Enhanced Electrocatalytic Activity by RGO/MWCNTs/NiO Counter Electrode for Dye-sensitized Solar Cells
Corresponding Author: Yihua Gao
Nano-Micro Letters,
Vol. 7 No. 3 (2015), Article Number: 298-306
Abstract
We applied the reduced graphene oxide/multi-walled carbon nanotubes/nickel oxide (RGO/MWCNTs/NiO) nanocomposite as the counter electrode (CE) in dye-sensitized solar cells (DSSCs) on fluorine-doped tin oxide substrates by blade doctor method. Power conversion efficiency (PCE) of 8.13 % was achieved for this DSSCs device, which is higher than that of DSSCs devices using NiO, RGO, and RGO/NiO-CE (PCE = 2.71 %, PCE = 6.77 % and PCE = 7.63 %). Also, the fill factor of the DSSCs devices using the RGO/MWCNTs/NiO-CE was better than that of other CEs. The electron transfer measurement of cyclic voltammetry and electrochemical impedance spectroscopy showed that RGO/MWCNTs/NiO film could provide fast electron transfer between the CE and the electrolyte, and high electrocatalytic activity for the reduction of triiodide in a CE based on RGO/MWCNTs/NiO in a DSSC.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. O’Regan, M. Grätzel, Low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). doi:10.1038/353737a0
- M. Grätzel, Photoelectrochemical cells. Nature 414, 338–344 (2001). doi:10.1038/35104607
- A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Porphyrin sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 % efficiency. Science 334(6056), 629–634 (2011). doi:10.1126/science.1209688
- S. Ito, P. Chen, P. Comte, M.K. Nazeeruddin, P. Liska, P. Péchy, M. Grätzel, Fabrication of screen printing pastes from TiO2 powders for dye-sensitised solar cells. Prog. Photovolt. Res. Appl. 15(7), 603–612 (2007). doi:10.1002/pip.768
- Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Dye-sensitized solar cells with conversion efficiency of 11.1 %. Jpn. J. Appl. Phys. 45(24–28), L638–L640 (2006). doi:10.1143/JJAP.45.L638
- L. Han, A. Islam, A. Han Chen, C. Malapak, B. Chiranjeevi, S. Zhang, X. Yang, M. Yanagida, High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energy Environ. Sci. 5, 6057–6060 (2012). doi:10.1039/c2ee03418b
- Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, I-/I3- redox reaction behavior on poly (3, 4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells. J. Photochem. Photobiol. A-Chem. 164(1–3), 153–157 (2004). doi:10.1016/j.jphotochem.2003.11.017
- B. Fan, X. Mei, K. Sun, J. Ouyang, Conducting polymer/carbon nanotube composite as counter electrode of dye-sensitized solar cells. Appl. Phys. Lett. 93, 143103 (2008). doi:10.1063/1.2996270
- T.N. Murakami, S. Ito, Q. Wang, M.K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, M. Grätzel, Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J. Electrochem. Soc. 153(12), A2255–A2261 (2006). doi:10.1149/1.2358087
- W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem. Commun. 10(10), 1555–1558 (2008). doi:10.1016/j.elecom.2008.08.007
- K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura, K. Murata, High-performance carbon counter electrode for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 79(4), 459–469 (2003). doi:10.1016/S0927-0248(03)00021-7
- Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L.-Q. Chen, Q. Meng, Application of carbon materials as counter electrodes of dye-sensitized solar cells. Electrochem. Commun. 9(4), 596–598 (2007). doi:10.1016/j.elecom.2006.10.028
