Efficient and Air-Stable Planar Perovskite Solar Cells Formed on Graphene-Oxide-Modified PEDOT:PSS Hole Transport Layer
Corresponding Author: Xiaohong Chen
Nano-Micro Letters,
Vol. 9 No. 4 (2017), Article Number: 39
Abstract
As a hole transport layer, PEDOT:PSS usually limits the stability and efficiency of perovskite solar cells (PSCs) due to its hygroscopic nature and inability to block electrons. Here, a graphene-oxide (GO)-modified PEDOT:PSS hole transport layer was fabricated by spin-coating a GO solution onto the PEDOT:PSS surface. PSCs fabricated on a GO-modified PEDOT:PSS layer exhibited a power conversion efficiency (PCE) of 15.34%, which is higher than 11.90% of PSCs with the PEDOT:PSS layer. Furthermore, the stability of the PSCs was significantly improved, with the PCE remaining at 83.5% of the initial PCE values after aging for 39 days in air. The hygroscopic PSS material at the PEDOT:PSS surface was partly removed during spin-coating with the GO solution, which improves the moisture resistance and decreases the contact barrier between the hole transport layer and perovskite layer. The scattered distribution of the GO at the PEDOT:PSS surface exhibits superior wettability, which helps to form a high-quality perovskite layer with better crystallinity and fewer pin holes. Furthermore, the hole extraction selectivity of the GO further inhibits the carrier recombination at the interface between the perovskite and PEDOT:PSS layers. Therefore, the cooperative interactions of these factors greatly improve the light absorption of the perovskite layer, the carrier transport and collection abilities of the PSCs, and especially the stability of the cells.
Highlights:
1 PSCs (perovskite solar cells) with GO (graphene-oxide)-modified PEDOT:PSS (poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate) exhibit a higher efficiency and better stability.
2 GO-modified PEDOT:PSS surfaces exhibit superior wettability relative to PEDOT:PSS.
3 Hole extraction selectivity of GO inhibits carrier recombination of PSCs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- NREL Best Research-Cell Efficiencies (2016). http://www.nrel.gov/pv/assets/images/efficiency_chart.jpg. Accessed Sept 2016
- T. Salim, S. Sun, Y. Abe, A. Krishna, A.C. Grimsdale, Y.M. Lam, Perovskite-based solar cells: impact of morphology and device architecture on device performance. J. Mater. Chem. A 3(17), 8943–8969 (2015). doi:10.1039/C4TA05226A
- C. Zhang, Y. Luo, X. Chen, Y. Chen, Z. Sun, S. Huang, Effective improvement of the photovoltaic performance of carbon- based perovskite solar cells by additional solvents. Nano-Micro Lett. 8(4), 347–357 (2016). doi:10.1007/s40820-016-0094-4
- X. Hou, T. Xuan, H. Sun, X. Chen, H. Li, L. Pan, High-performance perovskite solar cells by incorporating a ZnGa2O4:Eu3+ nanophosphor in the mesoporous TiO2 layer. Sol. Energy Mater. Sol. Cells 149, 121–127 (2016). doi:10.1016/j.solmat.2016.01.021
- J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai et al., Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8(2), 1674–1680 (2014). doi:10.1021/nn406020d
- T. Todorov, T. Gershon, O. Gunawan, Y.S. Lee, C. Sturdevant, L.-Y. Chang, S. Guha, Monolithic perovskite-CIGS tandem solar cells via in situ band gap engineering. Adv. Energy Mater. 5(23), 1500799 (2015). doi:10.1002/aenm.201500799
- P. Luo, Z. Liu, W. Xia, C. Yuan, J. Cheng, Y. Lu, Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions. ACS Appl. Mater. Interfaces 7(4), 2708–2714 (2015). doi:10.1021/am5077588
- W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015). doi:10.1126/science.aaa9272
- X. Liu, X. Xia, Q. Cai, F. Cai, L. Yang, Y. Yan, T. Wang, Efficient planar heterojunction perovskite solar cells with weak hysteresis fabricated via bar coating. Sol. Energy Mater. Sol. Cells 159, 412–417 (2017). doi:10.1016/j.solmat.2016.09.046
