Efficiency Enhancement of Inverted Polymer Solar Cells Using Ionic Liquid-functionalized Carbon Nanoparticles-modified ZnO as Electron Selective Layer
Corresponding Author: Xiaohong Chen
Nano-Micro Letters,
Vol. 6 No. 1 (2014), Article Number: 24-29
Abstract
ZnO thin film was fabricated on tin-doped indium oxide electrode as an electron selective layer of inverted polymer solar cells using magnetron sputtering deposition. Ionic liquid-functionalized carbon nanoparticles (ILCNs) film was further deposited onto ZnO surfaces by drop-casting ILCNs solution to improve interface properties. The power conversion efficiency (PCE) of inverted polymer solar cells (PSCs) with only ZnO layer was quickly decreased from 2.7% to 2.2% when the thickness of ZnO layer was increased from 15 nm to 60 nm. However, the average PCE of inverted PSCs with ZnO layer modified with ILCNs only decreased from 3.5% to 3.4%, which is comparable to that of traditional PSCs with poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) anode buffer layer. The results suggested that the contact barrier between ZnO layer and poly(3-hexylthiophene) and phenyl-C61-butyric acid methylester (P3HT:PCBM) blended film compared to ZnO bulk resistance can more significantly influence the performance of inverted PSCs with sputtered ZnO layer. The vanishment of negative capacitive behavior of inverted PSCs with ILCNs modified ZnO layer indicated ILCNs can greatly decrease the contact barrier of ZnO/P3HT:PCBM interface.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. C. Krebs, J. Fyenbo and M. Jørgensen, “Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing”, J. Mater. Chem. 20(41), 8994–9001 (2010). http://dx.doi.org/10.1039/C0JM01178A
- N. Espinosa, M. Hösel, D. Angmo and F. C. Krebs, “Solar cells with one-day energy payback for the factories of the future”, Energy Environ. Sci. 5(1), 5117–5132 (2012). http://dx.doi.org/10.1039/C1EE02728J
- Z. He, C. Zhong, S. Su, M. Xu, H. Wu and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure”, Nature Photonics 6(9), 591–595 (2012). http://dx.doi.org/10.1038/nphoton.2012.190
- T. Y. Chu, J. Lu, S. Beaupré, Y. Zhang, J. R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li and J. Ding, “Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2′,3′-d] silole copolymer with a power conversion efficiency of 7.3%”, J. Am. Chem. Soc. 133(12), 4250–4253 (2011). http://dx.doi.org/10.1021/ja200314m
- J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency”, Nat. Commun. 4, 1446 (2013). http://dx.doi.org/10.1038/ncomms2411
- Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su and Y. Cao, “Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells”, Adv. Mater. 23(40), 4636–4643 (2011). http://dx.doi.org/10.1002/adma.201103006
- K. Wong, H. Yip, Y. Luo, K. Wong, W. Lau, K. Low, H. Chow, Z. Gao, W. Yeung and C. Chang, “Blocking reactions between indium-tin oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer”, Appl. Phys. Lett. 80(15), 2788–2790 (2002). http://dx.doi.org/10.1063/1.1469220
- T. Nguyen and S. De Vos, “An investigation into the effect of chemical and thermal treatments on the structural changes of poly(3,4-ethylenedioxythiophene)/polystyrenesulfonate and consequences on its use on indium tin oxide substrates”, Appl. Surf. Sci. 221(1), 330–339 (2004). http://dx.doi.org/10.1016/S0169-4332(03)00952-8
- A. Kyaw, X. Sun, C. Jiang, G. Lo, D. Zhao and D. Kwong, “An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer”, Appl. Phys. Lett. 93(22), 221107 (2008). http://dx.doi.org/10.1063/1.3039076
