Interior and Exterior Decoration of Transition Metal Oxide Through Cu0/Cu+ Co-Doping Strategy for High-Performance Supercapacitor
Corresponding Author: Yihua Gao
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 61
Abstract
Although CoO is a promising electrode material for supercapacitors due to its high theoretical capacitance, the practical applications still suffering from inferior electrochemical activity owing to its low electrical conductivity, poor structural stability and inefficient nanostructure. Herein, we report a novel Cu0/Cu+ co-doped CoO composite with adjustable metallic Cu0 and ion Cu+ via a facile strategy. Through interior (Cu+) and exterior (Cu0) decoration of CoO, the electrochemical performance of CoO electrode has been significantly improved due to both the beneficial flower-like nanostructure and the synergetic effect of Cu0/Cu+ co-doping, which results in a significantly enhanced specific capacitance (695 F g−1 at 1 A g−1) and high cyclic stability (93.4% retention over 10,000 cycles) than pristine CoO. Furthermore, this co-doping strategy is also applicable to other transition metal oxide (NiO) with enhanced electrochemical performance. In addition, an asymmetric hybrid supercapacitor was assembled using the Cu0/Cu+ co-doped CoO electrode and active carbon, which delivers a remarkable maximal energy density (35 Wh kg−1), exceptional power density (16 kW kg−1) and ultralong cycle life (91.5% retention over 10,000 cycles). Theoretical calculations further verify that the co-doping of Cu0/Cu+ can tune the electronic structure of CoO and improve the conductivity and electron transport. This study demonstrates a facile and favorable strategy to enhance the electrochemical performance of transition metal oxide electrode materials.
Highlights:
1 A facile strategy is proposed to construct novel CoO and NiO electrode material with interior (Cu+) and exterior (metallic Cu0) decoration for supercapacitor.
2 The co-doped CoO electrode presents four times higher specific capacitance and more cycle stability than that of pristine CoO.
3 The conductivity and electron transport rate of CoO with Cu0/Cu+ co-doping have been effectively improved and confirmed by detailed theoretical calculations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Armand, J.-M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008). https://doi.org/10.1038/451652a
- E. Mourad, L. Coustan, P. Lannelongue, D. Zigah, A. Mehdi et al., Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nat. Mater. 16(4), 446–453 (2017). https://doi.org/10.1038/nmat4808
- F. Yi, H. Ren, J. Shan, X. Sun, D. Wei et al., Wearable energy sources based on 2D materials. Chem. Soc. Rev. 47(9), 3152–3188 (2018). https://doi.org/10.1039/C7CS00849J
- D.M. Davies, M.G. Verde, O. Mnyshenko, Y.R. Chen, R. Rajeev et al., Combined economic and technological evaluation of battery energy storage for grid applications. Nat. Energy 4(1), 42–50 (2019). https://doi.org/10.1038/s41560-018-0290-1
- Z. Zhang, J. Qian, W. Lu, C.H. Chan, S.P. Lau et al., In situ TEM study of the sodiation/desodiation mechanism of MnO2 nanowire with gel-electrolytes. Energy Storage Mater. 15, 91–97 (2018). https://doi.org/10.1016/j.ensm.2018.03.019
- H. Sun, Y. Zhang, J. Zhang, X. Sun, H. Peng, Energy harvesting and storage in 1D devices. Nat. Rev. Mater. 2(6), 17023 (2017). https://doi.org/10.1038/natrevmats.2017.23
- S. Wang, N. Liu, J. Su, L. Li, F. Long et al., Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs. ACS Nano 11(2), 2066–2074 (2017). https://doi.org/10.1021/acsnano.6b08262
- Y. Yue, N. Liu, Y. Ma, S. Wang, W. Liu et al., Highly self-healable 3D microsupercapacitor with MXene-graphene composite gerogel. ACS Nano 12(5), 4224–4232 (2018). https://doi.org/10.1021/acsnano.7b07528