- E. Ramasamy, Nanocarbon counter electrode for dye sensitized solar cells, vol. 90 (AIP, New York, 2007)
- P. Joshi, L. Zhang, Q. Chen, D. Galipeau, H. Fong, Q. Qiao, Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2(12), 3572–3577 (2010). doi:10.1021/am100742s
- X. Mei, S.J. Cho, B. Fan, J. Ouyang, High-performance dye-sensitized solar cells with gel-coated binder-free carbon nanotube films as counter electrode. Nanotechnology 21(39), 395202 (2010). doi:10.1088/0957-4484/21/39/395202
- C.-T. Hsieh, B.-H. Yang, J.-Y. Lin, One-and two-dimensional carbon nanomaterials as counter electrodes for dye-sensitized solar cells. Carbon 49(9), 3092–3097 (2011). doi:10.1016/j.carbon.2011.03.031
- G. Veerappan, K. Bojan, S.-W. Rhee, Sub-micrometer-sized graphite as a conducting and catalytic counter electrode for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 3(3), 857–862 (2011). doi:10.1021/am101204f
- L. Kavan, J.H. Yum, M.K. Nazeeruddin, M. Gratzel, Graphene nanoplatelet cathode for Co(III)/(II) mediated dye-sensitized solar cells. ACS Nano 5(11), 9171–9178 (2011). doi:10.1021/nn203416d
- F. Gong, Z. Li, H. Wang, Z.S. Wang, Enhanced electrocatalytic performance of graphene via incorporation of SiO2 nanoparticles for dye-sensitized solar cells. J. Mater. Chem. 22, 17321–17327 (2012). doi:10.1039/c2jm33483f
- A. Kaniyoor, S. Ramaprabhu, Thermally exfoliated graphene based counter electrode for low cost dye sensitized solar cells. J. Appl. Phys. 109, 124308 (2011). doi:10.1063/1.3600231
- A. Kay, M. Gratzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells 44(1), 99–117 (1996). doi:10.1016/0927-0248(96)00063-3
- K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida, Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem. Lett. 32(1), 28–29 (2003). doi:10.1246/cl.2003.28
- W.J. Lee, E. Ramasamy, D.Y. Lee, J.S. Song, Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS Appl. Mater. Interfaces 1(6), 1145–1149 (2009). doi:10.1021/am800249k
- C.S. Du, N. Pan, Supercapacitors using carbon nanotubes films by electrophoretic deposition. J. Power Sources 160(2), 1487 (2006). doi:10.1016/j.jpowsour.2006.02.092
- H.Y. Wang, F.M. Wang, Y.Y. Wang, C.C. Wan, B.J. Hwang, R. Santhanam, Electrochemical formation of Pt nanoparticles on multiwalled carbon nanotubes: useful for fabricating electrodes for use in dye-sensitized solar cells. J. Rick J. Phys. Chem. C 115(16), 8439–8445 (2011). doi:10.1021/jp201220t
- H.J. Shin, S.S. Jeon, S.S. Im, CNT/PEDOT core/shell nanostructures as a counter electrode for dye-sensitized solar cells. Synth. Met. 161(13–14), 1284–1288 (2011). doi:10.1016/j.synthmet.2011.04.024
- M.R. Al-bahrani, X. Xu, W. Ahmad, X.-L. Ren, J. Su, Z. Cheng, Y. Gao, Highly efficient dye-sensitized solar cell with GNS/MWCNT/PANI as a counter electrode. Mater. Res. Bull. 59, 272–277 (2014). doi:10.1016/j.materresbull.2014.07.029
- L. Chang, C. Lee, K. Huang, Y. Wang, M. Yeh, J. Lin, K. Ho, Facile fabrication of PtNP/MWCNT nanohybrid films for flexible counter electrode in dye-sensitized solar cells. J. Mater. Chem. 22(7), 3185–3191 (2012). doi:10.1039/c2jm15614h
- I. Ahmad, J.E. McCarthy, M. Bari, Y.K. Gunko, Carbon nanomaterial based counter electrodes for dye sensitized solar cells. Sol. Energy 102, 152–161 (2014). doi:10.1016/j.solener.2014.01.012
- H. Wang, W. Wei, Y.H. Hu, NiO as an Efficient counter electrode catalyst for dye-Sensitized solar cells. Top Catal. 57(6–9), 607–611 (2014). doi:10.1007/s11244-013-0218-8
