/s40820-020-00423-3
- Z.W. Zhang, Z.H. Cai, Z.Y. Wang, Y.L. Peng, L. Xia et al., A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 13, 56 (2021). https://doi.org/10.1007/s40820-020-00582-3
- L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P.V. Duyne et al., Metal-organic framework materials as chemical sensors. Chem. Rev. 112(2), 1105–1125 (2012). https://doi.org/10.1021/cr200324t
- X. Fang, B.Y. Zong, S. Mao, Metal-organic framework-based sensors for environmental contaminant sensing. Nano-Micro Lett. 10, 64 (2018). https://doi.org/10.1007/s40820-018-0218-0
- H.V. Doan, H.A. Hamzah, P.K. Prabhakaran, C. Petrillo, V.P. Ting, Hierarchical metal-organic frameworks with macroporosity: synthesis, achievements, and challenges. Nano-Micro Lett. 11, 54 (2019). https://doi.org/10.1007/s40820-019-0286-9
- Y. Arafat, M.R. Azhar, Y.J. Zhong, X.M. Xu, M.O. Tade et al., A porous nano-micro-composite as a high-performance bi-functional air electrode with remarkable stability for rechargeable zinc-air batteries. Nano-Micro Lett. 12, 130 (2020). https://doi.org/10.1007/s40820-020-00468-4
- M. Ding, R.W. Flaig, H.L. Jiang, O.M. Yaghi, Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 48(10), 2783–2828 (2019). https://doi.org/10.1039/c8cs00829a
- X. Zhao, Y. Wang, D.S. Li, X. Bu, P. Feng, Metal-organic frameworks for separation. Adv. Mater. 30(37), e1705189 (2018). https://doi.org/10.1002/adma.201705189
- D.W. Lim, H. Kitagawa, Rational strategies for proton-conductive metal-organic frameworks. Chem. Soc. Rev. 50(11), 6349–6368 (2021). https://doi.org/10.1039/d1cs00004g
- W. Cai, J. Wang, C. Chu, W. Chen, C. Wu et al., Metal-organic framework-based stimuli-responsive systems for drug delivery. Adv. Sci. 6(1), 1801526 (2019). https://doi.org/10.1002/advs.201801526
- T. Wu, X. Hou, J. Li, H. Ruan, L. Pei et al., Microneedle-mediated biomimetic cyclodextrin metal organic frameworks for active targeting and treatment of hypertrophic scars. ACS Nano 15(12), 20087–20104 (2021). https://doi.org/10.1021/acsnano.1c07829
- Q.L. Zhu, Q. Xu, Metal-organic framework composites. Chem. Soc. Rev. 43(16), 5468–5512 (2014). https://doi.org/10.1039/c3cs60472a
- G.C. Phan-Quang, N. Yang, H.K. Lee, H.Y.F. Sim, C.S.L. Koh et al., Tracking airborne molecules from afar: three-dimensional metal-organic framework-surface-enhanced Raman scattering platform for stand-off and real-time atmospheric monitoring. ACS Nano 13(10), 12090–12099 (2019). https://doi.org/10.1021/acsnano.9b06486
- P. Kumar, A. Deep, K.H. Kim, Metal organic frameworks for sensing applications. Trends Anal. Chem. 73, 39–53 (2015). https://doi.org/10.1016/j.trac.2015.04.009
- X. Chen, R. Behboodian, D. Bagnall, M. Taheri, N. Nasiri, Metal-organic-frameworks: low temperature gas sensing and air quality monitoring. Chemosensors 9(11), 316 (2021). https://doi.org/10.3390/chemosensors9110316
- L. Chen, J.W. Ye, H.P. Wang, M. Pan, S.Y. Yin et al., Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence. Nat. Commun. 8, 15985 (2017). https://doi.org/10.1038/ncomms15985
- L.E. Kreno, J.T. Hupp, R.P.V. Duyne, Metal-organic framework thin film for enhanced localized surface plasmon resonance gas sensing. Anal. Chem. 82(19), 8042–8046 (2010). https://doi.org/10.1021/ac102127p
- Y. Feng, Y. Wang, Y. Ying, Structural design of metal–organic frameworks with tunable colorimetric responses for visual sensing applications. Coord. Chem. Rev. 446, 214102 (2021). https://doi.org/10.1016/j.ccr.2021.214102
- M. Tu, S. Wannapaiboon, K. Khaletskaya, R.A. Fischer, Engineering zeolitic-imidazolate framework (ZIF) thin film devices for selective detection of volatile organic compounds. Adv. Funct. Mater. 25(28), 4470–4479 (2015). https://doi.org/10.1002/adfm.201500760
- S. Cai, W. Li, P. Xu, X. Xia, H. Yu et al., In situ construction of metal-organic framework (MOF) UiO-66 film on parylene-patterned resonant microcantilever for trace organophosphorus molecules detection. Analyst 144(12), 3729–3735 (2019). https://doi.org/10.1039/c8an02508h
- B. Deng, Q. Guo, C. Li, H. Wang, X. Ling et al., Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures. ACS Nano 10(12), 11172–11178 (2016). https://doi.org/10.1021/acsnano.6b06203
- C. Ma, S. Yuan, P. Cheung, K. Watanabe, T. Taniguchi et al., Intelligent infrared sensing enabled by tunable moire quantum geometry. Nature 604(7905), 266–272 (2022). https://doi.org/10.1038/s41586-022-04548-w
