In Situ Monitoring the Potassium-Ion Storage Enhancement in Iron Selenide with Ether-Based Electrolyte
Corresponding Author: Wenjie Mai
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 179
Abstract
As one of the promising anode materials, iron selenide has received much attention for potassium-ion batteries (KIBs). Nevertheless, volume expansion and sluggish kinetics of iron selenide result in the poor reversibility and stability during potassiation–depotassiation process. In this work, we develop iron selenide composite matching ether-based electrolyte for KIBs, which presents a reversible specific capacity of 356 mAh g−1 at 200 mA g−1 after 75 cycles. According to the measurement of mechanical properties, it is found that iron selenide composite also exhibits robust and elastic solid electrolyte interphase layer in ether-based electrolyte, contributing to the improvement in reversibility and stability for KIBs. To further investigate the electrochemical enhancement mechanism of ether-based electrolyte in KIBs, we also utilize in situ visualization technique to monitor the potassiation–depotassiation process. For comparison, iron selenide composite matching carbonate-based electrolyte presents vast morphology change during potassiation–depotassiation process. When changing to ether-based electrolyte, a few minor morphology changes can be observed. This phenomenon indicates an occurrence of homogeneous electrochemical reaction in ether-based electrolyte, which results in a stable performance for potassium-ion (K-ion) storage. We believe that our work will provide a new perspective to visually monitor the potassium-ion storage process and guide the improvement in electrode material performance.
Highlights:
1 The iron selenide composite with ether-based electrolyte presents excellent potassium storage performance.
2 We develop in situ visualization technique to monitor the potassiation–depotassiation process.
3 Iron selenide composite in ether-based electrolyte presents a homogeneous electrochemical reaction, resulting in a stable potassium-ion storage.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Li, R. Zhao, D. Pan, S. Yi, L. Gao et al., Constructing tri-functional modification for spinel LiNi0.5Mn1.5O4 via fast ion conductor. J. Power Sources 450, 227677 (2020). https://doi.org/10.1016/j.jpowsour.2019.227677
- W.W. Jiang, Q.H. Liu, J.F. Peng, Y.H. Jiang, Y.H. Ding et al., Co9S8 nanoparticles embedded into amorphous carbon as anode materials for lithium-ion batteries. Nanotechnology 31, 235713 (2020). https://doi.org/10.1088/1361-6528/ab7887
- N.F. Zhou, W. Qin, C. Wu, C.K. Jia, Graphene-attached vanadium sulfide composite prepared via microwave-assisted hydrothermal method for high performance lithium ion batteries. J. Alloys Compd. 834, 155073 (2020). https://doi.org/10.1016/j.jallcom.2020.155073
- L. Li, R. Zhao, T.H. Xu, D.D. Wang, D. Pan et al., Stabilizing a high-voltage LiNi0.5Mn1.5O4 cathode towards all solid state batteries: a Li–Al–Ti–P–O solid electrolyte nano-shell with a host material. Nanoscale 11, 8967–8977 (2019). https://doi.org/10.1039/C9NR01655D
- T. Sun, Z.-J. Li, X. Yang, S. Wang, Y.-H. Zhu et al., Imine-rich poly(o-phenylenediamine) as high-capacity trifunctional organic electrode for alkali-ion batteries. CCS Chem. 1, 365–372 (2019). https://doi.org/10.31635/ccschem.019.20190003