- M.R. Al-bahrani, L. Liu, W. Ahmad, J. Tao, F. Tu, Z. Cheng, Y. Gao, NiO-NF/MWCNT nanocomposite catalyst as a counter electrode for high performance dye-sensitized solar cells. Appl. Surf. Sci. 331, 333–338 (2015). doi:10.1016/j.apsusc.2015.01.015
- J.S. Jang, D.J. Ham, E. Ramasamy, J. Lee, J.S. Lee, Platinum-free tungsten carbides as an efficient counter electrode for dye sensitized solar cells. Chem. Commun. 46, 8600–8602 (2010). doi:10.1039/c0cc02247k
- M.-H. Yeh, L.-Y. Lin, L.-Y. Chang, Y.-A. Leu, W.-Y. Cheng, J.-J. Lin, K.-C. Ho, Dye-sensitized solar cells with reduced graphene oxide as the counter electrode prepared by a green photothermal reduction process. Chem. Phys. Chem. 15(6), 1175–1181 (2014). doi:10.1002/cphc.201301128
- E. Bi, H. Chen, X. Yang, W. Peng, M. Grätzel, L. Han, A quasi core–shell nitrogen-doped graphene/cobalt sulfide conductive catalyst for highly efficient dye-sensitized solar cells. Energy Environ. Sci. 7, 2637–2641 (2014). doi:10.1039/C4EE01339E
- E. Bi, Y. Su, H. Chen, X. Yang, M. Yin, F. Ye, Z. Li, L. Han, A hybrid catalyst composed of reduced graphene oxide/Cu2S quantum dots as a transparent counter electrode for dye sensitized solar cells. RSC Adv. 5, 9075–9078 (2015). doi:10.1039/C4RA14029J
- J. Zhu, J. Wang, F. Lv, S. Xiao, C. Nuckolls, H. Li, Synthesis and self-assembly of photonic materials from nanocrystalline titania sheets. J. Am. Chem. Soc. 135(12), 4719–4721 (2013). doi:10.1021/ja401334j
- W. Sun, T. Peng, Y. Liu, W. Yu, K. Zhang, H.F. Mehnane, C. Bu, S. Guo, X.-Z. Zhao, Layer-by-Layer self-assembly of TiO2 hierarchical nanosheets with exposed 001 facets as an effective bifunctional layer for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 6(12), 9144–9149 (2014). doi:10.1021/am501233q
- M. Grätzel, Perspectives for dye-sensitized nanocrystalline solar cells. Prog. Photovolt Res. Appl. 8(1), 171–185 (2000). doi:10.1002/(SICI)1099-159X(200001/02)8:1<171:AID-PIP300>3.0.CO;2-U
- J.H. Cheon, D.Y. Jung, S.K. Choi, K.-S. Ahn, D.K. Lee, J.H. Kim, Enhancement of light harvesting in dye-sensitized solar cells by using Först-type resonance energy transfer. Met. Mater. Int. 19(6), 1365–1368 (2013). doi:10.1007/s12540-013-0642-0
- F.F. Santiago, J. Bisquert, E. Palomares, Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. Phys. Chem. C 111(17), 6550–6560 (2007). doi:10.1021/jp066178a
- S. Das, P. Sudhagar, V. Verma, D. Song, E. Ito, S.Y. Lee, Y. Kang, W. Choi, Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells. Adv. Funct. Mater. 21(19), 3729–3736 (2011). doi:10.1002/adfm.201101191
- D.W. Zhang, X.D. Li, H.B. Li, S. Chen, Z. Sun, X.J. Yin, S.M. Huang, Graphene-based counter electrode for dye-sensitized solar cells. Carbon 49(15), 538–5388 (2011). doi:10.1016/j.carbon.2011.08.005
- L. Han, N. Koide, Y. Chiba, A. Isalam, R. Komiya, N. Fuke, A. Fukui, R. Ymanaka, Improvement of efficiency of dye sensitized solar cells by reduction of internal resistance. Appl. Phys. Lett. 86, 213501–213503 (2005). doi:10.1063/1.1925773
- A. Ejigu, K.R.J. Lovelock, P. Licence, D.A. Walsh, The effect of linker of electrodes prepared from sol–gel ionic liquid precursor and carbon nanoparticles on dioxygen electroreduction bioelectrocatalysis. Electrochim. Acta 56(28), 10306–10313 (2011). doi:10.1016/j.electacta.2011.03.139
- F. Gong, H. Wang, X. Xu, G. Zhou, Z.S. Wang, In situ growth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. J. Am. Chem. Soc. 134(26), 10953–10958 (2012). doi:10.1021/ja303034w