- Y. Zhang, C. Fowler, J. Liang, B. Azhar, M.Y. Shalaginov et al., Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol. 16(6), 661–666 (2021). https://doi.org/10.1038/s41565-021-00881-9
- Y.S. Lin, Z. Xu, Reconfigurable metamaterials for optoelectronic applications. Int. J. Optomechatroni. 14(1), 78–93 (2020). https://doi.org/10.1080/15599612.2020.1834655
- M.Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su et al., Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat. Commun. 12, 1225 (2021). https://doi.org/10.1038/s41467-021-21440-9
- J. Xu, Y. Du, Y. Tian, C. Wang, Progress in wafer bonding technology towards mems, high-power electronics, optoelectronics, and optofluidics. Int. J. Optomechatroni. 14(1), 94–118 (2021). https://doi.org/10.1080/15599612.2020.1857890
- G. Zhou, Z.H. Lim, Y. Qi, F.S. Chau, G. Zhou, MEMS gratings and their applications. Int. J. Optomechatroni. 15(1), 61–86 (2021). https://doi.org/10.1080/15599612.2021.1892248
- H. Chen, B. Yang, Y. Gui, J. Niu, J. Liu, Hollow complementary omega-ring-shaped metamaterial modulators with dual-band tunability. Opt. Lett. 43(16), 3913–3916 (2018). https://doi.org/10.1364/OL.43.003913
- T. Hu, Q. Zhong, N. Li, Y. Dong, Z. Xu et al., Cmos-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging. Nanophotonics 9(4), 823–830 (2020). https://doi.org/10.1515/nanoph-2019-0470
- Z. Ren, B. Dong, Q. Qiao, X. Liu, J. Liu et al., Subwavelength on-chip light focusing with bigradient all-dielectric metamaterials for dense photonic integration. InfoMat 4(2), e12264 (2021). https://doi.org/10.1002/inf2.12264
- X. Liu, W. Liu, Z. Ren, Y. Ma, B. Dong et al., Progress of optomechanical micro/nano sensors: a review. Int. J. Optomechatroni. 15(1), 120–159 (2021). https://doi.org/10.1080/15599612.2021.1986612
- H. Zhou, D. Li, X. Hui, X. Mu, Infrared metamaterial for surface-enhanced infrared absorption spectroscopy: pushing the frontier of ultrasensitive on-chip sensing. Int. J. Optomechatroni. 15(1), 97–119 (2021). https://doi.org/10.1080/15599612.2021.1953199
- Z. Ren, J. Xu, X. Le, C. Lee, Heterogeneous wafer bonding technology and thin-film transfer technology-enabling platform for the next generation applications beyond 5g. Micromachines 12(8), 946 (2021). https://doi.org/10.3390/mi12080946
- J. Wei, Z. Ren, C. Lee, Metamaterial technologies for miniaturized infrared spectroscopy: light sources, sensors, filters, detectors, and integration. J. Appl. Phys. 128(24), 240901 (2020). https://doi.org/10.1063/5.0033056
- J. Wei, Y. Li, L. Wang, W. Liao, B. Dong et al., Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nat. Commun. 11, 6404 (2020). https://doi.org/10.1038/s41467-020-20115-1
- J. Wei, C. Xu, B. Dong, C.W. Qiu, C. Lee, Mid-infrared semimetal polarization detectors with configurable polarity transition. Nat. Photonics 15(8), 614–621 (2021). https://doi.org/10.1038/s41566-021-00819-6
- J. Karst, M. Floess, M. Ubl, C. Dingler, C. Malacrida et al., Electrically switchable metallic polymer nanoantennas. Science 374(6567), 612–616 (2021). https://doi.org/10.1126/science.abj3433
- J. Niu, Y. Zhai, Q. Han, J. Liu, B. Yang, Resonance-trapped bound states in the continuum in metallic THz metasurfaces. Opt. Lett. 46(2), 162–165 (2021). https://doi.org/10.1364/OL.410791
- T. Hu, C.K. Tseng, Y.H. Fu, Z. Xu, Y. Dong et al., Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer. Opt. Express 26(15), 19548–19554 (2018). https://doi.org/10.1364/OE.26.019548
- D. Li, H. Zhou, X. Hui, X. He, H. Huang et al., Multifunctional chemical sensing platform based on dual-resonant infrared plasmonic perfect absorber for on-chip detection of poly(ethyl cyanoacrylate). Adv. Sci. 8(20), e2101879 (2021). https://doi.org/10.1002/advs.202101879
- X. Hui, C. Yang, D. Li, X. He, H. Huang et al., Infrared plasmonic biosensor with tetrahedral DNA nanostructure as carriers for label-free and ultrasensitive detection of miR-155. Adv. Sci. 8(16), e2100583 (2021). https://doi.org/10.1002/advs.202100583
- H. Altug, S.H. Oh, S.A. Maier, J. Homola, Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 17, 5–16 (2022). https://doi.org/10.1038/s41565-021-01045-5
- Z. Ren, Y. Chang, Y. Ma, K. Shih, B. Dong et al., Leveraging of mems technologies for optical metamaterials applications. Adv. Opt. Mater. 8(3), 1900653 (2019). https://doi.org/10.1002/adom.201900653