- L. Dong, W. Yang, W. Yang, C. Wang, Y. Li et al., High-power and ultralong-life aqueous zinc-ion hybrid capacitors based on pseudocapacitive charge storage. Nano-Micro Lett. 11(1), 94 (2019). https://doi.org/10.1007/s40820-019-0328-3
- C. Leng, Z. Zhao, Y. Song, L. Sun, Z. Fan et al., 3D carbon frameworks for ultrafast charge/discharge rate supercapacitors with high energy-power density. Nano-Micro Lett. 13(1), 8 (2020). https://doi.org/10.1007/s40820-020-00535-w
- J.-C. Liu, Z.-H. Huang, T.-Y. Ma, Aqueous supercapacitor with ultrahigh voltage window beyond 2.0 volt. Small Struct. 1(1), 2000020 (2020). https://doi.org/10.1002/sstr.202000020
- J.-C. Liu, H. Li, M. Batmunkh, X. Xiao, Y. Sun et al., Structural engineering to maintain the superior capacitance of molybdenum oxides at ultrahigh mass loadings. J. Mater. Chem. A 7(41), 23941–23948 (2019). https://doi.org/10.1039/c9ta04835a
- C.-A. Tseng, P.K. Sahoo, C.-P. Lee, Y.-T. Lin, J.-H. Xu et al., Synthesis of CoO-decorated graphene hollow nanoballs for high-performance flexible supercapacitors. ACS Appl. Mater. Inter. 12(36), 40426–40432 (2020). https://doi.org/10.1021/acsami.0c12898
- M. Sun, J. Wang, M. Xu, Z. Fang, L. Jiang et al., Hybrid supercapacitors based on interwoven CoO–NiO–ZnO nanowires and porous graphene hydrogel electrodes with safe aqueous electrolyte for high supercapacitance. Adv. Electron. Mater. 5(12), 1900397 (2019). https://doi.org/10.1002/aelm.201900397
- T. Yao, X. Guo, S. Qin, F. Xia, Q. Li et al., Effect of rGO coating on interconnected Co3O4 nanosheets and improved supercapacitive behavior of Co3O4/rGO/NF architecture. Nano-Micro Lett. 9(4), 38 (2017). https://doi.org/10.1007/s40820-017-0141-9
- P. Liu, J. Ran, B. Xia, S. Xi, D. Gao et al., Bifunctional oxygen electrocatalyst of mesoporous Ni/NiO nanosheets for flexible rechargeable Zn–Air batteries. Nano-Micro Lett. 12, 68 (2020). https://doi.org/10.1007/s40820-020-0406-6
- S. Kim, S. Shirvani-Arani, S. Choi, M. Cho, Y. Lee, Strongly anchoring polysulfides by hierarchical Fe3O4/C3N4 nanostructures for advanced lithium–sulfur batteries. Nano-Micro Lett. 12, 139 (2020). https://doi.org/10.1007/s40820-020-00475-5
- N. Tang, W. Wang, H. You, Z. Zhai, J. Hilario et al., Morphology tuning of porous CoO nanowall towards enhanced electrochemical performance as supercapacitors electrodes. Catal. Today 330, 240–245 (2019). https://doi.org/10.1016/j.cattod.2018.03.024
- T. Chen, S. Li, J. Wen, P. Gui, Y. Guo et al., Rational construction of hollow core-branch CoSe2 nanoarrays for high-performance asymmetric supercapacitor and efficient oxygen evolution. Small 14(5), 1700979 (2018). https://doi.org/10.1002/smll.201700979
- C. Zhou, Y. Zhang, Y. Li, J. Liu, Construction of high-capacitance 3D CoO@Polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett. 13(5), 2078–2085 (2013). https://doi.org/10.1021/nl400378j
- S. Huang, L. Yang, M. Gao, Q. Zhang, G. Xu et al., Free-standing 3D composite of CoO nanocrystals anchored on carbon nanotubes as high-power anodes in Li-ion hybrid supercapacitors. J. Power Sources 437, 226934 (2019). https://doi.org/10.1016/j.jpowsour.2019.226934
- Y.V. Kaneti, J. Zhang, Y.-B. He, Z. Wang, S. Tanaka et al., Fabrication of an MOF-derived heteroatom-doped Co/CoO/carbon hybrid with superior sodium storage performance for sodium-ion batteries. J. Mater. Chem. A 5(29), 15356–15366 (2017). https://doi.org/10.1039/C7TA03939E
- J. Huang, J. Wei, Y. Xiao, Y. Xu, Y. Xiao et al., When Al-doped cobalt sulfide nanosheets meet nickel nanotube arrays: a highly efficient and stable cathode for asymmetric supercapacitors. ACS Nano 12(3), 3030–3041 (2018). https://doi.org/10.1021/acsnano.8b00901
