Effective Improvement of the Photovoltaic Performance of Carbon-Based Perovskite Solar Cells by Additional Solvents
Corresponding Author: Sumei Huang
Nano-Micro Letters,
Vol. 8 No. 4 (2016), Article Number: 347-357
Abstract
A solvent-assisted methodology has been developed to synthesize CH3NH3PbI3 perovskite absorber layers. It involved the use of a mixed solvent of CH3NH3I, PbI2, γ-butyrolactone, and dimethyl sulfoxide (DMSO) followed by the addition of chlorobenzene (CB). The method produced ultra-flat and dense perovskite capping layers atop mesoporous TiO2 films, enabling a remarkable improvement in the performance of free hole transport material (HTM) carbon electrode-based perovskite solar cells (PSCs). Toluene (TO) was also studied as an additional solvent for comparison. At the annealing temperature of 100 °C, the fabricated HTM-free PSCs based on drop-casting CB demonstrated power conversion efficiency (PCE) of 9.73 %, which is 36 and 71 % higher than those fabricated from the perovskite films using TO or without adding an extra solvent, respectively. The interaction between the PbI2–DMSO–CH3NH3I intermediate phase and the additional solvent was discussed. Furthermore, the influence of the annealing temperature on the absorber film formation, morphology, and crystalline structure was investigated and correlated with the photovoltaic performance. Highly efficient, simple, and stable HTM-free solar cells with a PCE of 11.44 % were prepared utilizing the optimum perovskite absorbers annealed at 120 °C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). doi:10.1021/ja809598r
- H.S. Kim, C.R. Lee, J.H. Lm, K.B. Lee, T. Meohl et al., Iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2(8), 591–597 (2012). doi:10.1038/srep00591
- M.M. Lee, J. Teushcer, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). doi:10.1126/science
- J. Burschka, N. Pellet, S.J. Moon, R.H. Baker, P. Gao, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). doi:10.1038/nature12340
- M.Z. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013). doi:10.1038/nature12509
- H.P. Zhou, Q. Chen, G. Li, S. Luo, T. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014). doi:10.1126/science.1254050
- M. Saliba, T. Matsui, J. Seo, K. Domanski, J. Correa-Baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. (2016). doi:10.1039/C5EE03874J
- S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas, H.J. Snaith, Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14(10), 5561–5568 (2014). doi:10.1021/nl501982b
- L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, M. Grätzel, Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134(42), 17396–17399 (2012). doi:10.1021/ja307789s
- W.A. Laban, L. Etgar, Hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ. Sci. 6, 3249–3253 (2013). doi:10.1039/C3EE42282H
- S. Aharon, S. Gamliel, B.E. Cohen, L. Etgar, Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Phys. Chem. Chem. Phys. 16(22), 10512–10518 (2014). doi:10.1039/C4CP00460D
- J.J. Shi, J. Dong, S.T. Lv, Y.Z. Xu, L.F. Zhu et al., Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: high efficiency and junction property. Appl. Phys. Lett. 104(6), 063901 (2014). doi:10.1063/1.4864638
- D.W. Zhang, X.D. Li, H.B. Li, S. Chen, Z. Sun, X.J. Yin, S.M. Huang, Graphene-based counter electrode for dye-sensitized solar cells. Carbon 49(15), 5382–5388 (2011). doi:10.1016/j.carbon.2011.08.005
- P. Zhang, Z. Hu, Y. Wang, Y. Qin, W. Li, J. Wang, A bi-layer composite film based on TiO2 hollow spheres, P25, and multi-walled carbon nanotubes for efficient photoanode of dye-sensitized solar cell. Nano–Micro Lett. (2016). doi:10.1007/s40820-015-0081-1
- S. Lawes, A. Riese, Q. Sun, N. Cheng, Printing nanostructured carbon for energy storage and conversion applications. Carbon 92, 150–176 (2015). doi:10.1016/j.carbon.2015.04.008
- Y. Zhang, L.F. Duan, Y. Zhang, J. Wang, H. Geng, Q. Zhang, Advances in conceptual electronic nanodevices based on 0D and 1D nanomaterials. Nano–Micro Lett. 6(1), 1–19 (2014). doi:10.5101/nml.v6i1.p1-19