- J. Yi, E.M. You, S.Y. Ding, Z.Q. Tian, Unveiling the molecule-plasmon interactions in surface-enhanced infrared absorption spectroscopy. Natl. Sci. Rev. 7(7), 1228–1238 (2020). https://doi.org/10.1093/nsr/nwaa054
- Y. Chen, H. Lin, J. Hu, M. Li, Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing. ACS Nano 8(7), 6955–6961 (2014). https://doi.org/10.1021/nn501765k
- Y. Chen, W.S. Fegadolli, W.M. Jones, A. Scherer, M. Li, Ultrasensitive gas-phase chemical sensing based on functionalized photonic crystal nanobeam cavities. ACS Nano 8(1), 522–527 (2014). https://doi.org/10.1021/nn4050547
- J. Nunez, A. Boersma, J. Grand, S. Mintova, B. Sciacca, Thin functional zeolite layer supported on infrared resonant nano-antennas for the detection of benzene traces. Adv. Funct. Mater. 31(24), 2101623 (2021). https://doi.org/10.1002/adfm.202101623
- H. Zhou, X. Hui, D. Li, D. Hu, X. Chen et al., Metal-organic framework-surface-enhanced infrared absorption platform enables simultaneous on-chip sensing of greenhouse gases. Adv. Sci. 7(20), 2001173 (2020). https://doi.org/10.1002/advs.202001173
- Z. Jakšić, Z. Popović, I. Djerdj, ŽK. Jaćimović, K. Radulović, Functionalization of plasmonic metamaterials utilizing metal–organic framework thin films. Phys. Scr. T149, 014051 (2012). https://doi.org/10.1088/0031-8949/2012/t149/014051
- X. Chong, Y. Zhang, E. Li, K.J. Kim, P.R. Ohodnicki et al., Surface-enhanced infrared absorption: pushing the frontier for on-chip gas sensing. ACS Sens. 3(1), 230–238 (2018). https://doi.org/10.1021/acssensors.7b00891
- X. Chong, K. Kim, Y. Zhang, E. Li, P.R. Ohodnicki et al., Plasmonic nanopatch array with integrated metal-organic framework for enhanced infrared absorption gas sensing. Nanotechnology 28(26), 26LT01 (2017). https://doi.org/10.1088/1361-6528/aa7433
- K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch et al., Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112(2), 724–781 (2012). https://doi.org/10.1021/cr2003272
- P. Nugent, Y. Belmabkhout, S.D. Burd, A.J. Cairns, R. Luebke et al., Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495(7439), 80–84 (2013). https://doi.org/10.1038/nature11893
- D. Hasan, C. Lee, Hybrid metamaterial absorber platform for sensing of CO2 gas at mid-IR. Adv. Sci. 5(5), 1700581 (2018). https://doi.org/10.1002/advs.201700581
- H. Hu, X. Yang, X. Guo, K. Khaliji, S.R. Biswas et al., Gas identification with graphene plasmons. Nat. Commun. 10, 1131 (2019). https://doi.org/10.1038/s41467-019-09008-0
- T.H.H. Le, T. Tanaka, Plasmonics-nanofluidics hydrid metamaterial: an ultrasensitive platform for infrared absorption spectroscopy and quantitative measurement of molecules. ACS Nano 11(10), 9780–9788 (2017). https://doi.org/10.1021/acsnano.7b02743
- J. Xu, Z. Ren, B. Dong, X. Liu, C. Wang et al., Nanometer-scale heterogeneous interfacial sapphire wafer-bonding for enabling plasmonic-enhanced nanofluidic mid-infrared spectroscopy. ACS Nano 14(9), 12159–12172 (2020). https://doi.org/10.1021/acsnano.0c05794
- L. Dong, X. Yang, C. Zhang, B. Cerjan, L. Zhou et al., Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy. Nano Lett. 17(9), 5768–5774 (2017). https://doi.org/10.1021/acs.nanolett.7b02736
- C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert et al., Surface-enhanced infrared spectroscopy using nanometer-sized gaps. ACS Nano 8(5), 4908–4914 (2014). https://doi.org/10.1021/nn500903v
- B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye et al., Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas. Nano Lett. 14(5), 2867–2872 (2014). https://doi.org/10.1021/nl500913t
- D. Yoo, D.A. Mohr, F. Vidal-Codina, A. John-Herpin, M. Jo et al., High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps. Nano Lett. 18, 1930–1936 (2018). https://doi.org/10.1021/acs.nanolett.7b05295
- J. Wei, Y. Li, Y. Chang, D.M.N. Hasan, B. Dong et al., Ultrasensitive transmissive infrared spectroscopy via loss engineering of metallic nanoantennas for compact devices. ACS Appl. Mater. Interfaces 11(50), 47270–47278 (2019). https://doi.org/10.1021/acsami.9b18002
- R. Adato, A. Artar, S. Erramilli, H. Altug, Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems. Nano Lett. 13(6), 2584–2591 (2013). https://doi.org/10.1021/nl400689q
- D. Ji, A. Cheney, N. Zhang, H. Song, J. Gao et al., Efficient mid-infrared light confinement within sub-5-nm gaps for extreme field enhancement. Adv. Opt. Mater. 5(17), 1700223 (2017). https://doi.org/10.1002/adom.201700223