- H. Kong, Y. Wu, W. Hong, C. Yan, Y. Zhao et al., Structure-designed synthesis of Cu-doped Co3O4@N-doped carbon with interior void space for optimizing alkali-ion storage. Energy Storage Mater. 24, 610–617 (2020). https://doi.org/10.1016/j.ensm.2019.06.015
- K. Xiao, S.-L. Zhao, M. Cao, L. Zhang, N. Li et al., Electron affinity regulation on ultrathin manganese oxide nanosheets toward ultra-stable pseudocapacitance. J. Mater. Chem. A 8(44), 23257–23264 (2020). https://doi.org/10.1039/d0ta07553a
- X.-T. Wang, T. Ouyang, L. Wang, J.-H. Zhong, Z.-Q. Liu, Surface reorganization on electrochemically-induced Zn-Ni-Co spinel oxides for enhanced oxygen electrocatalysis. Angew. Chem. Int. Ed. 59(16), 6492–6499 (2020). https://doi.org/10.1002/anie.202000690
- X.-P. Li, W.-K. Han, K. Xiao, T. Ouyang, N. Li et al., Enhancing hydrogen evolution reaction through modulating electronic structure of self-supported NiFe LDH. Catal. Sci. Technol. 10(13), 4184–4190 (2020). https://doi.org/10.1039/d0cy00315h
- W.-K. Han, X.-P. Li, L.-N. Lu, T. Ouyang, K. Xiao et al., Partial S substitution activates NiMoO4 for efficient and stable electrocatalytic urea oxidation. Chem. Commun. 56(75), 11038–11041 (2020). https://doi.org/10.1039/d0cc03177a
- K. Xiao, T.-Q. Xiao, Y. Zhang, J. Xie, M. Cao et al., In situ evolution of the active phase on stainless steel mesh toward a cost-effective bifunctional electrode for energy storage and conversion. Chem. Commun. 55(17), 2513–2516 (2019). https://doi.org/10.1039/c8cc09553a
- Y. Guo, X. Hong, Y. Wang, Q. Li, J. Meng et al., Multicomponent hierarchical Cu-doped NiCo-LDH/CuO double arrays for ultralong-life hybrid fiber supercapacitor. Adv. Funct. Mater. 29(24), 1809004 (2019). https://doi.org/10.1002/adfm.201809004
- X. Sun, Y. Lu, T. Li, S. Zhao, Z. Gao et al., Metallic CoO/Co heterostructures stabilized in an ultrathin amorphous carbon shell for high-performance electrochemical supercapacitive behaviour. J. Mater. Chem. A 7(1), 372–380 (2019). https://doi.org/10.1039/C8TA09733J
- H. Zhang, G. Zhang, Z. Li, K. Qu, H. Shi et al., Osiers-sprout-like heteroatom-doped carbon nanofibers as ultrastable anodes for lithium/sodium ion storage. Nano Res. 11(7), 3791–3801 (2018). https://doi.org/10.1007/s12274-017-1953-0
- W. Liu, Y. Feng, L. Sun, Y. Zhang, G. Wang et al., Hierarchical CuCo2O4 nanourchin supported by Ni foam with superior electrochemical performance. J. Alloys Compd. 756, 68–75 (2018). https://doi.org/10.1016/j.jallcom.2018.05.026
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- X. Cao, Y. Liu, Y. Zhong, L. Cui, A. Zhang et al., Flexible coaxial fiber-shaped asymmetric supercapacitors based on manganese, nickel co-substituted cobalt carbonate hydroxides. J. Mater. Chem. A 8(4), 1837–1848 (2020). https://doi.org/10.1039/C9TA11942F
- P. Gao, Z. Chen, Y. Gong, R. Zhang, H. Liu et al., The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: synthesis, advanced characterization, and fundamentals. Adv. Energy Mater. 10(14), 1903780 (2020). https://doi.org/10.1002/aenm.201903780
- S. Yang, Y. Liu, Y. Hao, X. Yang, W.A. Goddard III. et al., Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes. Adv. Sci. 5(4), 1700659 (2018). https://doi.org/10.1002/advs.201700659
- Z. Pan, Y. Jiang, P. Yang, Z. Wu, W. Tian et al., In situ growth of layered bimetallic ZnCo hydroxide nanosheets for high-performance all-solid-state pseudocapacitor. ACS Nano 12(3), 2968–2979 (2018). https://doi.org/10.1021/acsnano.8b00653
- Z.-H. Huang, F.-F. Sun, M. Batmunkh, W.-H. Li, H. Li et al., Zinc-nickel-cobalt ternary hydroxide nanoarrays for high-performance supercapacitors. J. Mater. Chem. A 7(19), 11826–11835 (2019). https://doi.org/10.1039/c9ta01995b