- C. Yang, S. Xin, L.Q. Mai, Y. You, Materials design for high-safety sodium-ion battery. Adv. Energy Mater. 11, 2000974 (2021). https://doi.org/10.1002/aenm.202000974
- X. Yuan, S. Chen, J. Li, J. Xie, G. Yan et al., Understanding the improved performance of sulfur-doped interconnected carbon microspheres for Na-ion storage. Carbon Energy (2021). https://doi.org/10.1002/cey2.98
- W.C. Zhang, Y.J. Liu, Z.P. Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 5, eaav7412 (2019). https://doi.org/10.1126/sciadv.aav7412
- M. Sha, L. Liu, H. Zhao, Y. Lei, Anode materials for potassium-ion batteries: current status and prospects. Carbon Energy 2, 350–369 (2020). https://doi.org/10.1002/cey2.57
- L. Ma, J. Li, T. Wu, P. Sun, S. Tan et al., Re-oxidation reconstruction process of solid electrolyte interphase layer derived from highly active anion for potassium-ion batteries. Nano Energy 87, 106150 (2021). https://doi.org/10.1016/j.nanoen.2021.106150
- J. Zheng, Y. Yang, X.L. Fan, G.B. Ji, X. Ji et al., Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 12, 615–623 (2019). https://doi.org/10.1039/C8EE02836B
- J.L. Li, N. Zhuang, J.P. Xie, Y.Q. Zhu, H.J. Lai et al., Carboxymethyl cellulose binder greatly stabilizes porous hollow carbon submicrospheres in capacitive K-ion storage. ACS Appl. Mater. Interfaces 11, 15581–15590 (2019). https://doi.org/10.1021/acsami.9b02060
- J.L. Li, N. Zhuang, J.P. Xie, X.D. Li, W.C. Zhuo et al., K-ion storage enhancement in Sb2O3/reduced graphene oxide using ether-based electrolyte. Adv. Energy Mater. 10, 1903455 (2020). https://doi.org/10.1002/aenm.201903455
- E.J. Zhang, X.N. Jia, B. Wang, J. Wang, X.Z. Yu, B.G. Lu, Carbon dots@rGO paper as freestanding and flexible potassium-ion batteries anode. Adv. Sci. 7, 2000470 (2020). https://doi.org/10.1002/advs.202000470
- X.D. Li, J.L. Li, L. Ma, C.Y. Yu, Z. Ji et al., Graphite anode for potassium ion batteries: current status and perspective. Energy Environ. Mater. (2021). https://doi.org/10.1002/eem2.12194
- J.Y. Cheng, L.F. Gao, T. Li, S. Mei, C. Wang et al., Two-dimensional black phosphorus nanomaterials: emerging advances in electrochemical energy storage science. Nano-Micro Lett. 12, 179 (2020). https://doi.org/10.1007/s40820-020-00510-5
- K.Z. Cao, H.Q. Liu, W.Y. Li, Q.Q. Han, Z. Zhang et al., CuO nanoplates for high-performance potassium-ion batteries. Small 15, 1901775 (2019). https://doi.org/10.1002/smll.201901775
- L. Zhang, X. Gu, X. Mao, S. Wen, P. Dai et al., Boosting fast and stable potassium storage of iron selenide/carbon nanocomposites by electrolyte salt and solvent chemistry. J. Power Sources 486, 229373 (2021). https://doi.org/10.1016/j.jpowsour.2020.229373
- Q. Yao, C. Zhu, Advanced Post-potassium-ion batteries as emerging potassium-based alternatives for energy storage. Adv. Funct. Mater. 30, 2005209 (2020). https://doi.org/10.1002/adfm.202005209
- H. Min, M. Li, H. Shu, X. Zhang, T. Hu et al., FeSe2 nanoparticle embedded in 3D honeycomb-like N-doped carbon architectures coupled with electrolytes engineering boost superior potassium ion storage. Electrochim. Acta 366, 137381 (2021). https://doi.org/10.1016/j.electacta.2020.137381
- Q.C. Pan, M. Zhang, L.X. Zhang, Y.H. Li, Y. Li et al., FeSe2@C microrods as a superior long-life and high-rate anode for sodium ion batteries. ACS Nano 14, 17683–17692 (2020). https://doi.org/10.1021/acsnano.0c08818