- H. Aouani, H. Šípová, M. Rahmani, M. Navarrocia, K. Hegnerová, Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas. ACS Nano 7(1), 669–675 (2013). https://doi.org/10.1021/nn304860t
- P.S. Davids, R.L. Jarecki, A. Starbuck, D.B. Burckel, E.A. Kadlec et al., Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode. Nat. Nanotechnol. 10(12), 1033–1038 (2015). https://doi.org/10.1038/nnano.2015.216
- F. Neubrech, C. Huck, K. Weber, A. Pucci, H. Giessen, Surface-enhanced infrared spectroscopy using resonant nanoantennas. Chem. Rev. 117(7), 5110–5145 (2017). https://doi.org/10.1021/acs.chemrev.6b00743
- W.S. Chang, J.B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua et al., A plasmonic fano switch. Nano Lett. 12(9), 4977–4982 (2012). https://doi.org/10.1021/nl302610v
- C. Li, L. Chen, E. McLeod, J. Su, Dark mode plasmonic optical microcavity biochemical sensor. Photonics Res. 7(8), 939–947 (2019). https://doi.org/10.1364/prj.7.000939
- I. Hwang, M. Kim, J. Yu, J. Lee, J.H. Choi et al., Ultrasensitive molecule detection based on infrared metamaterial absorber with vertical nanogap. Small Methods 5(8), 2100277 (2021). https://doi.org/10.1002/smtd.202100277
- K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R. Huang et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. PNAS 103(27), 10186–10191 (2006). https://doi.org/10.1073/pnas.0602439103
- L. Verslegers, Z. Yu, P.B. Catrysse, S. Fan, Temporal coupled-mode theory for resonant apertures. J. Opt. Soc. Am. B 27(10), 1947–1956 (2010). https://doi.org/10.1364/JOSAB.27.001947
- G. Khandelwal, A. Chandrasekhar, N.P.M.J. Raj, S.J. Kim, Metal–organic framework: a novel material for triboelectric nanogenerator–based self-powered sensors and systems. Adv. Energy Mater. 9(14), 1803581 (2019). https://doi.org/10.1002/aenm.201803581
- A. Hermawan, N.L.W. Septiani, A. Taufik, B. Yuliarto, Suyatman et al., Advanced strategies to improve performances of molybdenum-based gas sensors. Nano-Micro Lett. 13, 207 (2021). https://doi.org/10.1007/s40820-021-00724-1
- A.V. Agrawal, N. Kumar, M. Kumar, Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide. Nano-Micro Lett. 13, 38 (2021). https://doi.org/10.1007/s40820-020-00558-3
- Y. Jian, W. Hu, Z. Zhao, P. Cheng, H. Haick et al., Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro Lett. 12, 71 (2020). https://doi.org/10.1007/s40820-020-0407-5
- K. Li, J. Jiang, F. Yan, S. Tian, X. Chen, The influence of polyethyleneimine type and molecular weight on the CO2 capture performance of PEI-nano silica adsorbents. Appl. Energy 136, 750–755 (2014). https://doi.org/10.1016/j.apenergy.2014.09.057
- S. Zhang, P. Kang, S. Ubnoske, M.K. Brennaman, N. Song et al., Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J. Am. Chem. Soc. 136(22), 7845–7848 (2014). https://doi.org/10.1021/ja5031529
- D. Trieu-Vuong, I.Y. Choi, Y.S. Son, J.C. Kim, A review on non-dispersive infrared gas sensors: improvement of sensor detection limit and interference correction. Sens. Actuat. B 231, 529–538 (2016). https://doi.org/10.1016/j.snb.2016.03.040
- A. Pusch, A.D. Luca, S.S. Oh, S. Wuestner, T. Roschuk et al., A highly efficient cmos nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices. Sci. Rep. 5(1), 17451 (2015). https://doi.org/10.1038/srep17451
- T. Yasuda, S. Yonemura, A. Tani, Comparison of the characteristics of small commercial NDIR CO2 sensor models and development of a portable CO2 measurement device. Sensors 12(3), 3641–3655 (2012). https://doi.org/10.3390/s120303641
- Y. Nishijima, Y. Adachi, L. Rosa, S. Juodkazis, Augmented sensitivity of an IR-absorption gas sensor employing a metal hole array. Opt. Mater. Express 3(7), 968–976 (2013). https://doi.org/10.1364/ome.3.000968
- S. Yuan, D. Naveh, K. Watanabe, T. Taniguchi, F. Xia, A wavelength-scale black phosphorus spectrometer. Nat. Photonics 15(8), 601–607 (2021). https://doi.org/10.1038/s41566-021-00787-x
- V.R. Shrestha, B. Craig, J. Meng, J. Bullock, A. Javey et al., Mid- to long-wave infrared computational spectroscopy with a graphene metasurface modulator. Sci. Rep. 10(1), 5377 (2020). https://doi.org/10.1038/s41598-020-61998-w
- A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.Y. Choi et al., Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360(6393), 1105–1109 (2018). https://doi.org/10.1126/science.aas9768
References
