Core–Shell Semiconductor-Graphene Nanoarchitectures for Efficient Photocatalysis: State of the Art and Perspectives
Corresponding Author: Shuping Li
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 280
Abstract
Semiconductor photocatalysis holds great promise for renewable energy generation and environment remediation, but generally suffers from the serious drawbacks on light absorption, charge generation and transport, and structural stability that limit the performance. The core–shell semiconductor-graphene (CSSG) nanoarchitectures may address these issues due to their unique structures with exceptional physical and chemical properties. This review explores recent advances of the CSSG nanoarchitectures in the photocatalytic performance. It starts with the classification of the CSSG nanoarchitectures by the dimensionality. Then, the construction methods under internal and external driving forces were introduced and compared with each other. Afterward, the physicochemical properties and photocatalytic applications of these nanoarchitectures were discussed, with a focus on their role in photocatalysis. It ends with a summary and some perspectives on future development of the CSSG nanoarchitectures toward highly efficient photocatalysts with extensive application. By harnessing the synergistic capabilities of the CSSG architectures, we aim to address pressing environmental and energy challenges and drive scientific progress in these fields.
Highlights:
1 The constructions under internal and external driving forces were introduced and compared with each other.
2 The physicochemical properties were analyzed for the assessment of crystalline quality and photoelectric characteristics.
3 The photocatalytic applications, mechanisms, and developments of the core-shell semiconductor-graphene nanoarchitectures were illustrated in detail.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Wang, Q. Li, D. Xu, Recent progress in semiconductor-based nanocomposite photocatalysts for solar-to-chemical energy conversion. Adv. Energy Mater. 7, 1700529 (2017). https://doi.org/10.1002/aenm.201700529
- H. Zhou, Y. Qu, T. Zeida, X. Duan, Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ. Sci. 5, 6732 (2012). https://doi.org/10.1039/c2ee03447f
- Z.H. Jabbar, S.E. Ebrahim, Recent advances in nano-semiconductors photocatalysis for degrading organic contaminants and microbial disinfection in wastewater: a comprehensive review. Environ. Nanotechnol. Monit. Manage. 17, 100666 (2022). https://doi.org/10.1016/j.enmm.2022.100666
- L. Zhang, M. Jaroniec, Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications. Appl. Surf. Sci. 430, 2–17 (2018). https://doi.org/10.1016/j.apsusc.2017.07.192
- M. Pirhashemi, A. Habibi-Yangjeh, S.R. Pouran, Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. J. Ind. Eng. Chem. 62, 1–25 (2018). https://doi.org/10.1016/j.jiec.2018.01.012
- H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li et al., Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234 (2014). https://doi.org/10.1039/c4cs00126e
- C. Feng, Z.-P. Wu, K.-W. Huang, J. Ye, H. Zhang, Surface modification of 2D photocatalysts for solar energy conversion. Adv. Mater. 34, 2200180 (2022). https://doi.org/10.1002/adma.202200180
- S.A. Jitan, G. Palmisano, C. Garlisi, Synthesis and surface modification of TiO2-based photocatalysts for the conversion of CO2. Catalysts 10, 227 (2020). https://doi.org/10.3390/catal10020227
