Durable Acidic Oxygen Evolution Via Self-Construction of Iridium Oxide/Iridium-Tantalum Oxide Bi-Layer Nanostructure with Dynamic Replenishment of Active Sites
Corresponding Author: Zhaoping Lu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 165
Abstract
Proton exchange membrane (PEM) water electrolysis presents considerable advantages in green hydrogen production. Nevertheless, oxygen evolution reaction (OER) catalysts in PEM water electrolysis currently encounter several pressing challenges, including high noble metal loading, low mass activity, and inadequate durability, which impede their practical application and commercialization. Here we report a self-constructed layered catalyst for acidic OER by directly using an Ir–Ta-based metallic glass as the matrix, featuring a nanoporous IrO2 surface formed in situ on the amorphous IrTaOx nanostructure during OER. This distinctive architecture significantly enhances the accessibility and utilization of Ir, achieving a high mass activity of 1.06 A mgIr−1 at a 300 mV overpotential, 13.6 and 31.2 times greater than commercial Ir/C and IrO2, respectively. The catalyst also exhibits superb stability under industrial-relevant current densities in acid, indicating its potential for practical uses. Our analyses reveal that the coordinated nature of the surface-active Ir species is effectively modulated through electronic interaction between Ir and Ta, preventing them from rapidly evolving into high valence states and suppressing the lattice oxygen participation. Furthermore, the underlying IrTaOx dynamically replenishes the depletion of surface-active sites through inward crystallization and selective dissolution, thereby ensuring the catalyst’s long-term durability.
Highlights:
1 A self-constructed catalyst with in situ formed IrO2/IrTaOx bi-layer nanostructure was fabricated for high-efficiency acidic oxygen evolution reaction by using an Ir–Ta-based metallic glass as the matrix.
2 The coordinated nature of the catalyst’s active site is manipulated through electronic interaction between Ir and Ta, resulting in superior activity and stability.
3 The underlying amorphous IrTaOx layer dynamically replenishes the depletion of surface Ir sites through inward crystallization and selective dissolution to ensure long-term durability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.A. Turner, Sustainable hydrogen production. Science 305, 972–974 (2004). https://doi.org/10.1126/science.1103197
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475
- M. Carmo, G.P. Keeley, D. Holtz, T. Grube, M. Robinius et al., PEM water electrolysis: innovative approaches towards catalyst separation, recovery and recycling. Int. J. Hydrog. Energy 44, 3450–3455 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.030
- S.Z. Oener, M.J. Foster, S.W. Boettcher, Accelerating water dissociation in bipolar membranes and for electrocatalysis. Science 369, 1099–1103 (2020). https://doi.org/10.1126/science.aaz1487
- R. Haider, Y. Wen, Z.-F. Ma, D.P. Wilkinson, L. Zhang et al., High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies. Chem. Soc. Rev. 50, 1138–1187 (2021). https://doi.org/10.1039/D0CS00296H
- K. Jiao, J. Xuan, Q. Du, Z. Bao, B. Xie et al., Designing the next generation of proton-exchange membrane fuel cells. Nature 595, 361–369 (2021). https://doi.org/10.1038/s41586-021-03482-7
- X. Li, L. Zhao, J. Yu, X. Liu, X. Zhang et al., Water splitting: from electrode to green energy system. Nano-Micro Lett. 12, 131 (2020). https://doi.org/10.1007/s40820-020-00469-3