H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341(6149), 1230444 (2013). https://doi.org/10.1126/science.1230444
Y.J. Sun, L.W. Zheng, Y. Yang, X. Qian, T. Fu et al., Metal-organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett. 12, 103 (2020). https://doi.org/10.1007/s40820-020-00423-3
Z.W. Zhang, Z.H. Cai, Z.Y. Wang, Y.L. Peng, L. Xia et al., A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 13, 56 (2021). https://doi.org/10.1007/s40820-020-00582-3
L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P.V. Duyne et al., Metal-organic framework materials as chemical sensors. Chem. Rev. 112(2), 1105–1125 (2012). https://doi.org/10.1021/cr200324t
X. Fang, B.Y. Zong, S. Mao, Metal-organic framework-based sensors for environmental contaminant sensing. Nano-Micro Lett. 10, 64 (2018). https://doi.org/10.1007/s40820-018-0218-0
H.V. Doan, H.A. Hamzah, P.K. Prabhakaran, C. Petrillo, V.P. Ting, Hierarchical metal-organic frameworks with macroporosity: synthesis, achievements, and challenges. Nano-Micro Lett. 11, 54 (2019). https://doi.org/10.1007/s40820-019-0286-9
Y. Arafat, M.R. Azhar, Y.J. Zhong, X.M. Xu, M.O. Tade et al., A porous nano-micro-composite as a high-performance bi-functional air electrode with remarkable stability for rechargeable zinc-air batteries. Nano-Micro Lett. 12, 130 (2020). https://doi.org/10.1007/s40820-020-00468-4
M. Ding, R.W. Flaig, H.L. Jiang, O.M. Yaghi, Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 48(10), 2783–2828 (2019). https://doi.org/10.1039/c8cs00829a
X. Zhao, Y. Wang, D.S. Li, X. Bu, P. Feng, Metal-organic frameworks for separation. Adv. Mater. 30(37), e1705189 (2018). https://doi.org/10.1002/adma.201705189
D.W. Lim, H. Kitagawa, Rational strategies for proton-conductive metal-organic frameworks. Chem. Soc. Rev. 50(11), 6349–6368 (2021). https://doi.org/10.1039/d1cs00004g
W. Cai, J. Wang, C. Chu, W. Chen, C. Wu et al., Metal-organic framework-based stimuli-responsive systems for drug delivery. Adv. Sci. 6(1), 1801526 (2019). https://doi.org/10.1002/advs.201801526
T. Wu, X. Hou, J. Li, H. Ruan, L. Pei et al., Microneedle-mediated biomimetic cyclodextrin metal organic frameworks for active targeting and treatment of hypertrophic scars. ACS Nano 15(12), 20087–20104 (2021). https://doi.org/10.1021/acsnano.1c07829
Q.L. Zhu, Q. Xu, Metal-organic framework composites. Chem. Soc. Rev. 43(16), 5468–5512 (2014). https://doi.org/10.1039/c3cs60472a
G.C. Phan-Quang, N. Yang, H.K. Lee, H.Y.F. Sim, C.S.L. Koh et al., Tracking airborne molecules from afar: three-dimensional metal-organic framework-surface-enhanced Raman scattering platform for stand-off and real-time atmospheric monitoring. ACS Nano 13(10), 12090–12099 (2019). https://doi.org/10.1021/acsnano.9b06486
P. Kumar, A. Deep, K.H. Kim, Metal organic frameworks for sensing applications. Trends Anal. Chem. 73, 39–53 (2015). https://doi.org/10.1016/j.trac.2015.04.009
X. Chen, R. Behboodian, D. Bagnall, M. Taheri, N. Nasiri, Metal-organic-frameworks: low temperature gas sensing and air quality monitoring. Chemosensors 9(11), 316 (2021). https://doi.org/10.3390/chemosensors9110316
L. Chen, J.W. Ye, H.P. Wang, M. Pan, S.Y. Yin et al., Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence. Nat. Commun. 8, 15985 (2017). https://doi.org/10.1038/ncomms15985
L.E. Kreno, J.T. Hupp, R.P.V. Duyne, Metal-organic framework thin film for enhanced localized surface plasmon resonance gas sensing. Anal. Chem. 82(19), 8042–8046 (2010). https://doi.org/10.1021/ac102127p
Y. Feng, Y. Wang, Y. Ying, Structural design of metal–organic frameworks with tunable colorimetric responses for visual sensing applications. Coord. Chem. Rev. 446, 214102 (2021). https://doi.org/10.1016/j.ccr.2021.214102
M. Tu, S. Wannapaiboon, K. Khaletskaya, R.A. Fischer, Engineering zeolitic-imidazolate framework (ZIF) thin film devices for selective detection of volatile organic compounds. Adv. Funct. Mater. 25(28), 4470–4479 (2015). https://doi.org/10.1002/adfm.201500760
S. Cai, W. Li, P. Xu, X. Xia, H. Yu et al., In situ construction of metal-organic framework (MOF) UiO-66 film on parylene-patterned resonant microcantilever for trace organophosphorus molecules detection. Analyst 144(12), 3729–3735 (2019). https://doi.org/10.1039/c8an02508h
B. Deng, Q. Guo, C. Li, H. Wang, X. Ling et al., Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures. ACS Nano 10(12), 11172–11178 (2016). https://doi.org/10.1021/acsnano.6b06203