- S. Wang, J. Hu, L. Jiang, X. Li, J. Cao et al., High-performance 3D CuO/Cu flowers supercapacitor electrodes by femtosecond laser enhanced electrochemical anodization. Electrochim. Acta 293, 273–282 (2019). https://doi.org/10.1016/j.electacta.2018.09.144
- C. Jin, Y. Cui, G. Zhang, W. Luo, Y. Liu et al., Synthesis of copper-cobalt hybrid oxide microflowers as electrode material for supercapacitors. Chem. Eng. J. 343, 331–339 (2018). https://doi.org/10.1016/j.cej.2018.02.117
- W. Zheng, J. Yang, H. Chen, Y. Hou, Q. Wang et al., Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Adv. Funct. Mater. 30(4), 1907658 (2020). https://doi.org/10.1002/adfm.201907658
- P. Liu, E.J.M. Hensen, Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J. Am. Chem. Soc. 135(38), 14032–14035 (2013). https://doi.org/10.1021/ja406820f
- Y. Zeng, Z. Lai, Y. Han, H. Zhang, S. Xie et al., Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv. Mater. 30(33), 1802396 (2018). https://doi.org/10.1002/adma.201802396
- Y. Zhang, Y. Hu, Z. Wang, T. Lin, X. Zhu et al., Lithiation-induced vacancy engineering of Co3O4 with improved faradic reactivity for high-performance supercapacitor. Adv. Funct. Mater. 30(39), 2004172 (2020). https://doi.org/10.1002/adfm.202004172
- J. Hao, S. Peng, H. Li, S. Dang, T. Qin et al., A low crystallinity oxygen-vacancy-rich Co3O4 cathode for high-performance flexible asymmetric supercapacitors. J. Mater. Chem. A 6(33), 16094–16100 (2018). https://doi.org/10.1039/C8TA06349D
- Y. Feng, W. Liu, Y. Wang, W. Gao, J. Li et al., Oxygen vacancies enhance supercapacitive performance of CuCo2O4 in high-energy-density asymmetric supercapacitors. J. Power Sources 458, 228005 (2020). https://doi.org/10.1016/j.jpowsour.2020.228005
- M.J. Siegfried, K.-S. Choi, Elucidating the effect of additives on the growth and stability of Cu2O surfaces via shape transformation of pre-grown crystals. J. Am. Chem. Soc. 128(32), 10356–10357 (2006). https://doi.org/10.1021/ja063574y
- G. Cheng, T. Kou, J. Zhang, C. Si, H. Gao et al., O22-/O- functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting. Nano Energy 38, 155–166 (2017). https://doi.org/10.1016/j.nanoen.2017.05.043
- M. Gao, W.-K. Wang, Q. Rong, J. Jiang, Y.-J. Zhang et al., Porous ZnO-coated Co3O4 nanorod as a high-energy-density supercapacitor material. ACS Appl. Mater. Interfaces 10(27), 23163–23173 (2018). https://doi.org/10.1021/acsami.8b07082
- W. Lu, J. Shen, P. Zhang, Y. Zhong, Y. Hu et al., Construction of CoO/Co–Cu–S hierarchical tubular heterostructures for hybrid supercapacitors. Angew. Chem. Int. Ed. 58(43), 15441–15447 (2019). https://doi.org/10.1002/anie.201907516
- G. Nagaraju, S.C. Sekhar, B. Ramulu, G.K. Veerasubramani, D. Narsimulu et al., An agriculture-inspired nanostrategy towards flexible and highly efficient hybrid supercapacitors using ubiquitous substrates. Nano Energy 66, 104054 (2019). https://doi.org/10.1016/j.nanoen.2019.104054
- Q. Zhu, D. Zhao, M. Cheng, J. Zhou, K.A. Owusu et al., A new view of supercapacitors: integrated supercapacitors. Adv. Energy Mater. 9(36), 1901081 (2019). https://doi.org/10.1002/aenm.201901081
- N. Zhang, X. Yan, J. Li, J. Ma, D.H.L. Ng, Biosorption-directed integration of hierarchical CoO/C composite with nickel foam for high-performance supercapacitor. Electrochim. Acta 226, 132–139 (2017). https://doi.org/10.1016/j.electacta.2016.12.192
- T. Liu, L. Zhang, W. You, J. Yu, Core-shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor. Small 14(12), 1702407 (2018). https://doi.org/10.1002/smll.201702407