- Y.Z. Liu, C.H. Yang, Y.P. Li, F.H. Zheng, Y.J. Li et al., FeSe2/nitrogen-doped carbon as anode material for potassium-ion batteries. Chem. Eng. J. 393, 124590 (2020). https://doi.org/10.1016/j.cej.2020.124590
- W. Zhao, Q.W. Tan, K. Han, D.L. He, P. Li et al., Achieving fast and stable lithium/potassium storage by in situ decorating FeSe2 nanodots into three-dimensional hierarchical porous carbon networks. J. Phys. Chem. C 124, 12185–12194 (2020). https://doi.org/10.1021/acs.jpcc.9b11432
- T.X. Wang, W.T. Guo, G. Wang, H. Wang, J.T. Bai et al., Highly dispersed FeSe2 nanoparticles in porous carbon nanofibers as advanced anodes for sodium and potassium ion batteries. J. Alloys Compd. 834, 155265 (2020). https://doi.org/10.1016/j.jallcom.2020.155265
- J.P. Xie, X.D. Li, H.J. Lai, Z.J. Zhao, J.L. Li et al., A robust solid electrolyte interphase layer augments the ion storage capacity of bimetallic-sulfide-containing potassium-ion batteries. Angew. Chem. Int. Ed. 58, 14740–14747 (2019). https://doi.org/10.1002/anie.201908542
- L. Zhou, Z. Cao, W. Wahyudi, J. Zhang, J.Y. Hwang et al., Electrolyte engineering enables high stability and capacity alloying anodes for sodium and potassium ion batteries. ACS Energy Lett. 5, 766–776 (2020). https://doi.org/10.1021/acsenergylett.0c00148
- H. Wang, D.D. Yu, X. Wang, Z.Q. Niu, M.X. Chen et al., Electrolyte chemistry enables simultaneous stabilization of potassium metal and alloying anode for potassium-ion batteries. Angew. Chem. Int. Ed. 58, 16451–16455 (2019). https://doi.org/10.1002/anie.201908607
- J. Wu, Q. Zhang, S. Liu, J. Long, Z. Wu et al., Synergy of binders and electrolytes in enabling microsized alloy anodes for high performance potassium-ion batteries. Nano Energy 77, 105118 (2020). https://doi.org/10.1016/j.nanoen.2020.105118
- K. Lei, C. Wang, L. Liu, Y. Luo, C. Mu et al., A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem. Int. Ed. 57, 4687–4691 (2018). https://doi.org/10.1002/anie.201801389
- K. Han, W. Zhao, Q. Yu, Z. Liu, P. Li et al., Marcasite-FeS2@carbon nanodots anchored on 3D cell-like graphenic matrix for high-rate and ultrastable potassium ion storage. J. Power Sources 469, 228429 (2020). https://doi.org/10.1016/j.jpowsour.2020.228429
- Q.G. Pan, Y.P. Zheng, Z.P. Tong, L. Shi, Y.B. Tang, Novel lamellar tetrapotassium pyromellitic organic for robust high-capacity potassium storage. Angew. Chem. Int. Ed. 60, 11835–11840 (2021). https://doi.org/10.1002/anie.202103052
- X.Q. Chang, X.L. Zhou, X.W. Ou, C.S. Lee, J.W. Zhou et al., Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv. Energy Mater. 9, 1902672 (2019). https://doi.org/10.1002/aenm.201902672
- K. Yang, Q.R. Liu, Y.P. Zheng, H. Yin, S.Q. Zhang et al., Locally ordered graphitized carbon cathodes for high-capacity dual-ion batteries. Angew. Chem. Int. Ed. 60, 6326–6332 (2021). https://doi.org/10.1002/anie.202016233
- J.L. Li, W. Qin, J.P. Xie, H. Lei, Y.Q. Zhu et al., Sulphur-doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion storage. Nano Energy 53, 415–424 (2018). https://doi.org/10.1016/j.nanoen.2018.08.075
- J. Xie, Y. Zhu, N. Zhuang, H. Lei, W. Zhu et al., Rational design of metal organic framework-derived FeS2 hollow nanocages@reduced graphene oxide for K-ion storage. Nanoscale 10, 17092–17098 (2018). https://doi.org/10.1039/C8NR05239E