C. Ma, S. Yuan, P. Cheung, K. Watanabe, T. Taniguchi et al., Intelligent infrared sensing enabled by tunable moire quantum geometry. Nature 604(7905), 266–272 (2022). https://doi.org/10.1038/s41586-022-04548-w
Y. Zhang, C. Fowler, J. Liang, B. Azhar, M.Y. Shalaginov et al., Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol. 16(6), 661–666 (2021). https://doi.org/10.1038/s41565-021-00881-9
Y.S. Lin, Z. Xu, Reconfigurable metamaterials for optoelectronic applications. Int. J. Optomechatroni. 14(1), 78–93 (2020). https://doi.org/10.1080/15599612.2020.1834655
M.Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su et al., Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat. Commun. 12, 1225 (2021). https://doi.org/10.1038/s41467-021-21440-9
J. Xu, Y. Du, Y. Tian, C. Wang, Progress in wafer bonding technology towards mems, high-power electronics, optoelectronics, and optofluidics. Int. J. Optomechatroni. 14(1), 94–118 (2021). https://doi.org/10.1080/15599612.2020.1857890
G. Zhou, Z.H. Lim, Y. Qi, F.S. Chau, G. Zhou, MEMS gratings and their applications. Int. J. Optomechatroni. 15(1), 61–86 (2021). https://doi.org/10.1080/15599612.2021.1892248
H. Chen, B. Yang, Y. Gui, J. Niu, J. Liu, Hollow complementary omega-ring-shaped metamaterial modulators with dual-band tunability. Opt. Lett. 43(16), 3913–3916 (2018). https://doi.org/10.1364/OL.43.003913
T. Hu, Q. Zhong, N. Li, Y. Dong, Z. Xu et al., Cmos-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging. Nanophotonics 9(4), 823–830 (2020). https://doi.org/10.1515/nanoph-2019-0470
Z. Ren, B. Dong, Q. Qiao, X. Liu, J. Liu et al., Subwavelength on-chip light focusing with bigradient all-dielectric metamaterials for dense photonic integration. InfoMat 4(2), e12264 (2021). https://doi.org/10.1002/inf2.12264
X. Liu, W. Liu, Z. Ren, Y. Ma, B. Dong et al., Progress of optomechanical micro/nano sensors: a review. Int. J. Optomechatroni. 15(1), 120–159 (2021). https://doi.org/10.1080/15599612.2021.1986612
H. Zhou, D. Li, X. Hui, X. Mu, Infrared metamaterial for surface-enhanced infrared absorption spectroscopy: pushing the frontier of ultrasensitive on-chip sensing. Int. J. Optomechatroni. 15(1), 97–119 (2021). https://doi.org/10.1080/15599612.2021.1953199
Z. Ren, J. Xu, X. Le, C. Lee, Heterogeneous wafer bonding technology and thin-film transfer technology-enabling platform for the next generation applications beyond 5g. Micromachines 12(8), 946 (2021). https://doi.org/10.3390/mi12080946
J. Wei, Z. Ren, C. Lee, Metamaterial technologies for miniaturized infrared spectroscopy: light sources, sensors, filters, detectors, and integration. J. Appl. Phys. 128(24), 240901 (2020). https://doi.org/10.1063/5.0033056
J. Wei, Y. Li, L. Wang, W. Liao, B. Dong et al., Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nat. Commun. 11, 6404 (2020). https://doi.org/10.1038/s41467-020-20115-1
J. Wei, C. Xu, B. Dong, C.W. Qiu, C. Lee, Mid-infrared semimetal polarization detectors with configurable polarity transition. Nat. Photonics 15(8), 614–621 (2021). https://doi.org/10.1038/s41566-021-00819-6
J. Karst, M. Floess, M. Ubl, C. Dingler, C. Malacrida et al., Electrically switchable metallic polymer nanoantennas. Science 374(6567), 612–616 (2021). https://doi.org/10.1126/science.abj3433
J. Niu, Y. Zhai, Q. Han, J. Liu, B. Yang, Resonance-trapped bound states in the continuum in metallic THz metasurfaces. Opt. Lett. 46(2), 162–165 (2021). https://doi.org/10.1364/OL.410791
T. Hu, C.K. Tseng, Y.H. Fu, Z. Xu, Y. Dong et al., Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer. Opt. Express 26(15), 19548–19554 (2018). https://doi.org/10.1364/OE.26.019548
D. Li, H. Zhou, X. Hui, X. He, H. Huang et al., Multifunctional chemical sensing platform based on dual-resonant infrared plasmonic perfect absorber for on-chip detection of poly(ethyl cyanoacrylate). Adv. Sci. 8(20), e2101879 (2021). https://doi.org/10.1002/advs.202101879
X. Hui, C. Yang, D. Li, X. He, H. Huang et al., Infrared plasmonic biosensor with tetrahedral DNA nanostructure as carriers for label-free and ultrasensitive detection of miR-155. Adv. Sci. 8(16), e2100583 (2021). https://doi.org/10.1002/advs.202100583
H. Altug, S.H. Oh, S.A. Maier, J. Homola, Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 17, 5–16 (2022). https://doi.org/10.1038/s41565-021-01045-5
Z. Ren, Y. Chang, Y. Ma, K. Shih, B. Dong et al., Leveraging of mems technologies for optical metamaterials applications. Adv. Opt. Mater. 8(3), 1900653 (2019). https://doi.org/10.1002/adom.201900653