- H. Jin, B. Ruqia, Y. Park, H.J. Kim, H.-S. Oh et al., Nanocatalyst design for long-term operation of proton/anion exchange membrane water electrolysis. Adv. Energy Mater. 11, 2003188 (2021). https://doi.org/10.1002/aenm.202003188
- H. Wang, Z.-N. Chen, D. Wu, M. Cao, F. Sun et al., Significantly enhanced overall water splitting performance by partial oxidation of Ir through Au modification in core-shell alloy structure. J. Am. Chem. Soc. 143, 4639–4645 (2021). https://doi.org/10.1021/jacs.0c12740
- F. Xiao, Y.-C. Wang, Z.-P. Wu, G. Chen, F. Yang et al., Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. Adv. Mater. 33, 2006292 (2021). https://doi.org/10.1002/adma.202006292
- L. Li, P. Wang, Q. Shao, X. Huang, Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Adv. Mater. 33, e2004243 (2021). https://doi.org/10.1002/adma.202004243
- F.-Y. Chen, Z.-Y. Wu, Z. Adler, H. Wang, Stability challenges of electrocatalytic oxygen evolution reaction: from mechanistic understanding to reactor design. Joule 5, 1704–1731 (2021). https://doi.org/10.1016/j.joule.2021.05.005
- C. Spöri, J.T.H. Kwan, A. Bonakdarpour, D.P. Wilkinson, P. Strasser, The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation. Angew. Chem. Int. Ed. 56, 5994–6021 (2017). https://doi.org/10.1002/anie.201608601
- R. Qin, G. Chen, X. Feng, J. Weng, Y. Han, Ru/Ir-based electrocatalysts for oxygen evolution reaction in acidic conditions: from mechanisms, optimizations to challenges. Adv. Sci. 11, e2309364 (2024). https://doi.org/10.1002/advs.202309364
- A. Lončar, D. Escalera-López, S. Cherevko, N. Hodnik, Inter-relationships between oxygen evolution and iridium dissolution mechanisms. Angew. Chem. Int. Ed. 61, e202114437 (2022). https://doi.org/10.1002/anie.202114437
- L.C. Seitz, C.F. Dickens, K. Nishio, Y. Hikita, J. Montoya et al., A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011–1014 (2016). https://doi.org/10.1126/science.aaf5050
- R. Li, H. Wang, F. Hu, K.C. Chan, X. Liu et al., IrW nanochannel support enabling ultrastable electrocatalytic oxygen evolution at 2 A cm-2 in acidic media. Nat. Commun. 12, 3540 (2021). https://doi.org/10.1038/s41467-021-23907-1
- J. Zhang, X. Fu, F. Xia, W. Zhang, D. Ma et al., Core-shell nanostructured Ru@Ir-O electrocatalysts for superb oxygen evolution in acid. Small 18, e2108031 (2022). https://doi.org/10.1002/smll.202108031
- Y. Chen, H. Li, J. Wang, Y. Du, S. Xi et al., Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nat. Commun. 10, 572 (2019). https://doi.org/10.1038/s41467-019-08532-3
- W.H. Lee, J. Yi, H.N. Nong, P. Strasser, K.H. Chae et al., Electroactivation-induced IrNi nanops under different pH conditions for neutral water oxidation. Nanoscale 12, 14903–14910 (2020). https://doi.org/10.1039/d0nr02951c
- L. Fu, X. Zeng, G. Cheng, W. Luo, IrCo nanodendrite as an efficient bifunctional electrocatalyst for overall water splitting under acidic conditions. ACS Appl. Mater. Interfaces 10, 24993–24998 (2018). https://doi.org/10.1021/acsami.8b08717
- L. An, C. Wei, M. Lu, H. Liu, Y. Chen et al., Recent development of oxygen evolution electrocatalysts in acidic environment. Adv. Mater. 33, 2006328 (2021). https://doi.org/10.1002/adma.202006328
- Y.-R. Zheng, J. Vernieres, Z. Wang, K. Zhang, D. Hochfilzer et al., Monitoring oxygen production on mass-selected iridium–tantalum oxide electrocatalysts. Nat. Energy 7, 55–64 (2022). https://doi.org/10.1038/s41560-021-00948-w
- S. Hao, H. Sheng, M. Liu, J. Huang, G. Zheng et al., Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers. Nat. Nanotechnol. 16, 1371–1377 (2021). https://doi.org/10.1038/s41565-021-00986-1