- L. Huang, C. Li, X. Sun, R. Xu, Y. Du et al., Efficient and hysteresis-less pseudo-planar heterojunction perovskite solar cells fabricated by a facile and solution-saving one-step dip-coating method. Org. Electron. 40, 13–23 (2017). doi:10.1016/j.orgel.2016.10.035
- X. Jia, Z. Jiang, X. Chen, J. Zhou, L. Pan, F. Zhu, Z. Sun, S. Huang, Highly efficient and air stable inverted polymer solar cells using LiF-modified ITO cathode and MoO3/AgAl alloy anode. ACS Appl. Mater. Interfaces 8(6), 3792–3799 (2016). doi:10.1021/acsami.5b10240
- M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells 92(7), 686–714 (2008). doi:10.1016/j.solmat.2008.01.005
- D.A. Mengistie, M.A. Ibrahem, P.-C. Wang, C.-W. Chu, Highly conductive PEDOT:PSS treated with formic acid for ITO-free polymer solar cells. ACS Appl. Mater. Interfaces 6(4), 2292–2299 (2014). doi:10.1021/am405024d
- Z. Jiang, X. Chen, X. Lin, X. Jia, J. Wang et al., Amazing stable open-circuit voltage in perovskite solar cells using AgAl alloy electrode. Sol. Energy Mater. Sol. Cells 146, 35–43 (2016). doi:10.1016/j.solmat.2015.11.026
- G. Adam, M. Kaltenbrunner, E.D. Głowacki, D.H. Apaydin, M.S. White et al., Solution processed perovskite solar cells using highly conductive PEDOT:PSS interfacial layer. Sol. Energy Mater. Sol. Cells 157, 318–325 (2016). doi:10.1016/j.solmat.2016.05.011
- J. Wang, X. Xiang, X. Yao, W.-J. Xiao, J. Lin, W.-S. Li, Efficient perovskite solar cells using trichlorosilanes as perovskite/PCBM interface modifiers. Org. Electron. 39, 1–9 (2016). doi:10.1016/j.orgel.2016.09.018
- S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang, CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%. Nano Lett. 15(6), 3723–3728 (2015). doi:10.1021/acs.nanolett.5b00116
- J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. Yang et al., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nano 11(1), 75–81 (2016). doi:10.1038/nnano.2015.230
- J.A. Christians, R.C.M. Fung, P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136(2), 758–764 (2014). doi:10.1021/ja411014k
- W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang et al., Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350(6263), 944–948 (2015). doi:10.1126/science.aad1015
- Z.-K. Wang, M. Li, D.-X. Yuan, X.-B. Shi, H. Ma, L.-S. Liao, Improved hole interfacial layer for planar perovskite solar cells with efficiency exceeding 15%. ACS Appl. Mater. Interfaces 7(18), 9645–9651 (2015). doi:10.1021/acsami.5b01330
- I.J. Park, M.A. Park, D.H. Kim, G.D. Park, B.J. Kim et al., New hybrid hole extraction layer of perovskite solar cells with a planar p–i–n Geometry. J. Phys. Chem. C 119(49), 27285–27290 (2015). doi:10.1021/acs.jpcc.5b09322
- Y. Jiang, C. Li, H. Liu, R. Qin, H. Ma, Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)(PEDOT:PSS)-molybdenum oxide composite films as hole conductor for efficient planar perovskite solar cells. J. Mater. Chem. A 4(25), 9958–9966 (2016). doi:10.1039/C6TA03658A
- H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso et al., Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006). doi:10.1021/jp060936f
- M. Acik, S.B. Darling, Graphene in perovskite solar cells: device design, characterization and implementation. J. Mater. Chem. A 4(17), 6185–6235 (2016). doi:10.1039/C5TA09911K
- A.L. Palma, L. Cinà, S. Pescetelli, A. Agresti, M. Raggio, R. Paolesse, F. Bonaccorso, A. Di Carlo, Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells. Nano Energy 22, 349–360 (2016). doi:10.1016/j.nanoen.2016.02.027
- S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, M. Chhowalla, Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4(6), 3169–3174 (2010). doi:10.1021/nn100551j
- Z. Wu, S. Bai, J. Xiang, Z. Yuan, Y. Yang et al., Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale 6(18), 10505–10510 (2014). doi:10.1039/C4NR03181D