J. Yi, E.M. You, S.Y. Ding, Z.Q. Tian, Unveiling the molecule-plasmon interactions in surface-enhanced infrared absorption spectroscopy. Natl. Sci. Rev. 7(7), 1228–1238 (2020). https://doi.org/10.1093/nsr/nwaa054
Y. Chen, H. Lin, J. Hu, M. Li, Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing. ACS Nano 8(7), 6955–6961 (2014). https://doi.org/10.1021/nn501765k
Y. Chen, W.S. Fegadolli, W.M. Jones, A. Scherer, M. Li, Ultrasensitive gas-phase chemical sensing based on functionalized photonic crystal nanobeam cavities. ACS Nano 8(1), 522–527 (2014). https://doi.org/10.1021/nn4050547
J. Nunez, A. Boersma, J. Grand, S. Mintova, B. Sciacca, Thin functional zeolite layer supported on infrared resonant nano-antennas for the detection of benzene traces. Adv. Funct. Mater. 31(24), 2101623 (2021). https://doi.org/10.1002/adfm.202101623
H. Zhou, X. Hui, D. Li, D. Hu, X. Chen et al., Metal-organic framework-surface-enhanced infrared absorption platform enables simultaneous on-chip sensing of greenhouse gases. Adv. Sci. 7(20), 2001173 (2020). https://doi.org/10.1002/advs.202001173
Z. Jakšić, Z. Popović, I. Djerdj, ŽK. Jaćimović, K. Radulović, Functionalization of plasmonic metamaterials utilizing metal–organic framework thin films. Phys. Scr. T149, 014051 (2012). https://doi.org/10.1088/0031-8949/2012/t149/014051
X. Chong, Y. Zhang, E. Li, K.J. Kim, P.R. Ohodnicki et al., Surface-enhanced infrared absorption: pushing the frontier for on-chip gas sensing. ACS Sens. 3(1), 230–238 (2018). https://doi.org/10.1021/acssensors.7b00891
X. Chong, K. Kim, Y. Zhang, E. Li, P.R. Ohodnicki et al., Plasmonic nanopatch array with integrated metal-organic framework for enhanced infrared absorption gas sensing. Nanotechnology 28(26), 26LT01 (2017). https://doi.org/10.1088/1361-6528/aa7433
K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch et al., Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112(2), 724–781 (2012). https://doi.org/10.1021/cr2003272
P. Nugent, Y. Belmabkhout, S.D. Burd, A.J. Cairns, R. Luebke et al., Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495(7439), 80–84 (2013). https://doi.org/10.1038/nature11893
D. Hasan, C. Lee, Hybrid metamaterial absorber platform for sensing of CO2 gas at mid-IR. Adv. Sci. 5(5), 1700581 (2018). https://doi.org/10.1002/advs.201700581
H. Hu, X. Yang, X. Guo, K. Khaliji, S.R. Biswas et al., Gas identification with graphene plasmons. Nat. Commun. 10, 1131 (2019). https://doi.org/10.1038/s41467-019-09008-0
T.H.H. Le, T. Tanaka, Plasmonics-nanofluidics hydrid metamaterial: an ultrasensitive platform for infrared absorption spectroscopy and quantitative measurement of molecules. ACS Nano 11(10), 9780–9788 (2017). https://doi.org/10.1021/acsnano.7b02743
J. Xu, Z. Ren, B. Dong, X. Liu, C. Wang et al., Nanometer-scale heterogeneous interfacial sapphire wafer-bonding for enabling plasmonic-enhanced nanofluidic mid-infrared spectroscopy. ACS Nano 14(9), 12159–12172 (2020). https://doi.org/10.1021/acsnano.0c05794
L. Dong, X. Yang, C. Zhang, B. Cerjan, L. Zhou et al., Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy. Nano Lett. 17(9), 5768–5774 (2017). https://doi.org/10.1021/acs.nanolett.7b02736
C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert et al., Surface-enhanced infrared spectroscopy using nanometer-sized gaps. ACS Nano 8(5), 4908–4914 (2014). https://doi.org/10.1021/nn500903v
B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye et al., Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas. Nano Lett. 14(5), 2867–2872 (2014). https://doi.org/10.1021/nl500913t
D. Yoo, D.A. Mohr, F. Vidal-Codina, A. John-Herpin, M. Jo et al., High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps. Nano Lett. 18, 1930–1936 (2018). https://doi.org/10.1021/acs.nanolett.7b05295
J. Wei, Y. Li, Y. Chang, D.M.N. Hasan, B. Dong et al., Ultrasensitive transmissive infrared spectroscopy via loss engineering of metallic nanoantennas for compact devices. ACS Appl. Mater. Interfaces 11(50), 47270–47278 (2019). https://doi.org/10.1021/acsami.9b18002
R. Adato, A. Artar, S. Erramilli, H. Altug, Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems. Nano Lett. 13(6), 2584–2591 (2013). https://doi.org/10.1021/nl400689q