- G. Li, M. Chen, Y. Ouyang, D. Yao, L. Lu et al., Manganese doped Co3O4 mesoporous nanoneedle array for long cycle-stable supercapacitors. Appl. Surf. Sci. 469, 941–950 (2019). https://doi.org/10.1016/j.apsusc.2018.11.099
- Y. Tan, Y. Liu, L. Kong, L. Kang, F. Ran, Supercapacitor electrode of nano-Co3O4 decorated with gold nanoparticles via in-situ reduction method. J. Power Sources 363, 1–8 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.054
- W. Liu, X. Li, M. Zhu, X. He, High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel. J. Power Sources 282, 179–186 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.047
- J. Xu, T. Xiao, X. Tan, P. Xiang, L. Jiang et al., A new asymmetric aqueous supercapacitor: Co3O4//Co3O4@polypyrrole. J. Alloys Compd. 706, 351–357 (2017). https://doi.org/10.1016/j.jallcom.2017.02.253
- H. Lai, Q. Wu, J. Zhao, L. Shang, H. Li et al., Mesostructured NiO/Ni composites for high-performance electrochemical energy storage. Energy Environ. Sci. 9(6), 2053–2060 (2016). https://doi.org/10.1039/C6EE00603E
- H. Liu, Q. Li, Z. Yao, L. Li, Y. Li et al., Origin of fracture-resistance to large volume change in Cu-substituted Co3O4 electrodes. Adv. Mater. 30(4), 1704851 (2018). https://doi.org/10.1002/adma.201704851
References
M. Armand, J.-M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008). https://doi.org/10.1038/451652a
E. Mourad, L. Coustan, P. Lannelongue, D. Zigah, A. Mehdi et al., Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nat. Mater. 16(4), 446–453 (2017). https://doi.org/10.1038/nmat4808
F. Yi, H. Ren, J. Shan, X. Sun, D. Wei et al., Wearable energy sources based on 2D materials. Chem. Soc. Rev. 47(9), 3152–3188 (2018). https://doi.org/10.1039/C7CS00849J
D.M. Davies, M.G. Verde, O. Mnyshenko, Y.R. Chen, R. Rajeev et al., Combined economic and technological evaluation of battery energy storage for grid applications. Nat. Energy 4(1), 42–50 (2019). https://doi.org/10.1038/s41560-018-0290-1
Z. Zhang, J. Qian, W. Lu, C.H. Chan, S.P. Lau et al., In situ TEM study of the sodiation/desodiation mechanism of MnO2 nanowire with gel-electrolytes. Energy Storage Mater. 15, 91–97 (2018). https://doi.org/10.1016/j.ensm.2018.03.019
H. Sun, Y. Zhang, J. Zhang, X. Sun, H. Peng, Energy harvesting and storage in 1D devices. Nat. Rev. Mater. 2(6), 17023 (2017). https://doi.org/10.1038/natrevmats.2017.23
S. Wang, N. Liu, J. Su, L. Li, F. Long et al., Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs. ACS Nano 11(2), 2066–2074 (2017). https://doi.org/10.1021/acsnano.6b08262
Y. Yue, N. Liu, Y. Ma, S. Wang, W. Liu et al., Highly self-healable 3D microsupercapacitor with MXene-graphene composite gerogel. ACS Nano 12(5), 4224–4232 (2018). https://doi.org/10.1021/acsnano.7b07528
L. Dong, W. Yang, W. Yang, C. Wang, Y. Li et al., High-power and ultralong-life aqueous zinc-ion hybrid capacitors based on pseudocapacitive charge storage. Nano-Micro Lett. 11(1), 94 (2019). https://doi.org/10.1007/s40820-019-0328-3
C. Leng, Z. Zhao, Y. Song, L. Sun, Z. Fan et al., 3D carbon frameworks for ultrafast charge/discharge rate supercapacitors with high energy-power density. Nano-Micro Lett. 13(1), 8 (2020). https://doi.org/10.1007/s40820-020-00535-w
J.-C. Liu, Z.-H. Huang, T.-Y. Ma, Aqueous supercapacitor with ultrahigh voltage window beyond 2.0 volt. Small Struct. 1(1), 2000020 (2020). https://doi.org/10.1002/sstr.202000020
J.-C. Liu, H. Li, M. Batmunkh, X. Xiao, Y. Sun et al., Structural engineering to maintain the superior capacitance of molybdenum oxides at ultrahigh mass loadings. J. Mater. Chem. A 7(41), 23941–23948 (2019). https://doi.org/10.1039/c9ta04835a