- L. Jiang, X. Huang, Y. Zhou, S. Huang, Y. Wang et al., High photocatalytic performance of ferroelectric AgNbO3 in a doping state. J. Environ. Chem. Eng. 11, 110402 (2023). https://doi.org/10.1016/j.jece.2023.110402
- T. Xu, X. Liu, S. Wang, L. Li, Ferroelectric oxide nanocomposites with trimodal pore structure for high photocatalytic performance. Nano-Micro Lett. 11, 37 (2019). https://doi.org/10.1007/s40820-019-0268-y
- Y. Li, L. Wang, F. Zhang, W. Zhang, G. Shao et al., Detecting and quantifying wavelength-dependent electrons transfer in heterostructure catalyst via in situ irradiation XPS. Adv. Sci. 10, 2205020 (2023). https://doi.org/10.1002/advs.202205020
- L. Wang, Y. Li, Y. Ai, E. Fan, F. Zhang et al., Tracking heterogeneous interface charge reverse separation in SrTiO3/NiO/NiS nanofibers with in situ irradiation XPS. Adv. Funct. Mater. 33, 2306466 (2023). https://doi.org/10.1002/adfm.202306466
- S. Liu, N. Zhang, Y.-J. Xu, Core–shell structured nanocomposites for photocatalytic selective organic transformations. Part. Part. Syst. Charact. 31, 540–556 (2014). https://doi.org/10.1002/ppsc.201300235
- A. Shafiee, N. Rabiee, S. Ahmadi, M. Baneshi, M. Khatami et al., Core−shell nanophotocatalysts: Review of materials and applications. ACS Appl. Nano Mater. 5, 55–86 (2022). https://doi.org/10.1021/acsanm.1c03714
- S. Wang, Y. Zhang, Y. Zheng, Y. Xu, G. Yang et al., Plasmonic metal mediated charge transfer in stacked core–shell semiconductor heterojunction for significantly enhanced CO2 photoreduction. Small 19, 2204774 (2023). https://doi.org/10.1002/smll.202204774
- D. He, C. Zhang, G. Zeng, Y. Yang, D. Huang et al., A multifunctional platform by controlling of carbon nitride in the core-shell structure: from design to construction, and catalysis applications. Appl. Catal. B-Environ. 258, 117957 (2019). https://doi.org/10.1016/j.apcatb.2019.117957
- I. Khan, N. Baig, S. Ali, M. Usman, S.A. Khan et al., Progress in layered cathode and anode nanoarchitectures for charge storage devices: challenges and future perspective. Energy Storage Mater. 35, 443–469 (2021). https://doi.org/10.1016/j.ensm.2020.11.033
- W. Luo, S. Zafeiratos, A brief review of the synthesis and catalytic applications of graphene-coated oxides. ChemCatChem 9, 2432–2442 (2017). https://doi.org/10.1002/cctc.201700178
- W. Lu, L. Guo, Y. Jia, Y. Guo, Z. Li et al., Significant enhancement in photocatalytic activity of high quality SiC/graphene core–shell heterojunction with optimal structural parameters. RSC Adv. 4, 46771 (2014). https://doi.org/10.1039/c4ra06026a
- N. Gao, X. Fang, Synthesis and development of graphene−inorganic semiconductor nanocomposites. Chem. Rev. 115, 8294–8343 (2015). https://doi.org/10.1021/cr400607y
- J.S. Lee, K.H. You, C.B. Park, Highly photoactive, low bandgap TiO2 nanops wrapped by graphene. Adv. Mater. 24, 1084–1088 (2012). https://doi.org/10.1002/adma.201104110
- S. Lin, Y. Lu, J. Xu, S. Feng, J. Li, High performance graphene/semiconductor van der Waals heterostructure optoelectronic devices. Nano Energy 40, 122–148 (2017). https://doi.org/10.1016/j.nanoen.2017.07.036
- H.T. Tung, H.K. Dan, D. Thomas, H.K. Jun, L.T.N. Tu, The preparation of reduced graphene oxide—Cu2S by hydrothermal method for quantum dot sensitized solar cells. Opt. Mater. 139, 113725 (2023). https://doi.org/10.1016/j.optmat.2023.113725
