Synthesis and Diameter-dependent Thermal Conductivity of InAs Nanowires
Corresponding Author: Anlian Pan
Nano-Micro Letters,
Vol. 6 No. 4 (2014), Article Number: 301-306
Abstract
In this work, we synthesized high-quality InAs nanowires by a convenient chemical vapor deposition method, and developed a simple laser heating method to measure the thermal conductivity of a single InAs nanowire in air. During the measurement, a focused laser was used to heat one end of a freely suspended nanowire, with its other end embedded into a carbon conductive adhesive. In order to obtain the thermal conductivity of InAs nanowires, the heat loss in the heat transfer process was estimated, which includes the heat loss through air conduction, the heat convection, and the radiation loss. The absorption ratio of the laser power in the InAs nanowire was calculated. The result shows that the thermal conductivity of InAs nanowires monotonically increases from 6.4 W m−1 K−1 to 10.5 W m−1 K−1 with diameters increasing from 100 nm to 190 nm, which is ascribed to the enhanced phonon-boundary scattering.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nature Mater. 7(2), 105–114 (2008). doi:10.1038/nmat2090
- A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175), 163–165 (2008). doi:10.1038/nature06381
- R. Chen, Silicide nanopowders as low-cost and high-performance thermoelectric materials. Jom 65(6), 702–708 (2013). doi:10.1007/s11837-013-0609-0
- Z. Xie, K. Li, L. Tang, C. Pan, K. Chen, Nonlinear phonon transport and ballistic thermal rectification in asymmetric graphene-based three terminal junctions. Appl. Phys. Lett. 100(18), 183110 (2012). doi:10.1063/1.4711204
- N. Yang, G. Zhang, B. Li, Ultralow thermal conductivity of isotope-doped silicon nanowires. Nano Lett. 8(1), 276–280 (2007). doi:10.1021/nl0725998
- J. Chen, G. Zhang, B. Li, Tunable thermal conductivity of Si1-xGex nanowires. Appl. Phys. Lett. 95(7), 073117 (2009). doi:10.1063/1.073117
- M.C. Wingert, Z.C.Y. Chen, E. Dechaumphai, J. Moon, J.-H. Kim, J. Xiang, R. Chen, Thermal conductivity of Ge and Ge-Si core-shell nanowires in the phonon confinement regime. Nano Lett. 11(12), 5507–5513 (2011). doi:10.1021/nl203356h
- N. Mingo, Thermoelectric figure of merit and maximum power factor in III-V semiconductor nanowires. Appl. Phys. Lett. 84(14), 2652–2654 (2004). doi:10.1063/1.1695629
- J. Moon, J.-H. Kim, Z.C.Y. Chen, J. Xiang, R. Chen, Gate-modulated thermoelectric power factor of hole gas in Ge-Si core-shell nanowires. Nano Lett. 13(3), 1196–1202 (2013). doi:10.1021/nl304619u
- M. Soini, I. Zardo, E. Uccelli, S. Funk, G. Koblmueller, A. Fontcuberta i Morral, G. Abstreiter, Thermal conductivity of GaAs nanowires studied by micro-Raman spectroscopy combined with laser heating. Appl. Phys. Lett. 97(26), 263107 (2010). doi:10.1063/1.3532848
- Z. Liu, T. Luo, B. Liang, G. Chen, G. Yu, X. Xie, D. Chen, G. Shen, High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res. 6(11), 775–783 (2013). doi:10.1007/s12274-013-0356-0
- S.A. Dayeh, D.P.R. Aplin, X. Zhou, P.K.L. Yu, E.T. Yu, D. Wang, High electron mobility InAs nanowire field-effect transistors. Small 3(2), 326–332 (2007). doi:10.1002/smll.200600379
- F. Zhou, A.L. Moore, J. Bolinsson, A. Persson, L. Fröberg, M.T. Pettes, H. Kong, L. Rabenberg, P. Caroff, D.A. Stewart, N. Mingo, K.A. Dick, L. Samuelson, H. Linke, L. Shi, Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases. Phys. Rev. B 83(20), 205416 (2011). doi:10.1103/PhysRevB.83.205416
- A.I. Persson, Y.K. Koh, D.G. Cahill, L. Samuelson, H. Linke, Thermal conductance of InAs nanowire composites. Nano Lett. 9(12), 4484–4488 (2009). doi:10.1021/nl902809j
- Y. Tian, M.R. Sakr, J.M. Kinder, D. Liang, M.J. MacDonald, R.L.J. Qiu, H.-J. Gao, X.P.A. Gao, One-dimensional quantum confinement effect modulated thermoelectric properties in InAs nanowires. Nano Lett. 12(12), 6492–6497 (2012). doi:10.1021/nl304194c