- Z. Lu, C. Wei, X. Liu, Y. Fang, X. Hao et al., Regulating the adsorption behavior of intermediates on Ir–W@Ir–WO3–x boosts acidic water oxidation electrocatalysis. Mater. Chem. Front. 5, 6092–6100 (2021). https://doi.org/10.1039/d1qm00551k
- Z. Shi, J. Li, J. Jiang, Y. Wang, X. Wang et al., Enhanced acidic water oxidation by dynamic migration of oxygen species at the Ir/Nb2O5–x catalyst/support interfaces. Angew. Chem. Int. Ed. 61, e202212341 (2022). https://doi.org/10.1002/anie.202212341
- A.A.H. Tajuddin, M. Wakisaka, T. Ohto, Y. Yu, H. Fukushima et al., Corrosion-resistant and high-entropic non-noble-metal electrodes for oxygen evolution in acidic media. Adv. Mater. 35, e2207466 (2023). https://doi.org/10.1002/adma.202207466
- H. Zhu, Z. Zhu, J. Hao, S. Sun, S. Lu et al., High-entropy alloy stabilized active Ir for highly efficient acidic oxygen evolution. Chem. Eng. J. 431, 133251 (2022). https://doi.org/10.1016/j.cej.2021.133251
- S. Niu, Z. Yang, F. Qi, Y. Han, Z. Shi et al., Electrical discharge induced bulk-to-nanop transformation: nano high-entropy carbide as catalysts for hydrogen evolution reaction. Adv. Funct. Mater. 32, 2203787 (2022). https://doi.org/10.1002/adfm.202203787
- O. Kasian, J.-P. Grote, S. Geiger, S. Cherevko, K.J.J. Mayrhofer, The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium. Angew. Chem. Int. Ed. 57, 2488–2491 (2018). https://doi.org/10.1002/anie.201709652
- Y.T. Kim, P.P. Lopes, S.A. Park, A.Y. Lee, J. Lim et al., Balancing activity, stability and conductivity of nanoporous core–shell iridium/iridium oxide oxygen evolution catalysts. Nat. Commun. 8, 1449 (2017). https://doi.org/10.1038/s41467-017-01734-7
- S. Geiger, O. Kasian, B.R. Shrestha, A.M. Mingers, K.J.J. Mayrhofer et al., Activity and stability of electrochemically and thermally treated iridium for the oxygen evolution reaction. J. Electrochem. Soc. 163, F3132–F3138 (2016). https://doi.org/10.1149/2.0181611jes
- T.R. Hellstern, J.D. Benck, J. Kibsgaard, C. Hahn, T.F. Jaramillo, Engineering cobalt phosphide (CoP) thin film catalysts for enhanced hydrogen evolution activity on silicon photocathodes. Adv. Energy Mater. 6, 1501758 (2016). https://doi.org/10.1002/aenm.201501758
- Y. Hao, S.-F. Hung, W.-J. Zeng, Y. Wang, C. Zhang et al., Switching the oxygen evolution mechanism on atomically dispersed Ru for enhanced acidic reaction kinetics. J. Am. Chem. Soc. 145, 23659–23669 (2023). https://doi.org/10.1021/jacs.3c07777
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
- G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B Condens. Matter 47, 558–561 (1993). https://doi.org/10.1103/physrevb.47.558
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B Condens. Matter 50, 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
- S. Niu, S. Li, Y. Du, X. Han, P. Xu, How to reliably report the overpotential of an electrocatalyst. ACS Energy Lett. 5, 1083–1087 (2020). https://doi.org/10.1021/acsenergylett.0c00321
- S. Anantharaj, P.E. Karthik, S. Noda, The significance of properly reporting turnover frequency in electrocatalysis research. Angew. Chem. Int. Ed. 60, 23051–23067 (2021). https://doi.org/10.1002/anie.202110352
- S. Geiger, O. Kasian, M. Ledendecker, E. Pizzutilo, A.M. Mingers et al., The stability number as a metric for electrocatalyst stability benchmarking. Nat. Catal. 1, 508–515 (2018). https://doi.org/10.1038/s41929-018-0085-6
- C. Van Pham, M. Bühler, J. Knöppel, M. Bierling, D. Seeberger et al., IrO2 coated TiO2 core–shell microps advance performance of low loading proton exchange membrane water electrolyzers. Appl. Catal. B Environ. 269, 118762 (2020). https://doi.org/10.1016/j.apcatb.2020.118762