- Y. Tian, Z.Y. Wang, J.M. Fu, K.Q. Xia, J.G. Lu et al., FeSe2/carbon nanotube hybrid lithium-ion battery for harvesting energy from triboelectric nanogenerators. Chem. Commun. 55, 10960–10963 (2019). https://doi.org/10.1039/C9CC05069H
- S.K. Jiang, M.J. Xiang, J.Y. Zhang, S.Q. Chu, A. Marcelli et al., Rational design of hierarchical FeSe2 encapsulated with bifunctional carbon cuboids as an advanced anode for sodium-ion batteries. Nanoscale 12, 22210–22216 (2020). https://doi.org/10.1039/D0NR06359B
- Q. Zhang, R. Karthick, X.L. Zhao, L.G. Zhang, Y.M. Shi et al., Sb nanoparticle decorated rGO as a new anode material in aqueous chloride ion batteries. Nanoscale 12, 12268–12274 (2020). https://doi.org/10.1039/D0NR00862A
- M. Yousaf, Z. Wang, Y. Wang, Y. Chen, U. Ali et al., Core–shell FeSe2/C nanostructures embedded in a carbon framework as a free standing anode for a sodium ion battery. Small 16, 2002200 (2020). https://doi.org/10.1002/smll.202002200
- J. Ge, B. Wang, J. Wang, Q. Zhang, B. Lu, Nature of FeSe2/N-C anode for high performance potassium ion hybrid capacitor. Adv. Energy Mater. 10, 1903277 (2020). https://doi.org/10.1002/aenm.201903277
- C.Z. Zhang, F. Wang, F. Han, H. Wu, F.Q. Zhang et al., Improved electrochemical performance of sodium/potassium-ion batteries in ether-based electrolyte: cases study of MoS2@C and Fe7S8@C anodes. Adv. Mater. Interfaces 7, 2000486 (2020). https://doi.org/10.1002/admi.202000486
- K.X. Lei, F.J. Li, C.N. Mu, J.B. Wang, Q. Zhao et al., High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes. Energy Environ. Sci. 10, 552–557 (2017). https://doi.org/10.1039/C6EE03185D
- L. Ran, B. Luo, I.R. Gentle, T. Lin, Q. Sun et al., Biomimetic Sn4P3 anchored on carbon nanotubes as an anode for high-performance sodium-ion batteries. ACS Nano 14, 8826–8837 (2020). https://doi.org/10.1021/acsnano.0c03432
- J.Q. Huang, X.Y. Guo, X.Q. Du, X.Y. Lin, J.Q. Huang et al., Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy Environ. Sci. 12, 1550–1557 (2019). https://doi.org/10.1039/C8EE03632B
- T. Chen, F. Meng, Z. Zhang, J. Liang, Y. Hu et al., Stabilizing lithium metal anode by molecular beam epitaxy grown uniform and ultrathin bismuth film. Nano Energy 76, 105068 (2020). https://doi.org/10.1016/j.nanoen.2020.105068
- Q. Xu, T. Chen, Z.G. Wu, Y.H. Liu, L. Qiu et al., General synthesis of MxS (M = Co, Cu) hollow spheres with enhanced sodium-ion storage property in ether-based electrolyte. Ind. Eng. Chem. Res. 59, 1568–1577 (2020). https://doi.org/10.1021/acs.iecr.9b06023
- L.P. Wang, J.Y. Yang, J. Li, T. Chen, S.L. Chen et al., Graphite as a potassium ion battery anode in carbonate-based electrolyte and ether-based electrolyte. J. Power Sources 409, 24–30 (2019). https://doi.org/10.1016/j.jpowsour.2018.10.092
- Y.E. Zhu, L.P. Yang, X.L. Zhou, F. Li, J.P. Wei et al., Boosting the rate capability of hard carbon with an ether-based electrolyte for sodium ion batteries. J. Mater. Chem. A 5, 9528–9532 (2017). https://doi.org/10.1039/C7TA02515G
- X.D. Li, Z.B. Liu, J.L. Li, H. Lei, W.C. Zhuo et al., Insights on the mechanism of Na-ion storage in expanded graphite anode. J. Energy Chem. 53, 56–62 (2021). https://doi.org/10.1016/j.jechem.2020.05.022