D. Ji, A. Cheney, N. Zhang, H. Song, J. Gao et al., Efficient mid-infrared light confinement within sub-5-nm gaps for extreme field enhancement. Adv. Opt. Mater. 5(17), 1700223 (2017). https://doi.org/10.1002/adom.201700223
H. Aouani, H. Šípová, M. Rahmani, M. Navarrocia, K. Hegnerová, Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas. ACS Nano 7(1), 669–675 (2013). https://doi.org/10.1021/nn304860t
P.S. Davids, R.L. Jarecki, A. Starbuck, D.B. Burckel, E.A. Kadlec et al., Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode. Nat. Nanotechnol. 10(12), 1033–1038 (2015). https://doi.org/10.1038/nnano.2015.216
F. Neubrech, C. Huck, K. Weber, A. Pucci, H. Giessen, Surface-enhanced infrared spectroscopy using resonant nanoantennas. Chem. Rev. 117(7), 5110–5145 (2017). https://doi.org/10.1021/acs.chemrev.6b00743
W.S. Chang, J.B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua et al., A plasmonic fano switch. Nano Lett. 12(9), 4977–4982 (2012). https://doi.org/10.1021/nl302610v
C. Li, L. Chen, E. McLeod, J. Su, Dark mode plasmonic optical microcavity biochemical sensor. Photonics Res. 7(8), 939–947 (2019). https://doi.org/10.1364/prj.7.000939
I. Hwang, M. Kim, J. Yu, J. Lee, J.H. Choi et al., Ultrasensitive molecule detection based on infrared metamaterial absorber with vertical nanogap. Small Methods 5(8), 2100277 (2021). https://doi.org/10.1002/smtd.202100277
K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R. Huang et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. PNAS 103(27), 10186–10191 (2006). https://doi.org/10.1073/pnas.0602439103
L. Verslegers, Z. Yu, P.B. Catrysse, S. Fan, Temporal coupled-mode theory for resonant apertures. J. Opt. Soc. Am. B 27(10), 1947–1956 (2010). https://doi.org/10.1364/JOSAB.27.001947
G. Khandelwal, A. Chandrasekhar, N.P.M.J. Raj, S.J. Kim, Metal–organic framework: a novel material for triboelectric nanogenerator–based self-powered sensors and systems. Adv. Energy Mater. 9(14), 1803581 (2019). https://doi.org/10.1002/aenm.201803581
A. Hermawan, N.L.W. Septiani, A. Taufik, B. Yuliarto, Suyatman et al., Advanced strategies to improve performances of molybdenum-based gas sensors. Nano-Micro Lett. 13, 207 (2021). https://doi.org/10.1007/s40820-021-00724-1
A.V. Agrawal, N. Kumar, M. Kumar, Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide. Nano-Micro Lett. 13, 38 (2021). https://doi.org/10.1007/s40820-020-00558-3
Y. Jian, W. Hu, Z. Zhao, P. Cheng, H. Haick et al., Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro Lett. 12, 71 (2020). https://doi.org/10.1007/s40820-020-0407-5
K. Li, J. Jiang, F. Yan, S. Tian, X. Chen, The influence of polyethyleneimine type and molecular weight on the CO2 capture performance of PEI-nano silica adsorbents. Appl. Energy 136, 750–755 (2014). https://doi.org/10.1016/j.apenergy.2014.09.057
S. Zhang, P. Kang, S. Ubnoske, M.K. Brennaman, N. Song et al., Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J. Am. Chem. Soc. 136(22), 7845–7848 (2014). https://doi.org/10.1021/ja5031529
D. Trieu-Vuong, I.Y. Choi, Y.S. Son, J.C. Kim, A review on non-dispersive infrared gas sensors: improvement of sensor detection limit and interference correction. Sens. Actuat. B 231, 529–538 (2016). https://doi.org/10.1016/j.snb.2016.03.040
A. Pusch, A.D. Luca, S.S. Oh, S. Wuestner, T. Roschuk et al., A highly efficient cmos nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices. Sci. Rep. 5(1), 17451 (2015). https://doi.org/10.1038/srep17451
T. Yasuda, S. Yonemura, A. Tani, Comparison of the characteristics of small commercial NDIR CO2 sensor models and development of a portable CO2 measurement device. Sensors 12(3), 3641–3655 (2012). https://doi.org/10.3390/s120303641
Y. Nishijima, Y. Adachi, L. Rosa, S. Juodkazis, Augmented sensitivity of an IR-absorption gas sensor employing a metal hole array. Opt. Mater. Express 3(7), 968–976 (2013). https://doi.org/10.1364/ome.3.000968
S. Yuan, D. Naveh, K. Watanabe, T. Taniguchi, F. Xia, A wavelength-scale black phosphorus spectrometer. Nat. Photonics 15(8), 601–607 (2021). https://doi.org/10.1038/s41566-021-00787-x
V.R. Shrestha, B. Craig, J. Meng, J. Bullock, A. Javey et al., Mid- to long-wave infrared computational spectroscopy with a graphene metasurface modulator. Sci. Rep. 10(1), 5377 (2020). https://doi.org/10.1038/s41598-020-61998-w
A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.Y. Choi et al., Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360(6393), 1105–1109 (2018). https://doi.org/10.1126/science.aas9768