- L. Yang, K. Zhang, H. Chen, L. Shi, X. Liang et al., An ultrathin two-dimensional iridium-based perovskite oxide electrocatalyst with highly efficient {001} facets for acidic water oxidation. J. Energy Chem. 66, 619–627 (2022). https://doi.org/10.1016/j.jechem.2021.09.016
- R. Zhang, N. Dubouis, M. BenOsman, W. Yin, M.T. Sougrati et al., A dissolution/precipitation equilibrium on the surface of iridium-based perovskites controls their activity as oxygen evolution reaction catalysts in acidic media. Angew. Chem. Int. Ed. 58, 4571–4575 (2019). https://doi.org/10.1002/anie.201814075
- J. Edgington, R. Vicente, S. Vispute, R. Li, M.E. Sweers et al., Dynamics of highly active Ln3IrO7 catalysts for the oxygen evolution reaction in acid. Adv. Energy Mater. 14, 2402333 (2024). https://doi.org/10.1002/aenm.202402333
- Z. Xie, H. Chen, X. Wang, Y.A. Wu, Z. Wang et al., Honeycomb-structured IrOx foam platelets as the building block of anode catalyst layer in PEM water electrolyzer. Angew. Chem. Int. Ed. 64, e202415032 (2025). https://doi.org/10.1002/anie.202415032
- Y. Xu, Z. Mao, J. Zhang, J. Ji, Y. Zou et al., Strain-modulated Ru–O covalency in Ru–Sn oxide enabling efficient and stable water oxidation in acidic solution. Angew. Chem. Int. Ed. 63, e202316029 (2024). https://doi.org/10.1002/anie.202316029
- G. Yu, R. Li, Y. Zhang, X. Lin, G. Wang et al., Constructing high coordination number of Ir–O–Ru bonds in IrRuOè nanomeshes for highly stable acidic oxygen evolution reaction. Nano Res. 17, 5073–5079 (2024). https://doi.org/10.1007/s12274-024-6524-6
- H. Dai, S. Shi, L. Yang, C. Guo, X. Chen, Recent progress on the corrosion behavior of metallic materials in HF solution. Corros. Rev. 39, 313–337 (2021). https://doi.org/10.1515/corrrev-2020-0101
- W.-Q. Chen, S.-M. Zhang, J. Qiu, Surface analysis and corrosion behavior of pure titanium under fluoride exposure. J. Prosthet. Dent. 124(239), e1-239239.e8 (2020). https://doi.org/10.1016/j.prosdent.2020.02.022
- A. Kocijan, D.K. Merl, M. Jenko, The corrosion behaviour of austenitic and duplex stainless steels in artificial saliva with the addition of fluoride. Corros. Sci. 53, 776–783 (2011). https://doi.org/10.1016/j.corsci.2010.11.010
- M.C. Li, C.L. Zeng, H.C. Lin, C.N. Cao, Electrochemical corrosion behaviour of type 316 stainless steel in acid media containing fluoride ions. Br. Corros. J. 36, 179–183 (2001). https://doi.org/10.1179/bcj.2001.36.3.179
- H. Li, Y. Liu, S. Pang, P.K. Liaw, T. Zhang, Corrosion fatigue behavior of a Mg-based bulk metallic glass in a simulated physiological environment. Intermetallics 73, 31–39 (2016). https://doi.org/10.1016/j.intermet.2016.03.003
- C. Han, T. Wang, Understanding the catalytic performances of metal-doped Ta2O5 catalysts for acidic oxygen evolution reaction with computations. Chem. Sci. 15, 14371–14378 (2024). https://doi.org/10.1039/d4sc03554b
- C. Baik, J. Cho, J.I. Cha, Y. Cho, S.S. Jang et al., Electron-rich Ir nanostructure supported on mesoporous Ta2O5 for enhanced activity and stability of oxygen evolution reaction. J. Power. Sources 575, 233174 (2023). https://doi.org/10.1016/j.jpowsour.2023.233174
- J.S. Dondapati, A.R. Thiruppathi, A. Salverda, A. Chen, Comparison of Pt and IrO2-Ta2O5/Ti as a counter electrode in acidic media. Electrochem. Commun. 124, 106946 (2021). https://doi.org/10.1016/j.elecom.2021.106946
- T. Reier, H.N. Nong, D. Teschner, R. Schlögl, P. Strasser, Electrocatalytic oxygen evolution reaction in acidic environments–reaction mechanisms and catalysts. Adv. Energy Mater. 7, 1601275 (2017). https://doi.org/10.1002/aenm.201601275
- A. Minguzzi, O. Lugaresi, E. Achilli, C. Locatelli, A. Vertova et al., Observing the oxidation state turnover in heterogeneous iridium-based water oxidation catalysts. Chem. Sci. 5, 3591–3597 (2014). https://doi.org/10.1039/C4SC00975D