C.-A. Tseng, P.K. Sahoo, C.-P. Lee, Y.-T. Lin, J.-H. Xu et al., Synthesis of CoO-decorated graphene hollow nanoballs for high-performance flexible supercapacitors. ACS Appl. Mater. Inter. 12(36), 40426–40432 (2020). https://doi.org/10.1021/acsami.0c12898
M. Sun, J. Wang, M. Xu, Z. Fang, L. Jiang et al., Hybrid supercapacitors based on interwoven CoO–NiO–ZnO nanowires and porous graphene hydrogel electrodes with safe aqueous electrolyte for high supercapacitance. Adv. Electron. Mater. 5(12), 1900397 (2019). https://doi.org/10.1002/aelm.201900397
T. Yao, X. Guo, S. Qin, F. Xia, Q. Li et al., Effect of rGO coating on interconnected Co3O4 nanosheets and improved supercapacitive behavior of Co3O4/rGO/NF architecture. Nano-Micro Lett. 9(4), 38 (2017). https://doi.org/10.1007/s40820-017-0141-9
P. Liu, J. Ran, B. Xia, S. Xi, D. Gao et al., Bifunctional oxygen electrocatalyst of mesoporous Ni/NiO nanosheets for flexible rechargeable Zn–Air batteries. Nano-Micro Lett. 12, 68 (2020). https://doi.org/10.1007/s40820-020-0406-6
S. Kim, S. Shirvani-Arani, S. Choi, M. Cho, Y. Lee, Strongly anchoring polysulfides by hierarchical Fe3O4/C3N4 nanostructures for advanced lithium–sulfur batteries. Nano-Micro Lett. 12, 139 (2020). https://doi.org/10.1007/s40820-020-00475-5
N. Tang, W. Wang, H. You, Z. Zhai, J. Hilario et al., Morphology tuning of porous CoO nanowall towards enhanced electrochemical performance as supercapacitors electrodes. Catal. Today 330, 240–245 (2019). https://doi.org/10.1016/j.cattod.2018.03.024
T. Chen, S. Li, J. Wen, P. Gui, Y. Guo et al., Rational construction of hollow core-branch CoSe2 nanoarrays for high-performance asymmetric supercapacitor and efficient oxygen evolution. Small 14(5), 1700979 (2018). https://doi.org/10.1002/smll.201700979
C. Zhou, Y. Zhang, Y. Li, J. Liu, Construction of high-capacitance 3D CoO@Polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett. 13(5), 2078–2085 (2013). https://doi.org/10.1021/nl400378j
S. Huang, L. Yang, M. Gao, Q. Zhang, G. Xu et al., Free-standing 3D composite of CoO nanocrystals anchored on carbon nanotubes as high-power anodes in Li-ion hybrid supercapacitors. J. Power Sources 437, 226934 (2019). https://doi.org/10.1016/j.jpowsour.2019.226934
Y.V. Kaneti, J. Zhang, Y.-B. He, Z. Wang, S. Tanaka et al., Fabrication of an MOF-derived heteroatom-doped Co/CoO/carbon hybrid with superior sodium storage performance for sodium-ion batteries. J. Mater. Chem. A 5(29), 15356–15366 (2017). https://doi.org/10.1039/C7TA03939E
J. Huang, J. Wei, Y. Xiao, Y. Xu, Y. Xiao et al., When Al-doped cobalt sulfide nanosheets meet nickel nanotube arrays: a highly efficient and stable cathode for asymmetric supercapacitors. ACS Nano 12(3), 3030–3041 (2018). https://doi.org/10.1021/acsnano.8b00901
H. Kong, Y. Wu, W. Hong, C. Yan, Y. Zhao et al., Structure-designed synthesis of Cu-doped Co3O4@N-doped carbon with interior void space for optimizing alkali-ion storage. Energy Storage Mater. 24, 610–617 (2020). https://doi.org/10.1016/j.ensm.2019.06.015
K. Xiao, S.-L. Zhao, M. Cao, L. Zhang, N. Li et al., Electron affinity regulation on ultrathin manganese oxide nanosheets toward ultra-stable pseudocapacitance. J. Mater. Chem. A 8(44), 23257–23264 (2020). https://doi.org/10.1039/d0ta07553a
X.-T. Wang, T. Ouyang, L. Wang, J.-H. Zhong, Z.-Q. Liu, Surface reorganization on electrochemically-induced Zn-Ni-Co spinel oxides for enhanced oxygen electrocatalysis. Angew. Chem. Int. Ed. 59(16), 6492–6499 (2020). https://doi.org/10.1002/anie.202000690
X.-P. Li, W.-K. Han, K. Xiao, T. Ouyang, N. Li et al., Enhancing hydrogen evolution reaction through modulating electronic structure of self-supported NiFe LDH. Catal. Sci. Technol. 10(13), 4184–4190 (2020). https://doi.org/10.1039/d0cy00315h