- H. Yin, G. Zhan, R. Yan, X. Wu, Q. Hu et al., P–n heterogeneous Sb2S3/SnO2 quantum dot anchored reduced graphene oxide nanosheets for high-performance lithium-ion batteries. Dalton Trans. 53, 7142–7151 (2024). https://doi.org/10.1039/d4dt00153b
- L. Syam-Sundar, M. Amin-Mir, M. Waqar-Ashraf, F. Djavanroodi, Synthesis and characterization of graphene and its composites for Lithium-Ion battery applications: a comprehensive review. Alex. Eng. J. 78, 224–245 (2023). https://doi.org/10.1016/j.aej.2023.07.044
- R. Hou, S. Zhang, Y. Zhang, N. Li, S. Wang et al., A “three-region” configuration for enhanced electrochemical kinetics and high-areal capacity lithium–sulfur batteries. Adv. Funct. Mater. 32, 2200302 (2022). https://doi.org/10.1002/adfm.202200302
- Y. Zhang, Z. Wu, S. Wang, N. Li, S.R.P. Silva et al., Complex permittivity-dependent plasma confinementassisted growth of asymmetric vertical graphene nanofiber membrane for high-performance Li-S full cells. InfoMat 4, e12294 (2022). https://doi.org/10.1002/inf2.12294
- S. Nongthombam, N.A. Devi, S. Sinha, R. Bhujel, S. Rai et al., Reduced graphene oxide/gallium nitride nanocomposites for supercapacitor applications. J. Phys. Chem. Solids 141, 109406 (2020). https://doi.org/10.1016/j.jpcs.2020.109406
- S. Nagarani, G. Sasikala, M. Yuvaraj, R. Dhilip-Kumar, S. Balachandran et al., ZnO-CuO nanops enameled on reduced graphene nanosheets as electrode materials for supercapacitors applications. J. Energy Storage 52, 104969 (2022). https://doi.org/10.1016/j.est.2022.104969
- H. Tian, A. Hu, Q. Liu, X. He, X. Guo, Interface-induced high responsivity in hybrid graphene/GaAs photodetector. Adv. Optical Mater. 2020, 1901741 (2020). https://doi.org/10.1002/adom.201901741
- M.A. Iqbal, N. Anwar, M. Malik, M. Al-Bahrani, M.R. Islam et al., Nanostructures/graphene/silicon junction-based high-performance photodetection systems: progress, challenges, and future trends. Adv. Mater. Interfaces 10, 2202208 (2023). https://doi.org/10.1002/admi.202202208
- Y. Hu, C. Zhou, H. Wang, M. Chen, G. Zeng et al., Recent advance of graphene/semiconductor composite nanocatalysts: synthesis, mechanism, applications and perspectives. Chem. Eng. J. 414, 128795 (2021). https://doi.org/10.1016/j.cej.2021.128795
- M.A. Ahmed, A.A. Mohamed, Recent progress in semiconductor/graphene photocatalysts: synthesis, photocatalytic applications, and challenges. RSC Adv. 13, 421 (2023). https://doi.org/10.1039/d2ra07225d
- A. Mondal, A. Prabhakaran, S. Gupta, V.R. Subramanian, Boosting photocatalytic activity using reduced graphene oxide (RGO)/semiconductor nanocomposites: issues and future scope. ACS Omega 6, 8734–8743 (2021). https://doi.org/10.1021/acsomega.0c06045
- Y. Chen, B.Y. Zhai, Y.N. Liang, Y. Li, Hybrid photocatalysts using semiconductor/MOF/graphene oxide for superior photodegradation of organic pollutants under visible light. Mat. Sci. Semicon. Proc. 107, 104838 (2020). https://doi.org/10.1016/j.mssp.2019.104838
- C. He, X. Bu, S. Yang, P. He, G. Ding et al., Core-shell SrTiO3/graphene structure by chemical vapor deposition for enhanced photocatalytic performance. Appl. Surf. Sci. 436, 373–381 (2018). https://doi.org/10.1016/j.apsusc.2017.12.063
- Y. Zhang, D. Li, Y. Zhang, X. Zhou, S. Guo et al., Graphene-wrapped Bi2O2CO3 core–shell structures with enhanced quantum efficiency profit from an ultrafast electron transfer process. J. Mater. Chem. A 2, 8273 (2014). https://doi.org/10.1039/c4ta00088a