- J.D. Roy-Mayhew, D.J. Bozym, C. Punckt, I.A. Aksay, Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 4(10), 6203–6211 (2010). doi:10.1021/nn1016428
- Y.M. Xiao, J.Y. Lin, S.Y. Tai, S.W. Chou, G. Yue, J.H. Wu, Pulse electropolymerization of high performance PEDOT/MWCNT counter electrodes for Pt-free dye-sensitized solar cells. J. Mater. Chem. 22, 19919–19925 (2012). doi:10.1039/c2jm34425d
- L. Han, N. Koide, Y. Chiba, A. Islam, T. Mitate, Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cell by reducing internal resistance. C. R. Chim. 9(5–6), 645–651 (2006). doi:10.1016/j.crci.2005.02.046
References
B. O’Regan, M. Grätzel, Low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). doi:10.1038/353737a0
M. Grätzel, Photoelectrochemical cells. Nature 414, 338–344 (2001). doi:10.1038/35104607
A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Porphyrin sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 % efficiency. Science 334(6056), 629–634 (2011). doi:10.1126/science.1209688
S. Ito, P. Chen, P. Comte, M.K. Nazeeruddin, P. Liska, P. Péchy, M. Grätzel, Fabrication of screen printing pastes from TiO2 powders for dye-sensitised solar cells. Prog. Photovolt. Res. Appl. 15(7), 603–612 (2007). doi:10.1002/pip.768
Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Dye-sensitized solar cells with conversion efficiency of 11.1 %. Jpn. J. Appl. Phys. 45(24–28), L638–L640 (2006). doi:10.1143/JJAP.45.L638
L. Han, A. Islam, A. Han Chen, C. Malapak, B. Chiranjeevi, S. Zhang, X. Yang, M. Yanagida, High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energy Environ. Sci. 5, 6057–6060 (2012). doi:10.1039/c2ee03418b
Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, I-/I3- redox reaction behavior on poly (3, 4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells. J. Photochem. Photobiol. A-Chem. 164(1–3), 153–157 (2004). doi:10.1016/j.jphotochem.2003.11.017
B. Fan, X. Mei, K. Sun, J. Ouyang, Conducting polymer/carbon nanotube composite as counter electrode of dye-sensitized solar cells. Appl. Phys. Lett. 93, 143103 (2008). doi:10.1063/1.2996270
T.N. Murakami, S. Ito, Q. Wang, M.K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, M. Grätzel, Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J. Electrochem. Soc. 153(12), A2255–A2261 (2006). doi:10.1149/1.2358087
W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem. Commun. 10(10), 1555–1558 (2008). doi:10.1016/j.elecom.2008.08.007
K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura, K. Murata, High-performance carbon counter electrode for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 79(4), 459–469 (2003). doi:10.1016/S0927-0248(03)00021-7
Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L.-Q. Chen, Q. Meng, Application of carbon materials as counter electrodes of dye-sensitized solar cells. Electrochem. Commun. 9(4), 596–598 (2007). doi:10.1016/j.elecom.2006.10.028
E. Ramasamy, Nanocarbon counter electrode for dye sensitized solar cells, vol. 90 (AIP, New York, 2007)
P. Joshi, L. Zhang, Q. Chen, D. Galipeau, H. Fong, Q. Qiao, Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2(12), 3572–3577 (2010). doi:10.1021/am100742s
X. Mei, S.J. Cho, B. Fan, J. Ouyang, High-performance dye-sensitized solar cells with gel-coated binder-free carbon nanotube films as counter electrode. Nanotechnology 21(39), 395202 (2010). doi:10.1088/0957-4484/21/39/395202