- Y. Wang, Y. Zhang, J. Shi, X. Kong, X. Cao et al., Tin sulfide nanoparticles embedded in sulfur and nitrogen dual-doped mesoporous carbon fibers as high-performance anodes with battery-capacitive sodium storage. Energy Storage Mater. 18, 366–374 (2019). https://doi.org/10.1016/j.ensm.2018.08.014
- W. Xiong, J.D. Zhang, Y. Xiao, Y.H. Zhu, Z.Y. Wang et al., Oxygen-rich nanoflake-interlaced carbon microspheres for potassium-ion battery anodes. Chem. Commun. 56, 3433–3436 (2020). https://doi.org/10.1039/D0CC00357C
- R.C. Cui, B. Xu, H.J. Dong, C.C. Yang, Q. Jiang, N/O dual-doped environment-friendly hard carbon as advanced anode for potassium-ion batteries. Adv. Sci. 7, 1902547 (2020). https://doi.org/10.1002/advs.201902547
- W. Tang, B.M. Goh, M.Y. Hu, C. Wan, B.B. Tian et al., In situ Raman and nuclear magnetic resonance study of trapped lithium in the solid electrolyte interface of reduced graphene oxide. J. Phys. Chem. C 120, 2600–2608 (2016). https://doi.org/10.1021/acs.jpcc.5b12551
- J. Xie, J. Li, X. Li, H. Lei, W. Zhuo et al., Ultrahigh “relative energy density” and mass loading of carbon cloth anodes for K-ion batteries. CCS Chem. 2, 791–799 (2020). https://doi.org/10.31635/ccschem.020.202000203
References
L. Li, R. Zhao, D. Pan, S. Yi, L. Gao et al., Constructing tri-functional modification for spinel LiNi0.5Mn1.5O4 via fast ion conductor. J. Power Sources 450, 227677 (2020). https://doi.org/10.1016/j.jpowsour.2019.227677
W.W. Jiang, Q.H. Liu, J.F. Peng, Y.H. Jiang, Y.H. Ding et al., Co9S8 nanoparticles embedded into amorphous carbon as anode materials for lithium-ion batteries. Nanotechnology 31, 235713 (2020). https://doi.org/10.1088/1361-6528/ab7887
N.F. Zhou, W. Qin, C. Wu, C.K. Jia, Graphene-attached vanadium sulfide composite prepared via microwave-assisted hydrothermal method for high performance lithium ion batteries. J. Alloys Compd. 834, 155073 (2020). https://doi.org/10.1016/j.jallcom.2020.155073
L. Li, R. Zhao, T.H. Xu, D.D. Wang, D. Pan et al., Stabilizing a high-voltage LiNi0.5Mn1.5O4 cathode towards all solid state batteries: a Li–Al–Ti–P–O solid electrolyte nano-shell with a host material. Nanoscale 11, 8967–8977 (2019). https://doi.org/10.1039/C9NR01655D
T. Sun, Z.-J. Li, X. Yang, S. Wang, Y.-H. Zhu et al., Imine-rich poly(o-phenylenediamine) as high-capacity trifunctional organic electrode for alkali-ion batteries. CCS Chem. 1, 365–372 (2019). https://doi.org/10.31635/ccschem.019.20190003
C. Yang, S. Xin, L.Q. Mai, Y. You, Materials design for high-safety sodium-ion battery. Adv. Energy Mater. 11, 2000974 (2021). https://doi.org/10.1002/aenm.202000974
X. Yuan, S. Chen, J. Li, J. Xie, G. Yan et al., Understanding the improved performance of sulfur-doped interconnected carbon microspheres for Na-ion storage. Carbon Energy (2021). https://doi.org/10.1002/cey2.98
W.C. Zhang, Y.J. Liu, Z.P. Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 5, eaav7412 (2019). https://doi.org/10.1126/sciadv.aav7412
M. Sha, L. Liu, H. Zhao, Y. Lei, Anode materials for potassium-ion batteries: current status and prospects. Carbon Energy 2, 350–369 (2020). https://doi.org/10.1002/cey2.57
L. Ma, J. Li, T. Wu, P. Sun, S. Tan et al., Re-oxidation reconstruction process of solid electrolyte interphase layer derived from highly active anion for potassium-ion batteries. Nano Energy 87, 106150 (2021). https://doi.org/10.1016/j.nanoen.2021.106150