- A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M.K. Nazeeruddin, M. Grätzel, Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. 24(21), 3250–3258 (2014). doi:10.1002/adfm.201304022
- A. Mei, X. Li, L. Liu, Z. Ku, T. Liu et al., A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345(6194), 295–298 (2014). doi:10.1126/science.1254763
- H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, Y. Du, T. Ma, Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode. J. Phys. Chem. Lett. 5(18), 3241–3246 (2014). doi:10.1021/jz5017069
- F. Zhang, X. Yang, H. Wang, M. Cheng, J. Zhao, L. Sun, Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode. ACS Appl. Mater. Interfaces 6(18), 16140–16146 (2014). doi:10.1021/am504175x
- V. D’Innocenzo, G. Grancini, M.J.P. Alcocer, A.R.S. Kandada, S.D. Stranks, M.M. Lee, G. Lanzani, H.J. Snaith, A. Petrozza, Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5(4), 3586 (2014). doi:10.1038/ncomms4586
- H. Yu, F. Wang, F. Xie, W. Li, J. Chen, N. Zhao, The role of chlorine in the formation process of “CH3NH3PbI3−xClx” perovskite. Adv. Funct. Mater. 24, 7102–7108 (2014). doi:10.1002/adfm.201401872
- N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015). doi:10.1038/nature14133
- Y.-J. Jeon, S. Lee, R. Kang, J.-E. Kim, J.-S. Yeo, S.-H. Lee, S.-S. Kim, J.-M. Yun, D.-Y. Kim, Planar heterojunction perovskite solar cells with superior reproducibility. Sci. Rep. 4, 6953 (2014). doi:10.1038/srep06953
- P.W. Liang, C.Y. Liao, C.C. Chueh, F. Zuo, S.T. Williams, X.K. Xin, J.J. Lin, A.K. Jen, Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 26(22), 3748–3754 (2014). doi:10.1002/adma.201400231
- N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13(9), 897–903 (2014). doi:10.1038/nmat4014
- M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A.G. Weale, U. Bach, Y.B. Cheng, L. Spiccia, A fast deposition–crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. 126(37), 10056–10061 (2014). doi:10.1002/ange.201405334
- J. Seo, S. Park, Y.C. Kim, N.J. Jeon, J.H. Noh, S.C. Yoon, S.I. Seok, Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy Environ. Sci. 7(7), 2642–2646 (2014). doi:10.1039/c4ee01216j
- J. Shi, Y. Luo, H. Wei, J. Luo, J. Dong et al., Modified two-step deposition method for high-efficiency TiO2/CH3NH3PbI3 heterojunction solar cells. ACS Appl. Mater. Interfaces 6(12), 9711–9718 (2014). doi:10.1021/am502131t
- J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, 6.5% Efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10), 4088–4093 (2011). doi:10.1039/c1nr10867k
- Y.D. Luo, X.H. Chen, C.X. Zhang, J.J. Li, J.H. Shi, Z. Sun, Z.C. Wang, S.M. Huang, AgAl alloy electrode for efficient perovskite solar cells. RSC Adv. 5(69), 56037–56044 (2015). doi:10.1039/C5RA06133D
- Z.Y. Jiang, X.H. Chen, X.H. Lin, X.K. Jia, J.F. Wang, L.K. Pan, S.M. Huang, F. Zhu, Z. Sun, Amazing stable open-circuit voltage in perovskite solar cells using AgAl alloy electrode. Sol. Energy Mater. Sol. Cells 146, 35–43 (2016). doi:10.1016/j.solmat.2015.11.026
- Y. Zhao, K. Zhu, CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C 118(18), 9412–9418 (2014). doi:10.1021/jp502696w
- G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24(1), 151–157 (2014). doi:10.1002/adfm.201302090
- J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan, S. Yang, All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale 5(8), 3245–3248 (2013). doi:10.1039/C3NR00218G
- T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Grätzel, T.J. White, Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitized solar cell applications. J. Mater. Chem. A 1(18), 5628–5641 (2013). doi:10.1039/C3TA10518K
- Q. Chen, H. Zhou, T.B. Song, S. Luo, Z. Hong, H.S. Duan, L. Dou, Y. Liu, Y. Yang, Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14(7), 4158–4163 (2014). doi:10.1021/nl501838y
- Y. Li, J. Cooper, R. Buonsanti, C. Giannini, Y. Liu, F. Toma, I. Sharp, Fabrication of planar heterojunction perovskite solar cells by controlled low-pressure vapor annealing. J. Phys. Chem. Lett. 6(3), 493–499 (2015). doi:10.1021/jz502720a
- M. Bashahu, A. Habyarimana, Review and test of methods for determination of the solar cell series resistance. Renew. Energy 6(2), 129–138 (1995). doi:10.1016/0960-1481(94)E0021-V