- D.-Y. Lee, S.-I. Na, S.-S. Kim, Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells. Nanoscale 8(3), 1513–1522 (2016). doi:10.1039/C5NR05271H
- W. Li, H. Dong, X. Guo, N. Li, J. Li, G. Niu, L. Wang, Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells. J. Mater. Chem. A 2(47), 20105–20111 (2014). doi:10.1039/C4TA05196C
- L.J. Cote, F. Kim, J. Huang, Langmuir–blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131(3), 1043–1049 (2009). doi:10.1021/ja806262m
- K.K. Manga, Y. Zhou, Y. Yan, K.P. Loh, Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties. Adv. Funct. Mater. 19(22), 3638–3643 (2009). doi:10.1002/adfm.200900891
- M.P. de Jong, L.J. van Ijzendoorn, M.J.A. de Voigt, Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes. Appl. Phys. Lett. 77(14), 2255 (2000). doi:10.1063/1.1315344
- D. Alemu, H.-Y. Wei, K.-C. Ho, C.-W. Chu, Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy Environ. Sci. 5(11), 9662–9671 (2012). doi:10.1039/C2EE22595F
- S. Zhang, Z. Yu, P. Li, B. Li, F.H. Isikgor et al., Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate films with low conductivity and low acidity through a treatment of their solutions with probe ultrasonication and their application as hole transport layer in polymer solar cells and perovskite solar cells. Org. Electron. 32, 149–156 (2016). doi:10.1016/j.orgel.2016.02.024
- Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, L. Han, Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 7(9), 2934–2938 (2014). doi:10.1039/C4EE01624F
- L. Wang, C. McCleese, A. Kovalsky, Y. Zhao, C. Burda, Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. J. Am. Chem. Soc. 136(35), 12205–12208 (2014). doi:10.1021/ja504632z
- V. D’Innocenzo, A.R. Srimath Kandada, M. De Bastiani, M. Gandini, A. Petrozza, Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. J. Am. Chem. Soc. 136(51), 17730–17733 (2014). doi:10.1021/ja511198f
- J. Shi, J. Dong, S. Lv, Y. Xu, L. Zhu et al., Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: high efficiency and junction property. Appl. Phys. Lett. 104(6), 063901 (2014). doi:10.1063/1.4864638
- J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng et al., Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105(18), 183902 (2014). doi:10.1063/1.4901510
- W. Zhu, C. Bao, Y. Wang, F. Li, X. Zhou et al., Coarsening of one-step deposited organolead triiodide perovskite films via Ostwald ripening for high efficiency planar-heterojunction solar cells. Dalton Trans. 45(18), 7856–7865 (2016). doi:10.1039/C6DT00900J
- H. Yu, J. Roh, J. Yun, J. Jang, Synergistic effects of three-dimensional orchid-like TiO2 nanowire networks and plasmonic nanoparticles for highly efficient mesoscopic perovskite solar cells. J. Mater. Chem. A 4(19), 7322–7329 (2016). doi:10.1039/C5TA10040B
- M.-F. Xu, X.-Z. Zhu, X.-B. Shi, J. Liang, Y. Jin, Z.-K. Wang, L.-S. Liao, Plasmon resonance enhanced optical absorption in inverted polymer/fullerene solar cells with metal nanoparticle-doped solution-processable TiO2 layer. ACS Appl. Mater. Interfaces 5(8), 2935–2942 (2013). doi:10.1021/am4001979
References
NREL Best Research-Cell Efficiencies (2016). http://www.nrel.gov/pv/assets/images/efficiency_chart.jpg. Accessed Sept 2016
T. Salim, S. Sun, Y. Abe, A. Krishna, A.C. Grimsdale, Y.M. Lam, Perovskite-based solar cells: impact of morphology and device architecture on device performance. J. Mater. Chem. A 3(17), 8943–8969 (2015). doi:10.1039/C4TA05226A
C. Zhang, Y. Luo, X. Chen, Y. Chen, Z. Sun, S. Huang, Effective improvement of the photovoltaic performance of carbon- based perovskite solar cells by additional solvents. Nano-Micro Lett. 8(4), 347–357 (2016). doi:10.1007/s40820-016-0094-4
X. Hou, T. Xuan, H. Sun, X. Chen, H. Li, L. Pan, High-performance perovskite solar cells by incorporating a ZnGa2O4:Eu3+ nanophosphor in the mesoporous TiO2 layer. Sol. Energy Mater. Sol. Cells 149, 121–127 (2016). doi:10.1016/j.solmat.2016.01.021