J. Zheng, Y. Yang, X.L. Fan, G.B. Ji, X. Ji et al., Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 12, 615–623 (2019). https://doi.org/10.1039/C8EE02836B
J.L. Li, N. Zhuang, J.P. Xie, Y.Q. Zhu, H.J. Lai et al., Carboxymethyl cellulose binder greatly stabilizes porous hollow carbon submicrospheres in capacitive K-ion storage. ACS Appl. Mater. Interfaces 11, 15581–15590 (2019). https://doi.org/10.1021/acsami.9b02060
J.L. Li, N. Zhuang, J.P. Xie, X.D. Li, W.C. Zhuo et al., K-ion storage enhancement in Sb2O3/reduced graphene oxide using ether-based electrolyte. Adv. Energy Mater. 10, 1903455 (2020). https://doi.org/10.1002/aenm.201903455
E.J. Zhang, X.N. Jia, B. Wang, J. Wang, X.Z. Yu, B.G. Lu, Carbon dots@rGO paper as freestanding and flexible potassium-ion batteries anode. Adv. Sci. 7, 2000470 (2020). https://doi.org/10.1002/advs.202000470
X.D. Li, J.L. Li, L. Ma, C.Y. Yu, Z. Ji et al., Graphite anode for potassium ion batteries: current status and perspective. Energy Environ. Mater. (2021). https://doi.org/10.1002/eem2.12194
J.Y. Cheng, L.F. Gao, T. Li, S. Mei, C. Wang et al., Two-dimensional black phosphorus nanomaterials: emerging advances in electrochemical energy storage science. Nano-Micro Lett. 12, 179 (2020). https://doi.org/10.1007/s40820-020-00510-5
K.Z. Cao, H.Q. Liu, W.Y. Li, Q.Q. Han, Z. Zhang et al., CuO nanoplates for high-performance potassium-ion batteries. Small 15, 1901775 (2019). https://doi.org/10.1002/smll.201901775
L. Zhang, X. Gu, X. Mao, S. Wen, P. Dai et al., Boosting fast and stable potassium storage of iron selenide/carbon nanocomposites by electrolyte salt and solvent chemistry. J. Power Sources 486, 229373 (2021). https://doi.org/10.1016/j.jpowsour.2020.229373
Q. Yao, C. Zhu, Advanced Post-potassium-ion batteries as emerging potassium-based alternatives for energy storage. Adv. Funct. Mater. 30, 2005209 (2020). https://doi.org/10.1002/adfm.202005209
H. Min, M. Li, H. Shu, X. Zhang, T. Hu et al., FeSe2 nanoparticle embedded in 3D honeycomb-like N-doped carbon architectures coupled with electrolytes engineering boost superior potassium ion storage. Electrochim. Acta 366, 137381 (2021). https://doi.org/10.1016/j.electacta.2020.137381
Q.C. Pan, M. Zhang, L.X. Zhang, Y.H. Li, Y. Li et al., FeSe2@C microrods as a superior long-life and high-rate anode for sodium ion batteries. ACS Nano 14, 17683–17692 (2020). https://doi.org/10.1021/acsnano.0c08818
Y.Z. Liu, C.H. Yang, Y.P. Li, F.H. Zheng, Y.J. Li et al., FeSe2/nitrogen-doped carbon as anode material for potassium-ion batteries. Chem. Eng. J. 393, 124590 (2020). https://doi.org/10.1016/j.cej.2020.124590
W. Zhao, Q.W. Tan, K. Han, D.L. He, P. Li et al., Achieving fast and stable lithium/potassium storage by in situ decorating FeSe2 nanodots into three-dimensional hierarchical porous carbon networks. J. Phys. Chem. C 124, 12185–12194 (2020). https://doi.org/10.1021/acs.jpcc.9b11432
T.X. Wang, W.T. Guo, G. Wang, H. Wang, J.T. Bai et al., Highly dispersed FeSe2 nanoparticles in porous carbon nanofibers as advanced anodes for sodium and potassium ion batteries. J. Alloys Compd. 834, 155265 (2020). https://doi.org/10.1016/j.jallcom.2020.155265
J.P. Xie, X.D. Li, H.J. Lai, Z.J. Zhao, J.L. Li et al., A robust solid electrolyte interphase layer augments the ion storage capacity of bimetallic-sulfide-containing potassium-ion batteries. Angew. Chem. Int. Ed. 58, 14740–14747 (2019). https://doi.org/10.1002/anie.201908542