- K. Bouzidi, M. Chegaar, A. Bouhemadou, Solar cells parameters evaluation considering the series and shunt resistance. Energy Mater. Sol. Cells 91(18), 1647–1651 (2007). doi:10.1021/acsami.5b09873
- Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, L. Han, Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 7(9), 2934–2938 (2014). doi:10.1039/C4EE01624F
- K.E. Strawhecker, S.K. Kumar, J.F. Douglas, A. Karim, The critical role of solvent evaporation on the roughness of spin-cast polymer films. Macromolecules 34(14), 4669–4672 (2001). doi:10.1021/ma001440d
- P. Müller-Buschbaum, J.S. Gutmann, M. Wolkenhauer, J. Kraus, M. Stamm, D. Smilgies, W. Petry, Solvent-induced surface morphology of thin polymer films. Macromolecules 34(5), 1369–1375 (2001). doi:10.1021/ma0009193
References
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). doi:10.1021/ja809598r
H.S. Kim, C.R. Lee, J.H. Lm, K.B. Lee, T. Meohl et al., Iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2(8), 591–597 (2012). doi:10.1038/srep00591
M.M. Lee, J. Teushcer, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). doi:10.1126/science
J. Burschka, N. Pellet, S.J. Moon, R.H. Baker, P. Gao, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). doi:10.1038/nature12340
M.Z. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013). doi:10.1038/nature12509
H.P. Zhou, Q. Chen, G. Li, S. Luo, T. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014). doi:10.1126/science.1254050
M. Saliba, T. Matsui, J. Seo, K. Domanski, J. Correa-Baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. (2016). doi:10.1039/C5EE03874J
S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas, H.J. Snaith, Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14(10), 5561–5568 (2014). doi:10.1021/nl501982b
L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, M. Grätzel, Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134(42), 17396–17399 (2012). doi:10.1021/ja307789s
W.A. Laban, L. Etgar, Hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ. Sci. 6, 3249–3253 (2013). doi:10.1039/C3EE42282H
S. Aharon, S. Gamliel, B.E. Cohen, L. Etgar, Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Phys. Chem. Chem. Phys. 16(22), 10512–10518 (2014). doi:10.1039/C4CP00460D
J.J. Shi, J. Dong, S.T. Lv, Y.Z. Xu, L.F. Zhu et al., Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: high efficiency and junction property. Appl. Phys. Lett. 104(6), 063901 (2014). doi:10.1063/1.4864638
D.W. Zhang, X.D. Li, H.B. Li, S. Chen, Z. Sun, X.J. Yin, S.M. Huang, Graphene-based counter electrode for dye-sensitized solar cells. Carbon 49(15), 5382–5388 (2011). doi:10.1016/j.carbon.2011.08.005
P. Zhang, Z. Hu, Y. Wang, Y. Qin, W. Li, J. Wang, A bi-layer composite film based on TiO2 hollow spheres, P25, and multi-walled carbon nanotubes for efficient photoanode of dye-sensitized solar cell. Nano–Micro Lett. (2016). doi:10.1007/s40820-015-0081-1
S. Lawes, A. Riese, Q. Sun, N. Cheng, Printing nanostructured carbon for energy storage and conversion applications. Carbon 92, 150–176 (2015). doi:10.1016/j.carbon.2015.04.008
Y. Zhang, L.F. Duan, Y. Zhang, J. Wang, H. Geng, Q. Zhang, Advances in conceptual electronic nanodevices based on 0D and 1D nanomaterials. Nano–Micro Lett. 6(1), 1–19 (2014). doi:10.5101/nml.v6i1.p1-19
A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M.K. Nazeeruddin, M. Grätzel, Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. 24(21), 3250–3258 (2014). doi:10.1002/adfm.201304022
A. Mei, X. Li, L. Liu, Z. Ku, T. Liu et al., A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345(6194), 295–298 (2014). doi:10.1126/science.1254763
H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, Y. Du, T. Ma, Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode. J. Phys. Chem. Lett. 5(18), 3241–3246 (2014). doi:10.1021/jz5017069
F. Zhang, X. Yang, H. Wang, M. Cheng, J. Zhao, L. Sun, Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode. ACS Appl. Mater. Interfaces 6(18), 16140–16146 (2014). doi:10.1021/am504175x
V. D’Innocenzo, G. Grancini, M.J.P. Alcocer, A.R.S. Kandada, S.D. Stranks, M.M. Lee, G. Lanzani, H.J. Snaith, A. Petrozza, Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5(4), 3586 (2014). doi:10.1038/ncomms4586