J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai et al., Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8(2), 1674–1680 (2014). doi:10.1021/nn406020d
T. Todorov, T. Gershon, O. Gunawan, Y.S. Lee, C. Sturdevant, L.-Y. Chang, S. Guha, Monolithic perovskite-CIGS tandem solar cells via in situ band gap engineering. Adv. Energy Mater. 5(23), 1500799 (2015). doi:10.1002/aenm.201500799
P. Luo, Z. Liu, W. Xia, C. Yuan, J. Cheng, Y. Lu, Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions. ACS Appl. Mater. Interfaces 7(4), 2708–2714 (2015). doi:10.1021/am5077588
W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015). doi:10.1126/science.aaa9272
X. Liu, X. Xia, Q. Cai, F. Cai, L. Yang, Y. Yan, T. Wang, Efficient planar heterojunction perovskite solar cells with weak hysteresis fabricated via bar coating. Sol. Energy Mater. Sol. Cells 159, 412–417 (2017). doi:10.1016/j.solmat.2016.09.046
L. Huang, C. Li, X. Sun, R. Xu, Y. Du et al., Efficient and hysteresis-less pseudo-planar heterojunction perovskite solar cells fabricated by a facile and solution-saving one-step dip-coating method. Org. Electron. 40, 13–23 (2017). doi:10.1016/j.orgel.2016.10.035
X. Jia, Z. Jiang, X. Chen, J. Zhou, L. Pan, F. Zhu, Z. Sun, S. Huang, Highly efficient and air stable inverted polymer solar cells using LiF-modified ITO cathode and MoO3/AgAl alloy anode. ACS Appl. Mater. Interfaces 8(6), 3792–3799 (2016). doi:10.1021/acsami.5b10240
M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells 92(7), 686–714 (2008). doi:10.1016/j.solmat.2008.01.005
D.A. Mengistie, M.A. Ibrahem, P.-C. Wang, C.-W. Chu, Highly conductive PEDOT:PSS treated with formic acid for ITO-free polymer solar cells. ACS Appl. Mater. Interfaces 6(4), 2292–2299 (2014). doi:10.1021/am405024d
Z. Jiang, X. Chen, X. Lin, X. Jia, J. Wang et al., Amazing stable open-circuit voltage in perovskite solar cells using AgAl alloy electrode. Sol. Energy Mater. Sol. Cells 146, 35–43 (2016). doi:10.1016/j.solmat.2015.11.026
G. Adam, M. Kaltenbrunner, E.D. Głowacki, D.H. Apaydin, M.S. White et al., Solution processed perovskite solar cells using highly conductive PEDOT:PSS interfacial layer. Sol. Energy Mater. Sol. Cells 157, 318–325 (2016). doi:10.1016/j.solmat.2016.05.011
J. Wang, X. Xiang, X. Yao, W.-J. Xiao, J. Lin, W.-S. Li, Efficient perovskite solar cells using trichlorosilanes as perovskite/PCBM interface modifiers. Org. Electron. 39, 1–9 (2016). doi:10.1016/j.orgel.2016.09.018
S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang, CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%. Nano Lett. 15(6), 3723–3728 (2015). doi:10.1021/acs.nanolett.5b00116
J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. Yang et al., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nano 11(1), 75–81 (2016). doi:10.1038/nnano.2015.230
J.A. Christians, R.C.M. Fung, P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136(2), 758–764 (2014). doi:10.1021/ja411014k
W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang et al., Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350(6263), 944–948 (2015). doi:10.1126/science.aad1015
Z.-K. Wang, M. Li, D.-X. Yuan, X.-B. Shi, H. Ma, L.-S. Liao, Improved hole interfacial layer for planar perovskite solar cells with efficiency exceeding 15%. ACS Appl. Mater. Interfaces 7(18), 9645–9651 (2015). doi:10.1021/acsami.5b01330
I.J. Park, M.A. Park, D.H. Kim, G.D. Park, B.J. Kim et al., New hybrid hole extraction layer of perovskite solar cells with a planar p–i–n Geometry. J. Phys. Chem. C 119(49), 27285–27290 (2015). doi:10.1021/acs.jpcc.5b09322
Y. Jiang, C. Li, H. Liu, R. Qin, H. Ma, Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)(PEDOT:PSS)-molybdenum oxide composite films as hole conductor for efficient planar perovskite solar cells. J. Mater. Chem. A 4(25), 9958–9966 (2016). doi:10.1039/C6TA03658A