W.-K. Han, X.-P. Li, L.-N. Lu, T. Ouyang, K. Xiao et al., Partial S substitution activates NiMoO4 for efficient and stable electrocatalytic urea oxidation. Chem. Commun. 56(75), 11038–11041 (2020). https://doi.org/10.1039/d0cc03177a
K. Xiao, T.-Q. Xiao, Y. Zhang, J. Xie, M. Cao et al., In situ evolution of the active phase on stainless steel mesh toward a cost-effective bifunctional electrode for energy storage and conversion. Chem. Commun. 55(17), 2513–2516 (2019). https://doi.org/10.1039/c8cc09553a
Y. Guo, X. Hong, Y. Wang, Q. Li, J. Meng et al., Multicomponent hierarchical Cu-doped NiCo-LDH/CuO double arrays for ultralong-life hybrid fiber supercapacitor. Adv. Funct. Mater. 29(24), 1809004 (2019). https://doi.org/10.1002/adfm.201809004
X. Sun, Y. Lu, T. Li, S. Zhao, Z. Gao et al., Metallic CoO/Co heterostructures stabilized in an ultrathin amorphous carbon shell for high-performance electrochemical supercapacitive behaviour. J. Mater. Chem. A 7(1), 372–380 (2019). https://doi.org/10.1039/C8TA09733J
H. Zhang, G. Zhang, Z. Li, K. Qu, H. Shi et al., Osiers-sprout-like heteroatom-doped carbon nanofibers as ultrastable anodes for lithium/sodium ion storage. Nano Res. 11(7), 3791–3801 (2018). https://doi.org/10.1007/s12274-017-1953-0
W. Liu, Y. Feng, L. Sun, Y. Zhang, G. Wang et al., Hierarchical CuCo2O4 nanourchin supported by Ni foam with superior electrochemical performance. J. Alloys Compd. 756, 68–75 (2018). https://doi.org/10.1016/j.jallcom.2018.05.026
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
X. Cao, Y. Liu, Y. Zhong, L. Cui, A. Zhang et al., Flexible coaxial fiber-shaped asymmetric supercapacitors based on manganese, nickel co-substituted cobalt carbonate hydroxides. J. Mater. Chem. A 8(4), 1837–1848 (2020). https://doi.org/10.1039/C9TA11942F
P. Gao, Z. Chen, Y. Gong, R. Zhang, H. Liu et al., The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: synthesis, advanced characterization, and fundamentals. Adv. Energy Mater. 10(14), 1903780 (2020). https://doi.org/10.1002/aenm.201903780
S. Yang, Y. Liu, Y. Hao, X. Yang, W.A. Goddard III. et al., Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes. Adv. Sci. 5(4), 1700659 (2018). https://doi.org/10.1002/advs.201700659
Z. Pan, Y. Jiang, P. Yang, Z. Wu, W. Tian et al., In situ growth of layered bimetallic ZnCo hydroxide nanosheets for high-performance all-solid-state pseudocapacitor. ACS Nano 12(3), 2968–2979 (2018). https://doi.org/10.1021/acsnano.8b00653
Z.-H. Huang, F.-F. Sun, M. Batmunkh, W.-H. Li, H. Li et al., Zinc-nickel-cobalt ternary hydroxide nanoarrays for high-performance supercapacitors. J. Mater. Chem. A 7(19), 11826–11835 (2019). https://doi.org/10.1039/c9ta01995b
S. Wang, J. Hu, L. Jiang, X. Li, J. Cao et al., High-performance 3D CuO/Cu flowers supercapacitor electrodes by femtosecond laser enhanced electrochemical anodization. Electrochim. Acta 293, 273–282 (2019). https://doi.org/10.1016/j.electacta.2018.09.144
C. Jin, Y. Cui, G. Zhang, W. Luo, Y. Liu et al., Synthesis of copper-cobalt hybrid oxide microflowers as electrode material for supercapacitors. Chem. Eng. J. 343, 331–339 (2018). https://doi.org/10.1016/j.cej.2018.02.117
W. Zheng, J. Yang, H. Chen, Y. Hou, Q. Wang et al., Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Adv. Funct. Mater. 30(4), 1907658 (2020). https://doi.org/10.1002/adfm.201907658
P. Liu, E.J.M. Hensen, Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J. Am. Chem. Soc. 135(38), 14032–14035 (2013). https://doi.org/10.1021/ja406820f
Y. Zeng, Z. Lai, Y. Han, H. Zhang, S. Xie et al., Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv. Mater. 30(33), 1802396 (2018). https://doi.org/10.1002/adma.201802396