- T. Chang, Z. Li, G. Yun, Y. Jia and H. Yang, “Enhanced photocatalytic activity of ZnO/CuO nanocomposites synthesized by hydrothermal method”, Nano-Micro Lett. 5(3), 163–168 (2013). http://dx.doi.org/10.5101/nml.v5i3.p163-168
- S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O’Malley and A. K.-Y. Jen, “Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer”, Appl. Phys. Lett. 92, 253301 (2008). http://dx.doi.org/10.1063/1.2945281
- Y. Jouane, S. Colis, G. Schmerber, P. Kern, A. Dinia, T. Heiser and Y.-A. Chapuis, “Room temperature ZnO growth by rf magnetron sputtering on top of photoactive P3HT: PCBM for organic solar cells”, J. Mater. Chem. 21(6), 1953–1958 (2011). http://dx.doi.org/10.1039/C0JM02354J
- J. Hu, Z. Wu, H. Wei, T. Song and B. Sun, “Effects of ZnO fabricating process on the performance of inverted organic solar cells”, Org. Electron. 13(7), 1171–1177 (2012). http://dx.doi.org/10.1016/j.orgel.2012.03.021
- J.-A. Jeong and H.-K. Kim, “Low resistance and highly transparent ITO-Ag-ITO multilayer electrode using surface plasmon resonance of Ag layer for bulk-heterojunction organic solar cells”, Sol. Energy Mater. Sol. Cells 93(10), 1801–1809 (2009). http://dx.doi.org/10.1016/j.solmat.2009.06.014
- C. Guillén and J. Herrero, “TCO/metal/TCO structures for energy and flexible electronics”, Thin Solid Films 520(1), 1–17 (2011). http://dx.doi.org/10.1016/j.tsf.2011.06.091
- J. Lu, J. Yang, J. Wang, A. Lim, S. Wang and K. P. Loh, “One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids”, ACS nano 3(8), 2367–2375 (2009). http://dx.doi.org/10.1021/nn900546b
- X. Chen, J. Yang, L. Y. X. C. Haley, J. Lu, F. Zhu and K. P. Loh, “Towards high efficiency solution processable inverted bulk heterojunction polymer solar cells using modified indium tin oxide cathode”, Org. Electron. 11(12), 1942–1946 (2010). http://dx.doi.org/10.1016/j.orgel.2010.09.011
- X. Chen, J. Yang, J. Lu, K. K. Manga, K. P. Loh and F. Zhu, “Ionic liquid-functionalized carbon nanoparticles-modified cathode for efficiency enhancement in polymer solar cells”, Appl. Phys. Lett. 95(13), 133305 (2009). http://dx.doi.org/10.1063/1.3237161
- A. Tada, Y. Geng, M. Nakamura, Q. Wei, K. Hashimoto and K. Tajima, “Interfacial modification of organic photovoltaic devices by molecular self-organization”, Phys. Chem. Chem. Phys. 14(11), 3713–3724 (2012). http://dx.doi.org/10.1039/C2CP40198C
- G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte and R. Pacios, “Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy”, Org. Electron. 9(5), 847–851 (2008). http://dx.doi.org/10.1016/j.orgel.2008.06.007
References
F. C. Krebs, J. Fyenbo and M. Jørgensen, “Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing”, J. Mater. Chem. 20(41), 8994–9001 (2010). http://dx.doi.org/10.1039/C0JM01178A
N. Espinosa, M. Hösel, D. Angmo and F. C. Krebs, “Solar cells with one-day energy payback for the factories of the future”, Energy Environ. Sci. 5(1), 5117–5132 (2012). http://dx.doi.org/10.1039/C1EE02728J
Z. He, C. Zhong, S. Su, M. Xu, H. Wu and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure”, Nature Photonics 6(9), 591–595 (2012). http://dx.doi.org/10.1038/nphoton.2012.190
T. Y. Chu, J. Lu, S. Beaupré, Y. Zhang, J. R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li and J. Ding, “Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2′,3′-d] silole copolymer with a power conversion efficiency of 7.3%”, J. Am. Chem. Soc. 133(12), 4250–4253 (2011). http://dx.doi.org/10.1021/ja200314m
J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency”, Nat. Commun. 4, 1446 (2013). http://dx.doi.org/10.1038/ncomms2411
Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su and Y. Cao, “Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells”, Adv. Mater. 23(40), 4636–4643 (2011). http://dx.doi.org/10.1002/adma.201103006
K. Wong, H. Yip, Y. Luo, K. Wong, W. Lau, K. Low, H. Chow, Z. Gao, W. Yeung and C. Chang, “Blocking reactions between indium-tin oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer”, Appl. Phys. Lett. 80(15), 2788–2790 (2002). http://dx.doi.org/10.1063/1.1469220
T. Nguyen and S. De Vos, “An investigation into the effect of chemical and thermal treatments on the structural changes of poly(3,4-ethylenedioxythiophene)/polystyrenesulfonate and consequences on its use on indium tin oxide substrates”, Appl. Surf. Sci. 221(1), 330–339 (2004). http://dx.doi.org/10.1016/S0169-4332(03)00952-8
A. Kyaw, X. Sun, C. Jiang, G. Lo, D. Zhao and D. Kwong, “An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer”, Appl. Phys. Lett. 93(22), 221107 (2008). http://dx.doi.org/10.1063/1.3039076
T. Chang, Z. Li, G. Yun, Y. Jia and H. Yang, “Enhanced photocatalytic activity of ZnO/CuO nanocomposites synthesized by hydrothermal method”, Nano-Micro Lett. 5(3), 163–168 (2013). http://dx.doi.org/10.5101/nml.v5i3.p163-168
S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O’Malley and A. K.-Y. Jen, “Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer”, Appl. Phys. Lett. 92, 253301 (2008). http://dx.doi.org/10.1063/1.2945281
Y. Jouane, S. Colis, G. Schmerber, P. Kern, A. Dinia, T. Heiser and Y.-A. Chapuis, “Room temperature ZnO growth by rf magnetron sputtering on top of photoactive P3HT: PCBM for organic solar cells”, J. Mater. Chem. 21(6), 1953–1958 (2011). http://dx.doi.org/10.1039/C0JM02354J
J. Hu, Z. Wu, H. Wei, T. Song and B. Sun, “Effects of ZnO fabricating process on the performance of inverted organic solar cells”, Org. Electron. 13(7), 1171–1177 (2012). http://dx.doi.org/10.1016/j.orgel.2012.03.021
J.-A. Jeong and H.-K. Kim, “Low resistance and highly transparent ITO-Ag-ITO multilayer electrode using surface plasmon resonance of Ag layer for bulk-heterojunction organic solar cells”, Sol. Energy Mater. Sol. Cells 93(10), 1801–1809 (2009). http://dx.doi.org/10.1016/j.solmat.2009.06.014
C. Guillén and J. Herrero, “TCO/metal/TCO structures for energy and flexible electronics”, Thin Solid Films 520(1), 1–17 (2011). http://dx.doi.org/10.1016/j.tsf.2011.06.091
J. Lu, J. Yang, J. Wang, A. Lim, S. Wang and K. P. Loh, “One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids”, ACS nano 3(8), 2367–2375 (2009). http://dx.doi.org/10.1021/nn900546b
X. Chen, J. Yang, L. Y. X. C. Haley, J. Lu, F. Zhu and K. P. Loh, “Towards high efficiency solution processable inverted bulk heterojunction polymer solar cells using modified indium tin oxide cathode”, Org. Electron. 11(12), 1942–1946 (2010). http://dx.doi.org/10.1016/j.orgel.2010.09.011
X. Chen, J. Yang, J. Lu, K. K. Manga, K. P. Loh and F. Zhu, “Ionic liquid-functionalized carbon nanoparticles-modified cathode for efficiency enhancement in polymer solar cells”, Appl. Phys. Lett. 95(13), 133305 (2009). http://dx.doi.org/10.1063/1.3237161
A. Tada, Y. Geng, M. Nakamura, Q. Wei, K. Hashimoto and K. Tajima, “Interfacial modification of organic photovoltaic devices by molecular self-organization”, Phys. Chem. Chem. Phys. 14(11), 3713–3724 (2012). http://dx.doi.org/10.1039/C2CP40198C
G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte and R. Pacios, “Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy”, Org. Electron. 9(5), 847–851 (2008). http://dx.doi.org/10.1016/j.orgel.2008.06.007