C.-T. Hsieh, B.-H. Yang, J.-Y. Lin, One-and two-dimensional carbon nanomaterials as counter electrodes for dye-sensitized solar cells. Carbon 49(9), 3092–3097 (2011). doi:10.1016/j.carbon.2011.03.031
G. Veerappan, K. Bojan, S.-W. Rhee, Sub-micrometer-sized graphite as a conducting and catalytic counter electrode for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 3(3), 857–862 (2011). doi:10.1021/am101204f
L. Kavan, J.H. Yum, M.K. Nazeeruddin, M. Gratzel, Graphene nanoplatelet cathode for Co(III)/(II) mediated dye-sensitized solar cells. ACS Nano 5(11), 9171–9178 (2011). doi:10.1021/nn203416d
F. Gong, Z. Li, H. Wang, Z.S. Wang, Enhanced electrocatalytic performance of graphene via incorporation of SiO2 nanoparticles for dye-sensitized solar cells. J. Mater. Chem. 22, 17321–17327 (2012). doi:10.1039/c2jm33483f
A. Kaniyoor, S. Ramaprabhu, Thermally exfoliated graphene based counter electrode for low cost dye sensitized solar cells. J. Appl. Phys. 109, 124308 (2011). doi:10.1063/1.3600231
A. Kay, M. Gratzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells 44(1), 99–117 (1996). doi:10.1016/0927-0248(96)00063-3
K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida, Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem. Lett. 32(1), 28–29 (2003). doi:10.1246/cl.2003.28
W.J. Lee, E. Ramasamy, D.Y. Lee, J.S. Song, Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS Appl. Mater. Interfaces 1(6), 1145–1149 (2009). doi:10.1021/am800249k
C.S. Du, N. Pan, Supercapacitors using carbon nanotubes films by electrophoretic deposition. J. Power Sources 160(2), 1487 (2006). doi:10.1016/j.jpowsour.2006.02.092
H.Y. Wang, F.M. Wang, Y.Y. Wang, C.C. Wan, B.J. Hwang, R. Santhanam, Electrochemical formation of Pt nanoparticles on multiwalled carbon nanotubes: useful for fabricating electrodes for use in dye-sensitized solar cells. J. Rick J. Phys. Chem. C 115(16), 8439–8445 (2011). doi:10.1021/jp201220t
H.J. Shin, S.S. Jeon, S.S. Im, CNT/PEDOT core/shell nanostructures as a counter electrode for dye-sensitized solar cells. Synth. Met. 161(13–14), 1284–1288 (2011). doi:10.1016/j.synthmet.2011.04.024
M.R. Al-bahrani, X. Xu, W. Ahmad, X.-L. Ren, J. Su, Z. Cheng, Y. Gao, Highly efficient dye-sensitized solar cell with GNS/MWCNT/PANI as a counter electrode. Mater. Res. Bull. 59, 272–277 (2014). doi:10.1016/j.materresbull.2014.07.029
L. Chang, C. Lee, K. Huang, Y. Wang, M. Yeh, J. Lin, K. Ho, Facile fabrication of PtNP/MWCNT nanohybrid films for flexible counter electrode in dye-sensitized solar cells. J. Mater. Chem. 22(7), 3185–3191 (2012). doi:10.1039/c2jm15614h
I. Ahmad, J.E. McCarthy, M. Bari, Y.K. Gunko, Carbon nanomaterial based counter electrodes for dye sensitized solar cells. Sol. Energy 102, 152–161 (2014). doi:10.1016/j.solener.2014.01.012
H. Wang, W. Wei, Y.H. Hu, NiO as an Efficient counter electrode catalyst for dye-Sensitized solar cells. Top Catal. 57(6–9), 607–611 (2014). doi:10.1007/s11244-013-0218-8
M.R. Al-bahrani, L. Liu, W. Ahmad, J. Tao, F. Tu, Z. Cheng, Y. Gao, NiO-NF/MWCNT nanocomposite catalyst as a counter electrode for high performance dye-sensitized solar cells. Appl. Surf. Sci. 331, 333–338 (2015). doi:10.1016/j.apsusc.2015.01.015
J.S. Jang, D.J. Ham, E. Ramasamy, J. Lee, J.S. Lee, Platinum-free tungsten carbides as an efficient counter electrode for dye sensitized solar cells. Chem. Commun. 46, 8600–8602 (2010). doi:10.1039/c0cc02247k