Y. Zhang, Y. Hu, Z. Wang, T. Lin, X. Zhu et al., Lithiation-induced vacancy engineering of Co3O4 with improved faradic reactivity for high-performance supercapacitor. Adv. Funct. Mater. 30(39), 2004172 (2020). https://doi.org/10.1002/adfm.202004172
J. Hao, S. Peng, H. Li, S. Dang, T. Qin et al., A low crystallinity oxygen-vacancy-rich Co3O4 cathode for high-performance flexible asymmetric supercapacitors. J. Mater. Chem. A 6(33), 16094–16100 (2018). https://doi.org/10.1039/C8TA06349D
Y. Feng, W. Liu, Y. Wang, W. Gao, J. Li et al., Oxygen vacancies enhance supercapacitive performance of CuCo2O4 in high-energy-density asymmetric supercapacitors. J. Power Sources 458, 228005 (2020). https://doi.org/10.1016/j.jpowsour.2020.228005
M.J. Siegfried, K.-S. Choi, Elucidating the effect of additives on the growth and stability of Cu2O surfaces via shape transformation of pre-grown crystals. J. Am. Chem. Soc. 128(32), 10356–10357 (2006). https://doi.org/10.1021/ja063574y
G. Cheng, T. Kou, J. Zhang, C. Si, H. Gao et al., O22-/O- functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting. Nano Energy 38, 155–166 (2017). https://doi.org/10.1016/j.nanoen.2017.05.043
M. Gao, W.-K. Wang, Q. Rong, J. Jiang, Y.-J. Zhang et al., Porous ZnO-coated Co3O4 nanorod as a high-energy-density supercapacitor material. ACS Appl. Mater. Interfaces 10(27), 23163–23173 (2018). https://doi.org/10.1021/acsami.8b07082
W. Lu, J. Shen, P. Zhang, Y. Zhong, Y. Hu et al., Construction of CoO/Co–Cu–S hierarchical tubular heterostructures for hybrid supercapacitors. Angew. Chem. Int. Ed. 58(43), 15441–15447 (2019). https://doi.org/10.1002/anie.201907516
G. Nagaraju, S.C. Sekhar, B. Ramulu, G.K. Veerasubramani, D. Narsimulu et al., An agriculture-inspired nanostrategy towards flexible and highly efficient hybrid supercapacitors using ubiquitous substrates. Nano Energy 66, 104054 (2019). https://doi.org/10.1016/j.nanoen.2019.104054
Q. Zhu, D. Zhao, M. Cheng, J. Zhou, K.A. Owusu et al., A new view of supercapacitors: integrated supercapacitors. Adv. Energy Mater. 9(36), 1901081 (2019). https://doi.org/10.1002/aenm.201901081
N. Zhang, X. Yan, J. Li, J. Ma, D.H.L. Ng, Biosorption-directed integration of hierarchical CoO/C composite with nickel foam for high-performance supercapacitor. Electrochim. Acta 226, 132–139 (2017). https://doi.org/10.1016/j.electacta.2016.12.192
T. Liu, L. Zhang, W. You, J. Yu, Core-shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor. Small 14(12), 1702407 (2018). https://doi.org/10.1002/smll.201702407
G. Li, M. Chen, Y. Ouyang, D. Yao, L. Lu et al., Manganese doped Co3O4 mesoporous nanoneedle array for long cycle-stable supercapacitors. Appl. Surf. Sci. 469, 941–950 (2019). https://doi.org/10.1016/j.apsusc.2018.11.099
Y. Tan, Y. Liu, L. Kong, L. Kang, F. Ran, Supercapacitor electrode of nano-Co3O4 decorated with gold nanoparticles via in-situ reduction method. J. Power Sources 363, 1–8 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.054
W. Liu, X. Li, M. Zhu, X. He, High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel. J. Power Sources 282, 179–186 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.047
J. Xu, T. Xiao, X. Tan, P. Xiang, L. Jiang et al., A new asymmetric aqueous supercapacitor: Co3O4//Co3O4@polypyrrole. J. Alloys Compd. 706, 351–357 (2017). https://doi.org/10.1016/j.jallcom.2017.02.253
H. Lai, Q. Wu, J. Zhao, L. Shang, H. Li et al., Mesostructured NiO/Ni composites for high-performance electrochemical energy storage. Energy Environ. Sci. 9(6), 2053–2060 (2016). https://doi.org/10.1039/C6EE00603E
H. Liu, Q. Li, Z. Yao, L. Li, Y. Li et al., Origin of fracture-resistance to large volume change in Cu-substituted Co3O4 electrodes. Adv. Mater. 30(4), 1704851 (2018). https://doi.org/10.1002/adma.201704851