- T. Reier, Z. Pawolek, S. Cherevko, M. Bruns, T. Jones et al., Molecular insight in structure and activity of highly efficient, low-Ir Ir-Ni oxide catalysts for electrochemical water splitting (OER). J. Am. Chem. Soc. 137, 13031–13040 (2015). https://doi.org/10.1021/jacs.5b07788
- E. Atanassova, G. Tyuliev, A. Paskaleva, D. Spassov, K. Kostov, XPS study of N2 annealing effect on thermal Ta2O5 layers on Si. Appl. Surf. Sci. 225, 86–99 (2004). https://doi.org/10.1016/j.apsusc.2003.09.040
- Y. Wen, P. Chen, L. Wang, S. Li, Z. Wang et al., Stabilizing highly active Ru sites by suppressing lattice oxygen participation in acidic water oxidation. J. Am. Chem. Soc. 143, 6482–6490 (2021). https://doi.org/10.1021/jacs.1c00384
- Y. Qin, T. Yu, S. Deng, X.-Y. Zhou, D. Lin et al., RuO2 electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution reaction performance. Nat. Commun. 13, 3784 (2022). https://doi.org/10.1038/s41467-022-31468-0
- R. Liu, C. Wang, Y. Yan, R. Wang, G. Chen, Reversed charge transfer to modulate the d-band center of Pd for efficient direct H2O2 synthesis. ACS Catal. 14, 3955–3965 (2024). https://doi.org/10.1021/acscatal.3c05910
References
J.A. Turner, Sustainable hydrogen production. Science 305, 972–974 (2004). https://doi.org/10.1126/science.1103197
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475
M. Carmo, G.P. Keeley, D. Holtz, T. Grube, M. Robinius et al., PEM water electrolysis: innovative approaches towards catalyst separation, recovery and recycling. Int. J. Hydrog. Energy 44, 3450–3455 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.030
S.Z. Oener, M.J. Foster, S.W. Boettcher, Accelerating water dissociation in bipolar membranes and for electrocatalysis. Science 369, 1099–1103 (2020). https://doi.org/10.1126/science.aaz1487
R. Haider, Y. Wen, Z.-F. Ma, D.P. Wilkinson, L. Zhang et al., High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies. Chem. Soc. Rev. 50, 1138–1187 (2021). https://doi.org/10.1039/D0CS00296H
K. Jiao, J. Xuan, Q. Du, Z. Bao, B. Xie et al., Designing the next generation of proton-exchange membrane fuel cells. Nature 595, 361–369 (2021). https://doi.org/10.1038/s41586-021-03482-7
X. Li, L. Zhao, J. Yu, X. Liu, X. Zhang et al., Water splitting: from electrode to green energy system. Nano-Micro Lett. 12, 131 (2020). https://doi.org/10.1007/s40820-020-00469-3
H. Jin, B. Ruqia, Y. Park, H.J. Kim, H.-S. Oh et al., Nanocatalyst design for long-term operation of proton/anion exchange membrane water electrolysis. Adv. Energy Mater. 11, 2003188 (2021). https://doi.org/10.1002/aenm.202003188
H. Wang, Z.-N. Chen, D. Wu, M. Cao, F. Sun et al., Significantly enhanced overall water splitting performance by partial oxidation of Ir through Au modification in core-shell alloy structure. J. Am. Chem. Soc. 143, 4639–4645 (2021). https://doi.org/10.1021/jacs.0c12740
F. Xiao, Y.-C. Wang, Z.-P. Wu, G. Chen, F. Yang et al., Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. Adv. Mater. 33, 2006292 (2021). https://doi.org/10.1002/adma.202006292
L. Li, P. Wang, Q. Shao, X. Huang, Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Adv. Mater. 33, e2004243 (2021). https://doi.org/10.1002/adma.202004243
F.-Y. Chen, Z.-Y. Wu, Z. Adler, H. Wang, Stability challenges of electrocatalytic oxygen evolution reaction: from mechanistic understanding to reactor design. Joule 5, 1704–1731 (2021). https://doi.org/10.1016/j.joule.2021.05.005
C. Spöri, J.T.H. Kwan, A. Bonakdarpour, D.P. Wilkinson, P. Strasser, The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation. Angew. Chem. Int. Ed. 56, 5994–6021 (2017). https://doi.org/10.1002/anie.201608601