L. Zhou, Z. Cao, W. Wahyudi, J. Zhang, J.Y. Hwang et al., Electrolyte engineering enables high stability and capacity alloying anodes for sodium and potassium ion batteries. ACS Energy Lett. 5, 766–776 (2020). https://doi.org/10.1021/acsenergylett.0c00148
H. Wang, D.D. Yu, X. Wang, Z.Q. Niu, M.X. Chen et al., Electrolyte chemistry enables simultaneous stabilization of potassium metal and alloying anode for potassium-ion batteries. Angew. Chem. Int. Ed. 58, 16451–16455 (2019). https://doi.org/10.1002/anie.201908607
J. Wu, Q. Zhang, S. Liu, J. Long, Z. Wu et al., Synergy of binders and electrolytes in enabling microsized alloy anodes for high performance potassium-ion batteries. Nano Energy 77, 105118 (2020). https://doi.org/10.1016/j.nanoen.2020.105118
K. Lei, C. Wang, L. Liu, Y. Luo, C. Mu et al., A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem. Int. Ed. 57, 4687–4691 (2018). https://doi.org/10.1002/anie.201801389
K. Han, W. Zhao, Q. Yu, Z. Liu, P. Li et al., Marcasite-FeS2@carbon nanodots anchored on 3D cell-like graphenic matrix for high-rate and ultrastable potassium ion storage. J. Power Sources 469, 228429 (2020). https://doi.org/10.1016/j.jpowsour.2020.228429
Q.G. Pan, Y.P. Zheng, Z.P. Tong, L. Shi, Y.B. Tang, Novel lamellar tetrapotassium pyromellitic organic for robust high-capacity potassium storage. Angew. Chem. Int. Ed. 60, 11835–11840 (2021). https://doi.org/10.1002/anie.202103052
X.Q. Chang, X.L. Zhou, X.W. Ou, C.S. Lee, J.W. Zhou et al., Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv. Energy Mater. 9, 1902672 (2019). https://doi.org/10.1002/aenm.201902672
K. Yang, Q.R. Liu, Y.P. Zheng, H. Yin, S.Q. Zhang et al., Locally ordered graphitized carbon cathodes for high-capacity dual-ion batteries. Angew. Chem. Int. Ed. 60, 6326–6332 (2021). https://doi.org/10.1002/anie.202016233
J.L. Li, W. Qin, J.P. Xie, H. Lei, Y.Q. Zhu et al., Sulphur-doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion storage. Nano Energy 53, 415–424 (2018). https://doi.org/10.1016/j.nanoen.2018.08.075
J. Xie, Y. Zhu, N. Zhuang, H. Lei, W. Zhu et al., Rational design of metal organic framework-derived FeS2 hollow nanocages@reduced graphene oxide for K-ion storage. Nanoscale 10, 17092–17098 (2018). https://doi.org/10.1039/C8NR05239E
Y. Tian, Z.Y. Wang, J.M. Fu, K.Q. Xia, J.G. Lu et al., FeSe2/carbon nanotube hybrid lithium-ion battery for harvesting energy from triboelectric nanogenerators. Chem. Commun. 55, 10960–10963 (2019). https://doi.org/10.1039/C9CC05069H
S.K. Jiang, M.J. Xiang, J.Y. Zhang, S.Q. Chu, A. Marcelli et al., Rational design of hierarchical FeSe2 encapsulated with bifunctional carbon cuboids as an advanced anode for sodium-ion batteries. Nanoscale 12, 22210–22216 (2020). https://doi.org/10.1039/D0NR06359B
Q. Zhang, R. Karthick, X.L. Zhao, L.G. Zhang, Y.M. Shi et al., Sb nanoparticle decorated rGO as a new anode material in aqueous chloride ion batteries. Nanoscale 12, 12268–12274 (2020). https://doi.org/10.1039/D0NR00862A
M. Yousaf, Z. Wang, Y. Wang, Y. Chen, U. Ali et al., Core–shell FeSe2/C nanostructures embedded in a carbon framework as a free standing anode for a sodium ion battery. Small 16, 2002200 (2020). https://doi.org/10.1002/smll.202002200