- M.R. Sakr, X.P.A. Gao, Temperature dependence of the low frequency noise in indium arsenide nanowire transistors. Appl. Phys. Lett. 93(20), 203503 (2008). doi:10.1063/1.3031701
- D. Liang, M.R. Sakr, X.P.A. Gao, One-dimensional weak localization of electrons in a single InAs nanowire. Nano Lett. 9(4), 1709–1712 (2009). doi:10.1021/nl900424k
- P.A. Lin, D. Liang, S. Reeves, X.P.A. Gao, R.M. Sankaran, Shape-controlled Au particles for InAs nanowire growth. Nano Lett. 12(1), 315–320 (2012). doi:10.1021/nl2036035
- Z. Yang, R. Gao, N. Hu, J. Chai, Y. Cheng, L. Zhang, H. Wei, S. Kong, Eric, Y. Zhang, The prospective 2D graphene nanosheets: preparation, functionalization and applications. Nano-Micro Lett. 4(1), 1–9 (2012). doi:10.3786/nml.v4i1.p1-9
- J. Han, C. Gao, Functionalization of carbon nanotubes and other nanocarbons by azide chemistry. Nano-Micro Lett. 2(2), 213–226 (2010). doi:10.5101/nml.v2i3.p213-226
- G. Li, D. Liang, R.L.J. Qiu, X.P.A. Gao, Thermal conductivity measurement of individual Bi2Se3 nano-ribbon by self-heating three-omega method. Appl. Phys. Lett. 102(4), 043104 (2013). doi:10.1063/1.4789530
- D.Y. Li, Y.Y. Wu, P. Kim, L. Shi, P.D. Yang, A. Majumdar, Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83(14), 2934–2936 (2003). doi:10.1063/1.1616981
- G.R. Hubbell, in Scientific Astrophotography: How Amateurs Can Generate and Use Professional Imaging Data. Patrick Moore’s Practical Astronomy Series (Springer, New York, 2013), pp. 48–49
- D.E. Aspnes, A.A. Studna, Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 27(2), 985–1009 (1983). doi:10.1103/PhysRevB.27.985
- E.W. Lemmon, R.T. Jacobsen, Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int. J. Thermophys. 25(1), 21–69 (2004). doi:10.1023/B:IJOT.0000022327.04529.f3
- N. Li, J. Ren, L. Wang, G. Zhang, P. Haenggi, B. Li, Colloquium: phononics: manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84(3), 1045–1066 (2012)
- T.W. Yang Shiming, Heat transfer theory (Higher Education Press, Beijing, 1998)
- I.K. Hsu, R. Kumar, A. Bushmaker, S.B. Cronin, M.T. Pettes, L. Shi, T. Brintlinger, M.S. Fuhrer, J. Cumings, Optical measurement of thermal transport in suspended carbon nanotubes. Appl. Phys. Lett. 92(6), 063119 (2008). doi:10.1063/1.2829864
- C.T. Bui, R. Xie, M. Zheng, Q. Zhang, C.H. Sow, B. Li, J.T.L. Thong, Diameter-dependent thermal transport in individual ZnO nanowires and its correlation with surface coating and defects. Small 8(5), 738–745 (2012). doi:10.1002/smll.201102046
- N. Mingo, D.A. Broido, Lattice thermal conductivity crossovers in semiconductor nanowires. Phys. Rev. Lett. 93(24), 246106 (2004)
References
G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nature Mater. 7(2), 105–114 (2008). doi:10.1038/nmat2090
A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175), 163–165 (2008). doi:10.1038/nature06381
R. Chen, Silicide nanopowders as low-cost and high-performance thermoelectric materials. Jom 65(6), 702–708 (2013). doi:10.1007/s11837-013-0609-0
Z. Xie, K. Li, L. Tang, C. Pan, K. Chen, Nonlinear phonon transport and ballistic thermal rectification in asymmetric graphene-based three terminal junctions. Appl. Phys. Lett. 100(18), 183110 (2012). doi:10.1063/1.4711204
N. Yang, G. Zhang, B. Li, Ultralow thermal conductivity of isotope-doped silicon nanowires. Nano Lett. 8(1), 276–280 (2007). doi:10.1021/nl0725998
J. Chen, G. Zhang, B. Li, Tunable thermal conductivity of Si1-xGex nanowires. Appl. Phys. Lett. 95(7), 073117 (2009). doi:10.1063/1.073117
M.C. Wingert, Z.C.Y. Chen, E. Dechaumphai, J. Moon, J.-H. Kim, J. Xiang, R. Chen, Thermal conductivity of Ge and Ge-Si core-shell nanowires in the phonon confinement regime. Nano Lett. 11(12), 5507–5513 (2011). doi:10.1021/nl203356h
N. Mingo, Thermoelectric figure of merit and maximum power factor in III-V semiconductor nanowires. Appl. Phys. Lett. 84(14), 2652–2654 (2004). doi:10.1063/1.1695629
J. Moon, J.-H. Kim, Z.C.Y. Chen, J. Xiang, R. Chen, Gate-modulated thermoelectric power factor of hole gas in Ge-Si core-shell nanowires. Nano Lett. 13(3), 1196–1202 (2013). doi:10.1021/nl304619u