R. Qin, G. Chen, X. Feng, J. Weng, Y. Han, Ru/Ir-based electrocatalysts for oxygen evolution reaction in acidic conditions: from mechanisms, optimizations to challenges. Adv. Sci. 11, e2309364 (2024). https://doi.org/10.1002/advs.202309364
A. Lončar, D. Escalera-López, S. Cherevko, N. Hodnik, Inter-relationships between oxygen evolution and iridium dissolution mechanisms. Angew. Chem. Int. Ed. 61, e202114437 (2022). https://doi.org/10.1002/anie.202114437
L.C. Seitz, C.F. Dickens, K. Nishio, Y. Hikita, J. Montoya et al., A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011–1014 (2016). https://doi.org/10.1126/science.aaf5050
R. Li, H. Wang, F. Hu, K.C. Chan, X. Liu et al., IrW nanochannel support enabling ultrastable electrocatalytic oxygen evolution at 2 A cm-2 in acidic media. Nat. Commun. 12, 3540 (2021). https://doi.org/10.1038/s41467-021-23907-1
J. Zhang, X. Fu, F. Xia, W. Zhang, D. Ma et al., Core-shell nanostructured Ru@Ir-O electrocatalysts for superb oxygen evolution in acid. Small 18, e2108031 (2022). https://doi.org/10.1002/smll.202108031
Y. Chen, H. Li, J. Wang, Y. Du, S. Xi et al., Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nat. Commun. 10, 572 (2019). https://doi.org/10.1038/s41467-019-08532-3
W.H. Lee, J. Yi, H.N. Nong, P. Strasser, K.H. Chae et al., Electroactivation-induced IrNi nanops under different pH conditions for neutral water oxidation. Nanoscale 12, 14903–14910 (2020). https://doi.org/10.1039/d0nr02951c
L. Fu, X. Zeng, G. Cheng, W. Luo, IrCo nanodendrite as an efficient bifunctional electrocatalyst for overall water splitting under acidic conditions. ACS Appl. Mater. Interfaces 10, 24993–24998 (2018). https://doi.org/10.1021/acsami.8b08717
L. An, C. Wei, M. Lu, H. Liu, Y. Chen et al., Recent development of oxygen evolution electrocatalysts in acidic environment. Adv. Mater. 33, 2006328 (2021). https://doi.org/10.1002/adma.202006328
Y.-R. Zheng, J. Vernieres, Z. Wang, K. Zhang, D. Hochfilzer et al., Monitoring oxygen production on mass-selected iridium–tantalum oxide electrocatalysts. Nat. Energy 7, 55–64 (2022). https://doi.org/10.1038/s41560-021-00948-w
S. Hao, H. Sheng, M. Liu, J. Huang, G. Zheng et al., Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers. Nat. Nanotechnol. 16, 1371–1377 (2021). https://doi.org/10.1038/s41565-021-00986-1
Z. Lu, C. Wei, X. Liu, Y. Fang, X. Hao et al., Regulating the adsorption behavior of intermediates on Ir–W@Ir–WO3–x boosts acidic water oxidation electrocatalysis. Mater. Chem. Front. 5, 6092–6100 (2021). https://doi.org/10.1039/d1qm00551k
Z. Shi, J. Li, J. Jiang, Y. Wang, X. Wang et al., Enhanced acidic water oxidation by dynamic migration of oxygen species at the Ir/Nb2O5–x catalyst/support interfaces. Angew. Chem. Int. Ed. 61, e202212341 (2022). https://doi.org/10.1002/anie.202212341
A.A.H. Tajuddin, M. Wakisaka, T. Ohto, Y. Yu, H. Fukushima et al., Corrosion-resistant and high-entropic non-noble-metal electrodes for oxygen evolution in acidic media. Adv. Mater. 35, e2207466 (2023). https://doi.org/10.1002/adma.202207466
H. Zhu, Z. Zhu, J. Hao, S. Sun, S. Lu et al., High-entropy alloy stabilized active Ir for highly efficient acidic oxygen evolution. Chem. Eng. J. 431, 133251 (2022). https://doi.org/10.1016/j.cej.2021.133251
S. Niu, Z. Yang, F. Qi, Y. Han, Z. Shi et al., Electrical discharge induced bulk-to-nanop transformation: nano high-entropy carbide as catalysts for hydrogen evolution reaction. Adv. Funct. Mater. 32, 2203787 (2022). https://doi.org/10.1002/adfm.202203787