M.-H. Yeh, L.-Y. Lin, L.-Y. Chang, Y.-A. Leu, W.-Y. Cheng, J.-J. Lin, K.-C. Ho, Dye-sensitized solar cells with reduced graphene oxide as the counter electrode prepared by a green photothermal reduction process. Chem. Phys. Chem. 15(6), 1175–1181 (2014). doi:10.1002/cphc.201301128
E. Bi, H. Chen, X. Yang, W. Peng, M. Grätzel, L. Han, A quasi core–shell nitrogen-doped graphene/cobalt sulfide conductive catalyst for highly efficient dye-sensitized solar cells. Energy Environ. Sci. 7, 2637–2641 (2014). doi:10.1039/C4EE01339E
E. Bi, Y. Su, H. Chen, X. Yang, M. Yin, F. Ye, Z. Li, L. Han, A hybrid catalyst composed of reduced graphene oxide/Cu2S quantum dots as a transparent counter electrode for dye sensitized solar cells. RSC Adv. 5, 9075–9078 (2015). doi:10.1039/C4RA14029J
J. Zhu, J. Wang, F. Lv, S. Xiao, C. Nuckolls, H. Li, Synthesis and self-assembly of photonic materials from nanocrystalline titania sheets. J. Am. Chem. Soc. 135(12), 4719–4721 (2013). doi:10.1021/ja401334j
W. Sun, T. Peng, Y. Liu, W. Yu, K. Zhang, H.F. Mehnane, C. Bu, S. Guo, X.-Z. Zhao, Layer-by-Layer self-assembly of TiO2 hierarchical nanosheets with exposed 001 facets as an effective bifunctional layer for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 6(12), 9144–9149 (2014). doi:10.1021/am501233q
M. Grätzel, Perspectives for dye-sensitized nanocrystalline solar cells. Prog. Photovolt Res. Appl. 8(1), 171–185 (2000). doi:10.1002/(SICI)1099-159X(200001/02)8:1<171:AID-PIP300>3.0.CO;2-U
J.H. Cheon, D.Y. Jung, S.K. Choi, K.-S. Ahn, D.K. Lee, J.H. Kim, Enhancement of light harvesting in dye-sensitized solar cells by using Först-type resonance energy transfer. Met. Mater. Int. 19(6), 1365–1368 (2013). doi:10.1007/s12540-013-0642-0
F.F. Santiago, J. Bisquert, E. Palomares, Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. Phys. Chem. C 111(17), 6550–6560 (2007). doi:10.1021/jp066178a
S. Das, P. Sudhagar, V. Verma, D. Song, E. Ito, S.Y. Lee, Y. Kang, W. Choi, Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells. Adv. Funct. Mater. 21(19), 3729–3736 (2011). doi:10.1002/adfm.201101191
D.W. Zhang, X.D. Li, H.B. Li, S. Chen, Z. Sun, X.J. Yin, S.M. Huang, Graphene-based counter electrode for dye-sensitized solar cells. Carbon 49(15), 538–5388 (2011). doi:10.1016/j.carbon.2011.08.005
L. Han, N. Koide, Y. Chiba, A. Isalam, R. Komiya, N. Fuke, A. Fukui, R. Ymanaka, Improvement of efficiency of dye sensitized solar cells by reduction of internal resistance. Appl. Phys. Lett. 86, 213501–213503 (2005). doi:10.1063/1.1925773
A. Ejigu, K.R.J. Lovelock, P. Licence, D.A. Walsh, The effect of linker of electrodes prepared from sol–gel ionic liquid precursor and carbon nanoparticles on dioxygen electroreduction bioelectrocatalysis. Electrochim. Acta 56(28), 10306–10313 (2011). doi:10.1016/j.electacta.2011.03.139
F. Gong, H. Wang, X. Xu, G. Zhou, Z.S. Wang, In situ growth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. J. Am. Chem. Soc. 134(26), 10953–10958 (2012). doi:10.1021/ja303034w
J.D. Roy-Mayhew, D.J. Bozym, C. Punckt, I.A. Aksay, Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 4(10), 6203–6211 (2010). doi:10.1021/nn1016428
Y.M. Xiao, J.Y. Lin, S.Y. Tai, S.W. Chou, G. Yue, J.H. Wu, Pulse electropolymerization of high performance PEDOT/MWCNT counter electrodes for Pt-free dye-sensitized solar cells. J. Mater. Chem. 22, 19919–19925 (2012). doi:10.1039/c2jm34425d
L. Han, N. Koide, Y. Chiba, A. Islam, T. Mitate, Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cell by reducing internal resistance. C. R. Chim. 9(5–6), 645–651 (2006). doi:10.1016/j.crci.2005.02.046