M. Soini, I. Zardo, E. Uccelli, S. Funk, G. Koblmueller, A. Fontcuberta i Morral, G. Abstreiter, Thermal conductivity of GaAs nanowires studied by micro-Raman spectroscopy combined with laser heating. Appl. Phys. Lett. 97(26), 263107 (2010). doi:10.1063/1.3532848
Z. Liu, T. Luo, B. Liang, G. Chen, G. Yu, X. Xie, D. Chen, G. Shen, High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res. 6(11), 775–783 (2013). doi:10.1007/s12274-013-0356-0
S.A. Dayeh, D.P.R. Aplin, X. Zhou, P.K.L. Yu, E.T. Yu, D. Wang, High electron mobility InAs nanowire field-effect transistors. Small 3(2), 326–332 (2007). doi:10.1002/smll.200600379
F. Zhou, A.L. Moore, J. Bolinsson, A. Persson, L. Fröberg, M.T. Pettes, H. Kong, L. Rabenberg, P. Caroff, D.A. Stewart, N. Mingo, K.A. Dick, L. Samuelson, H. Linke, L. Shi, Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases. Phys. Rev. B 83(20), 205416 (2011). doi:10.1103/PhysRevB.83.205416
A.I. Persson, Y.K. Koh, D.G. Cahill, L. Samuelson, H. Linke, Thermal conductance of InAs nanowire composites. Nano Lett. 9(12), 4484–4488 (2009). doi:10.1021/nl902809j
Y. Tian, M.R. Sakr, J.M. Kinder, D. Liang, M.J. MacDonald, R.L.J. Qiu, H.-J. Gao, X.P.A. Gao, One-dimensional quantum confinement effect modulated thermoelectric properties in InAs nanowires. Nano Lett. 12(12), 6492–6497 (2012). doi:10.1021/nl304194c
M.R. Sakr, X.P.A. Gao, Temperature dependence of the low frequency noise in indium arsenide nanowire transistors. Appl. Phys. Lett. 93(20), 203503 (2008). doi:10.1063/1.3031701
D. Liang, M.R. Sakr, X.P.A. Gao, One-dimensional weak localization of electrons in a single InAs nanowire. Nano Lett. 9(4), 1709–1712 (2009). doi:10.1021/nl900424k
P.A. Lin, D. Liang, S. Reeves, X.P.A. Gao, R.M. Sankaran, Shape-controlled Au particles for InAs nanowire growth. Nano Lett. 12(1), 315–320 (2012). doi:10.1021/nl2036035
Z. Yang, R. Gao, N. Hu, J. Chai, Y. Cheng, L. Zhang, H. Wei, S. Kong, Eric, Y. Zhang, The prospective 2D graphene nanosheets: preparation, functionalization and applications. Nano-Micro Lett. 4(1), 1–9 (2012). doi:10.3786/nml.v4i1.p1-9
J. Han, C. Gao, Functionalization of carbon nanotubes and other nanocarbons by azide chemistry. Nano-Micro Lett. 2(2), 213–226 (2010). doi:10.5101/nml.v2i3.p213-226
G. Li, D. Liang, R.L.J. Qiu, X.P.A. Gao, Thermal conductivity measurement of individual Bi2Se3 nano-ribbon by self-heating three-omega method. Appl. Phys. Lett. 102(4), 043104 (2013). doi:10.1063/1.4789530
D.Y. Li, Y.Y. Wu, P. Kim, L. Shi, P.D. Yang, A. Majumdar, Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83(14), 2934–2936 (2003). doi:10.1063/1.1616981
G.R. Hubbell, in Scientific Astrophotography: How Amateurs Can Generate and Use Professional Imaging Data. Patrick Moore’s Practical Astronomy Series (Springer, New York, 2013), pp. 48–49
D.E. Aspnes, A.A. Studna, Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 27(2), 985–1009 (1983). doi:10.1103/PhysRevB.27.985
E.W. Lemmon, R.T. Jacobsen, Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int. J. Thermophys. 25(1), 21–69 (2004). doi:10.1023/B:IJOT.0000022327.04529.f3
N. Li, J. Ren, L. Wang, G. Zhang, P. Haenggi, B. Li, Colloquium: phononics: manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84(3), 1045–1066 (2012)
T.W. Yang Shiming, Heat transfer theory (Higher Education Press, Beijing, 1998)
I.K. Hsu, R. Kumar, A. Bushmaker, S.B. Cronin, M.T. Pettes, L. Shi, T. Brintlinger, M.S. Fuhrer, J. Cumings, Optical measurement of thermal transport in suspended carbon nanotubes. Appl. Phys. Lett. 92(6), 063119 (2008). doi:10.1063/1.2829864
C.T. Bui, R. Xie, M. Zheng, Q. Zhang, C.H. Sow, B. Li, J.T.L. Thong, Diameter-dependent thermal transport in individual ZnO nanowires and its correlation with surface coating and defects. Small 8(5), 738–745 (2012). doi:10.1002/smll.201102046
N. Mingo, D.A. Broido, Lattice thermal conductivity crossovers in semiconductor nanowires. Phys. Rev. Lett. 93(24), 246106 (2004)