H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso et al., Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006). doi:10.1021/jp060936f
M. Acik, S.B. Darling, Graphene in perovskite solar cells: device design, characterization and implementation. J. Mater. Chem. A 4(17), 6185–6235 (2016). doi:10.1039/C5TA09911K
A.L. Palma, L. Cinà, S. Pescetelli, A. Agresti, M. Raggio, R. Paolesse, F. Bonaccorso, A. Di Carlo, Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells. Nano Energy 22, 349–360 (2016). doi:10.1016/j.nanoen.2016.02.027
S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, M. Chhowalla, Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4(6), 3169–3174 (2010). doi:10.1021/nn100551j
Z. Wu, S. Bai, J. Xiang, Z. Yuan, Y. Yang et al., Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale 6(18), 10505–10510 (2014). doi:10.1039/C4NR03181D
D.-Y. Lee, S.-I. Na, S.-S. Kim, Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells. Nanoscale 8(3), 1513–1522 (2016). doi:10.1039/C5NR05271H
W. Li, H. Dong, X. Guo, N. Li, J. Li, G. Niu, L. Wang, Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells. J. Mater. Chem. A 2(47), 20105–20111 (2014). doi:10.1039/C4TA05196C
L.J. Cote, F. Kim, J. Huang, Langmuir–blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131(3), 1043–1049 (2009). doi:10.1021/ja806262m
K.K. Manga, Y. Zhou, Y. Yan, K.P. Loh, Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties. Adv. Funct. Mater. 19(22), 3638–3643 (2009). doi:10.1002/adfm.200900891
M.P. de Jong, L.J. van Ijzendoorn, M.J.A. de Voigt, Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes. Appl. Phys. Lett. 77(14), 2255 (2000). doi:10.1063/1.1315344
D. Alemu, H.-Y. Wei, K.-C. Ho, C.-W. Chu, Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy Environ. Sci. 5(11), 9662–9671 (2012). doi:10.1039/C2EE22595F
S. Zhang, Z. Yu, P. Li, B. Li, F.H. Isikgor et al., Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate films with low conductivity and low acidity through a treatment of their solutions with probe ultrasonication and their application as hole transport layer in polymer solar cells and perovskite solar cells. Org. Electron. 32, 149–156 (2016). doi:10.1016/j.orgel.2016.02.024
Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, L. Han, Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 7(9), 2934–2938 (2014). doi:10.1039/C4EE01624F
L. Wang, C. McCleese, A. Kovalsky, Y. Zhao, C. Burda, Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. J. Am. Chem. Soc. 136(35), 12205–12208 (2014). doi:10.1021/ja504632z
V. D’Innocenzo, A.R. Srimath Kandada, M. De Bastiani, M. Gandini, A. Petrozza, Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. J. Am. Chem. Soc. 136(51), 17730–17733 (2014). doi:10.1021/ja511198f
J. Shi, J. Dong, S. Lv, Y. Xu, L. Zhu et al., Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: high efficiency and junction property. Appl. Phys. Lett. 104(6), 063901 (2014). doi:10.1063/1.4864638
J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng et al., Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105(18), 183902 (2014). doi:10.1063/1.4901510
W. Zhu, C. Bao, Y. Wang, F. Li, X. Zhou et al., Coarsening of one-step deposited organolead triiodide perovskite films via Ostwald ripening for high efficiency planar-heterojunction solar cells. Dalton Trans. 45(18), 7856–7865 (2016). doi:10.1039/C6DT00900J
H. Yu, J. Roh, J. Yun, J. Jang, Synergistic effects of three-dimensional orchid-like TiO2 nanowire networks and plasmonic nanoparticles for highly efficient mesoscopic perovskite solar cells. J. Mater. Chem. A 4(19), 7322–7329 (2016). doi:10.1039/C5TA10040B
M.-F. Xu, X.-Z. Zhu, X.-B. Shi, J. Liang, Y. Jin, Z.-K. Wang, L.-S. Liao, Plasmon resonance enhanced optical absorption in inverted polymer/fullerene solar cells with metal nanoparticle-doped solution-processable TiO2 layer. ACS Appl. Mater. Interfaces 5(8), 2935–2942 (2013). doi:10.1021/am4001979