J. Ge, B. Wang, J. Wang, Q. Zhang, B. Lu, Nature of FeSe2/N-C anode for high performance potassium ion hybrid capacitor. Adv. Energy Mater. 10, 1903277 (2020). https://doi.org/10.1002/aenm.201903277
C.Z. Zhang, F. Wang, F. Han, H. Wu, F.Q. Zhang et al., Improved electrochemical performance of sodium/potassium-ion batteries in ether-based electrolyte: cases study of MoS2@C and Fe7S8@C anodes. Adv. Mater. Interfaces 7, 2000486 (2020). https://doi.org/10.1002/admi.202000486
K.X. Lei, F.J. Li, C.N. Mu, J.B. Wang, Q. Zhao et al., High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes. Energy Environ. Sci. 10, 552–557 (2017). https://doi.org/10.1039/C6EE03185D
L. Ran, B. Luo, I.R. Gentle, T. Lin, Q. Sun et al., Biomimetic Sn4P3 anchored on carbon nanotubes as an anode for high-performance sodium-ion batteries. ACS Nano 14, 8826–8837 (2020). https://doi.org/10.1021/acsnano.0c03432
J.Q. Huang, X.Y. Guo, X.Q. Du, X.Y. Lin, J.Q. Huang et al., Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy Environ. Sci. 12, 1550–1557 (2019). https://doi.org/10.1039/C8EE03632B
T. Chen, F. Meng, Z. Zhang, J. Liang, Y. Hu et al., Stabilizing lithium metal anode by molecular beam epitaxy grown uniform and ultrathin bismuth film. Nano Energy 76, 105068 (2020). https://doi.org/10.1016/j.nanoen.2020.105068
Q. Xu, T. Chen, Z.G. Wu, Y.H. Liu, L. Qiu et al., General synthesis of MxS (M = Co, Cu) hollow spheres with enhanced sodium-ion storage property in ether-based electrolyte. Ind. Eng. Chem. Res. 59, 1568–1577 (2020). https://doi.org/10.1021/acs.iecr.9b06023
L.P. Wang, J.Y. Yang, J. Li, T. Chen, S.L. Chen et al., Graphite as a potassium ion battery anode in carbonate-based electrolyte and ether-based electrolyte. J. Power Sources 409, 24–30 (2019). https://doi.org/10.1016/j.jpowsour.2018.10.092
Y.E. Zhu, L.P. Yang, X.L. Zhou, F. Li, J.P. Wei et al., Boosting the rate capability of hard carbon with an ether-based electrolyte for sodium ion batteries. J. Mater. Chem. A 5, 9528–9532 (2017). https://doi.org/10.1039/C7TA02515G
X.D. Li, Z.B. Liu, J.L. Li, H. Lei, W.C. Zhuo et al., Insights on the mechanism of Na-ion storage in expanded graphite anode. J. Energy Chem. 53, 56–62 (2021). https://doi.org/10.1016/j.jechem.2020.05.022
Y. Wang, Y. Zhang, J. Shi, X. Kong, X. Cao et al., Tin sulfide nanoparticles embedded in sulfur and nitrogen dual-doped mesoporous carbon fibers as high-performance anodes with battery-capacitive sodium storage. Energy Storage Mater. 18, 366–374 (2019). https://doi.org/10.1016/j.ensm.2018.08.014
W. Xiong, J.D. Zhang, Y. Xiao, Y.H. Zhu, Z.Y. Wang et al., Oxygen-rich nanoflake-interlaced carbon microspheres for potassium-ion battery anodes. Chem. Commun. 56, 3433–3436 (2020). https://doi.org/10.1039/D0CC00357C
R.C. Cui, B. Xu, H.J. Dong, C.C. Yang, Q. Jiang, N/O dual-doped environment-friendly hard carbon as advanced anode for potassium-ion batteries. Adv. Sci. 7, 1902547 (2020). https://doi.org/10.1002/advs.201902547
W. Tang, B.M. Goh, M.Y. Hu, C. Wan, B.B. Tian et al., In situ Raman and nuclear magnetic resonance study of trapped lithium in the solid electrolyte interface of reduced graphene oxide. J. Phys. Chem. C 120, 2600–2608 (2016). https://doi.org/10.1021/acs.jpcc.5b12551
J. Xie, J. Li, X. Li, H. Lei, W. Zhuo et al., Ultrahigh “relative energy density” and mass loading of carbon cloth anodes for K-ion batteries. CCS Chem. 2, 791–799 (2020). https://doi.org/10.31635/ccschem.020.202000203