O. Kasian, J.-P. Grote, S. Geiger, S. Cherevko, K.J.J. Mayrhofer, The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium. Angew. Chem. Int. Ed. 57, 2488–2491 (2018). https://doi.org/10.1002/anie.201709652
Y.T. Kim, P.P. Lopes, S.A. Park, A.Y. Lee, J. Lim et al., Balancing activity, stability and conductivity of nanoporous core–shell iridium/iridium oxide oxygen evolution catalysts. Nat. Commun. 8, 1449 (2017). https://doi.org/10.1038/s41467-017-01734-7
S. Geiger, O. Kasian, B.R. Shrestha, A.M. Mingers, K.J.J. Mayrhofer et al., Activity and stability of electrochemically and thermally treated iridium for the oxygen evolution reaction. J. Electrochem. Soc. 163, F3132–F3138 (2016). https://doi.org/10.1149/2.0181611jes
T.R. Hellstern, J.D. Benck, J. Kibsgaard, C. Hahn, T.F. Jaramillo, Engineering cobalt phosphide (CoP) thin film catalysts for enhanced hydrogen evolution activity on silicon photocathodes. Adv. Energy Mater. 6, 1501758 (2016). https://doi.org/10.1002/aenm.201501758
Y. Hao, S.-F. Hung, W.-J. Zeng, Y. Wang, C. Zhang et al., Switching the oxygen evolution mechanism on atomically dispersed Ru for enhanced acidic reaction kinetics. J. Am. Chem. Soc. 145, 23659–23669 (2023). https://doi.org/10.1021/jacs.3c07777
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B Condens. Matter 47, 558–561 (1993). https://doi.org/10.1103/physrevb.47.558
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B Condens. Matter 50, 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
S. Niu, S. Li, Y. Du, X. Han, P. Xu, How to reliably report the overpotential of an electrocatalyst. ACS Energy Lett. 5, 1083–1087 (2020). https://doi.org/10.1021/acsenergylett.0c00321
S. Anantharaj, P.E. Karthik, S. Noda, The significance of properly reporting turnover frequency in electrocatalysis research. Angew. Chem. Int. Ed. 60, 23051–23067 (2021). https://doi.org/10.1002/anie.202110352
S. Geiger, O. Kasian, M. Ledendecker, E. Pizzutilo, A.M. Mingers et al., The stability number as a metric for electrocatalyst stability benchmarking. Nat. Catal. 1, 508–515 (2018). https://doi.org/10.1038/s41929-018-0085-6
C. Van Pham, M. Bühler, J. Knöppel, M. Bierling, D. Seeberger et al., IrO2 coated TiO2 core–shell microps advance performance of low loading proton exchange membrane water electrolyzers. Appl. Catal. B Environ. 269, 118762 (2020). https://doi.org/10.1016/j.apcatb.2020.118762
L. Yang, K. Zhang, H. Chen, L. Shi, X. Liang et al., An ultrathin two-dimensional iridium-based perovskite oxide electrocatalyst with highly efficient {001} facets for acidic water oxidation. J. Energy Chem. 66, 619–627 (2022). https://doi.org/10.1016/j.jechem.2021.09.016
R. Zhang, N. Dubouis, M. BenOsman, W. Yin, M.T. Sougrati et al., A dissolution/precipitation equilibrium on the surface of iridium-based perovskites controls their activity as oxygen evolution reaction catalysts in acidic media. Angew. Chem. Int. Ed. 58, 4571–4575 (2019). https://doi.org/10.1002/anie.201814075
J. Edgington, R. Vicente, S. Vispute, R. Li, M.E. Sweers et al., Dynamics of highly active Ln3IrO7 catalysts for the oxygen evolution reaction in acid. Adv. Energy Mater. 14, 2402333 (2024). https://doi.org/10.1002/aenm.202402333
Z. Xie, H. Chen, X. Wang, Y.A. Wu, Z. Wang et al., Honeycomb-structured IrOx foam platelets as the building block of anode catalyst layer in PEM water electrolyzer. Angew. Chem. Int. Ed. 64, e202415032 (2025). https://doi.org/10.1002/anie.202415032
Y. Xu, Z. Mao, J. Zhang, J. Ji, Y. Zou et al., Strain-modulated Ru–O covalency in Ru–Sn oxide enabling efficient and stable water oxidation in acidic solution. Angew. Chem. Int. Ed. 63, e202316029 (2024). https://doi.org/10.1002/anie.202316029