H. Yu, F. Wang, F. Xie, W. Li, J. Chen, N. Zhao, The role of chlorine in the formation process of “CH3NH3PbI3−xClx” perovskite. Adv. Funct. Mater. 24, 7102–7108 (2014). doi:10.1002/adfm.201401872
N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015). doi:10.1038/nature14133
Y.-J. Jeon, S. Lee, R. Kang, J.-E. Kim, J.-S. Yeo, S.-H. Lee, S.-S. Kim, J.-M. Yun, D.-Y. Kim, Planar heterojunction perovskite solar cells with superior reproducibility. Sci. Rep. 4, 6953 (2014). doi:10.1038/srep06953
P.W. Liang, C.Y. Liao, C.C. Chueh, F. Zuo, S.T. Williams, X.K. Xin, J.J. Lin, A.K. Jen, Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 26(22), 3748–3754 (2014). doi:10.1002/adma.201400231
N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13(9), 897–903 (2014). doi:10.1038/nmat4014
M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A.G. Weale, U. Bach, Y.B. Cheng, L. Spiccia, A fast deposition–crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. 126(37), 10056–10061 (2014). doi:10.1002/ange.201405334
J. Seo, S. Park, Y.C. Kim, N.J. Jeon, J.H. Noh, S.C. Yoon, S.I. Seok, Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy Environ. Sci. 7(7), 2642–2646 (2014). doi:10.1039/c4ee01216j
J. Shi, Y. Luo, H. Wei, J. Luo, J. Dong et al., Modified two-step deposition method for high-efficiency TiO2/CH3NH3PbI3 heterojunction solar cells. ACS Appl. Mater. Interfaces 6(12), 9711–9718 (2014). doi:10.1021/am502131t
J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, 6.5% Efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10), 4088–4093 (2011). doi:10.1039/c1nr10867k
Y.D. Luo, X.H. Chen, C.X. Zhang, J.J. Li, J.H. Shi, Z. Sun, Z.C. Wang, S.M. Huang, AgAl alloy electrode for efficient perovskite solar cells. RSC Adv. 5(69), 56037–56044 (2015). doi:10.1039/C5RA06133D
Z.Y. Jiang, X.H. Chen, X.H. Lin, X.K. Jia, J.F. Wang, L.K. Pan, S.M. Huang, F. Zhu, Z. Sun, Amazing stable open-circuit voltage in perovskite solar cells using AgAl alloy electrode. Sol. Energy Mater. Sol. Cells 146, 35–43 (2016). doi:10.1016/j.solmat.2015.11.026
Y. Zhao, K. Zhu, CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C 118(18), 9412–9418 (2014). doi:10.1021/jp502696w
G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24(1), 151–157 (2014). doi:10.1002/adfm.201302090
J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan, S. Yang, All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale 5(8), 3245–3248 (2013). doi:10.1039/C3NR00218G
T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Grätzel, T.J. White, Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitized solar cell applications. J. Mater. Chem. A 1(18), 5628–5641 (2013). doi:10.1039/C3TA10518K
Q. Chen, H. Zhou, T.B. Song, S. Luo, Z. Hong, H.S. Duan, L. Dou, Y. Liu, Y. Yang, Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14(7), 4158–4163 (2014). doi:10.1021/nl501838y
Y. Li, J. Cooper, R. Buonsanti, C. Giannini, Y. Liu, F. Toma, I. Sharp, Fabrication of planar heterojunction perovskite solar cells by controlled low-pressure vapor annealing. J. Phys. Chem. Lett. 6(3), 493–499 (2015). doi:10.1021/jz502720a
M. Bashahu, A. Habyarimana, Review and test of methods for determination of the solar cell series resistance. Renew. Energy 6(2), 129–138 (1995). doi:10.1016/0960-1481(94)E0021-V
K. Bouzidi, M. Chegaar, A. Bouhemadou, Solar cells parameters evaluation considering the series and shunt resistance. Energy Mater. Sol. Cells 91(18), 1647–1651 (2007). doi:10.1021/acsami.5b09873
Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, L. Han, Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 7(9), 2934–2938 (2014). doi:10.1039/C4EE01624F
K.E. Strawhecker, S.K. Kumar, J.F. Douglas, A. Karim, The critical role of solvent evaporation on the roughness of spin-cast polymer films. Macromolecules 34(14), 4669–4672 (2001). doi:10.1021/ma001440d
P. Müller-Buschbaum, J.S. Gutmann, M. Wolkenhauer, J. Kraus, M. Stamm, D. Smilgies, W. Petry, Solvent-induced surface morphology of thin polymer films. Macromolecules 34(5), 1369–1375 (2001). doi:10.1021/ma0009193