G. Yu, R. Li, Y. Zhang, X. Lin, G. Wang et al., Constructing high coordination number of Ir–O–Ru bonds in IrRuOè nanomeshes for highly stable acidic oxygen evolution reaction. Nano Res. 17, 5073–5079 (2024). https://doi.org/10.1007/s12274-024-6524-6
H. Dai, S. Shi, L. Yang, C. Guo, X. Chen, Recent progress on the corrosion behavior of metallic materials in HF solution. Corros. Rev. 39, 313–337 (2021). https://doi.org/10.1515/corrrev-2020-0101
W.-Q. Chen, S.-M. Zhang, J. Qiu, Surface analysis and corrosion behavior of pure titanium under fluoride exposure. J. Prosthet. Dent. 124(239), e1-239239.e8 (2020). https://doi.org/10.1016/j.prosdent.2020.02.022
A. Kocijan, D.K. Merl, M. Jenko, The corrosion behaviour of austenitic and duplex stainless steels in artificial saliva with the addition of fluoride. Corros. Sci. 53, 776–783 (2011). https://doi.org/10.1016/j.corsci.2010.11.010
M.C. Li, C.L. Zeng, H.C. Lin, C.N. Cao, Electrochemical corrosion behaviour of type 316 stainless steel in acid media containing fluoride ions. Br. Corros. J. 36, 179–183 (2001). https://doi.org/10.1179/bcj.2001.36.3.179
H. Li, Y. Liu, S. Pang, P.K. Liaw, T. Zhang, Corrosion fatigue behavior of a Mg-based bulk metallic glass in a simulated physiological environment. Intermetallics 73, 31–39 (2016). https://doi.org/10.1016/j.intermet.2016.03.003
C. Han, T. Wang, Understanding the catalytic performances of metal-doped Ta2O5 catalysts for acidic oxygen evolution reaction with computations. Chem. Sci. 15, 14371–14378 (2024). https://doi.org/10.1039/d4sc03554b
C. Baik, J. Cho, J.I. Cha, Y. Cho, S.S. Jang et al., Electron-rich Ir nanostructure supported on mesoporous Ta2O5 for enhanced activity and stability of oxygen evolution reaction. J. Power. Sources 575, 233174 (2023). https://doi.org/10.1016/j.jpowsour.2023.233174
J.S. Dondapati, A.R. Thiruppathi, A. Salverda, A. Chen, Comparison of Pt and IrO2-Ta2O5/Ti as a counter electrode in acidic media. Electrochem. Commun. 124, 106946 (2021). https://doi.org/10.1016/j.elecom.2021.106946
T. Reier, H.N. Nong, D. Teschner, R. Schlögl, P. Strasser, Electrocatalytic oxygen evolution reaction in acidic environments–reaction mechanisms and catalysts. Adv. Energy Mater. 7, 1601275 (2017). https://doi.org/10.1002/aenm.201601275
A. Minguzzi, O. Lugaresi, E. Achilli, C. Locatelli, A. Vertova et al., Observing the oxidation state turnover in heterogeneous iridium-based water oxidation catalysts. Chem. Sci. 5, 3591–3597 (2014). https://doi.org/10.1039/C4SC00975D
T. Reier, Z. Pawolek, S. Cherevko, M. Bruns, T. Jones et al., Molecular insight in structure and activity of highly efficient, low-Ir Ir-Ni oxide catalysts for electrochemical water splitting (OER). J. Am. Chem. Soc. 137, 13031–13040 (2015). https://doi.org/10.1021/jacs.5b07788
E. Atanassova, G. Tyuliev, A. Paskaleva, D. Spassov, K. Kostov, XPS study of N2 annealing effect on thermal Ta2O5 layers on Si. Appl. Surf. Sci. 225, 86–99 (2004). https://doi.org/10.1016/j.apsusc.2003.09.040
Y. Wen, P. Chen, L. Wang, S. Li, Z. Wang et al., Stabilizing highly active Ru sites by suppressing lattice oxygen participation in acidic water oxidation. J. Am. Chem. Soc. 143, 6482–6490 (2021). https://doi.org/10.1021/jacs.1c00384
Y. Qin, T. Yu, S. Deng, X.-Y. Zhou, D. Lin et al., RuO2 electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution reaction performance. Nat. Commun. 13, 3784 (2022). https://doi.org/10.1038/s41467-022-31468-0
R. Liu, C. Wang, Y. Yan, R. Wang, G. Chen, Reversed charge transfer to modulate the d-band center of Pd for efficient direct H2O2 synthesis. ACS Catal. 14, 3955–3965 (2024). https://doi.org/10.1021/acscatal.3c05910