- D. Shao, M. Yu, H. Sun, T. Hu, J. Lian et al., High responsivity, fast ultraviolet photodetector fabricated from ZnO nanop–graphene core–shell structures. Nanoscale 5, 3664 (2013). https://doi.org/10.1039/c3nr00369h
- L. Yu, Q. Yang, G. Zhu, R. Che, Preparation and lithium storage of core–shell honeycomb-like Co3O4@C microspheres. RSC Adv. 12, 29818 (2022). https://doi.org/10.1039/d2ra05204k
- W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang et al., A general strategy toward graphene@metal oxide core–shell nanostructures for high-performance lithium storage. Energy Environ. Sci. 4, 4954 (2011). https://doi.org/10.1039/c1ee02168k
- Q. Wu, L. Yang, X. Wang, Z. Hu, Carbon-based nanocages: a new platform for advanced energy storage and conversion. Adv. Mater. 32, 1904177 (2020). https://doi.org/10.1002/adma.201904177
- M.I.A. Abdel-Maksoud, R.A. Fahim, A.E. Shalan, M. Abd-Elkodous, S.O. Olojede et al., Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environ. Chem. Lett. 19, 375–437 (2021). https://doi.org/10.1007/s10311-020-01075-w
- H. Zhang, D. Yang, A. Lau, T. Ma, H. Lin et al., Hybridized graphene for supercapacitors: beyond the limitation of pure graphene. Small 17, 2007311 (2021). https://doi.org/10.1002/smll.202007311
- H. Feng, L. Tang, G. Zeng, J. Tang, Y. Deng et al., Carbon-based core–shell nanostructured materials for electrochemical energy storage. J. Mater. Chem. A 6, 7310 (2018). https://doi.org/10.1039/c8ta01257a
- K.S. Lee, J. Shim, J.S. Lee, J. Lee, H.G. Moon et al., Adsorption behavior of NO2 molecules in ZnO-mono/multilayer graphene core–shell quantum dots for NO2 gas sensor. J. Ind. Eng. Chem. 106, 279–286 (2022). https://doi.org/10.1016/j.jiec.2021.11.003
- X. Chen, Y. Zhan, A. Sun, Q. Feng, W. Yang et al., Anchoring the TiO2@crumpled graphene oxide core–shell sphere onto electrospun polymer fibrous membrane for the fast separation of multi-component pollutant-oil–water emulsion. Sep. Purif. Technol. 298, 121605 (2022). https://doi.org/10.1016/j.seppur.2022.121605
- M.M. Tavakoli, H. Aashuri, A. Simchi, S. Kalytchuk, Z. Fan, Quasi core/shell lead sulfide/graphene quantum dots for bulk heterojunction solar cells. J. Phys. Chem. C 119, 18886–18895 (2015). https://doi.org/10.1021/acs.jpcc.5b04195
- P. Shankar, M.Q. Hafzan-Ishak, J.K. Padarti, N. Mintcheva, S. Iwamori et al., ZnO@graphene oxide core@shell nanops prepared via one-pot approach based on laser ablation in water. Appl. Surf. Sci. 531, 147365 (2020). https://doi.org/10.1016/j.apsusc.2020.147365
- D.I. Son, B.W. Kwon, D.H. Park, W.-S. Seo, Y. Yi et al., Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 7, 465–471 (2012). https://doi.org/10.1038/nnano.2012.71
- Y. Fei, X. Ye, A.S. Al-Baldawy, J. Wan, J. Lan et al., Enhanced photocatalytic performance of TiO2 nanowires by substituting noble metal ps with reduced graphene oxide. Curr. Appl. Phys. 44, 33–39 (2022). https://doi.org/10.1016/j.cap.2022.09.008
- X. Li, Y. Zhang, T. Li, Q. Zhong, H. Li et al., Graphene nanoscrolls encapsulated TiO2 (B) nanowires for lithium storage. J. Power. Sources 268, 372–378 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.056
- S. Kang, J. Hwang, rGO-wrapped Ag-doped TiO2 nanofibers for photocatalytic CO2 reduction under visible light. J. Clean. Prod. 374, 134022 (2022). https://doi.org/10.1016/j.jclepro.2022.134022
- D. Kathiravan, B.-R. Huang, A. Saravanan, Self-assembled hierarchical interfaces of ZnO nanotubes/graphene heterostructures for efficient room temperature hydrogen sensors. ACS Appl. Mater. Interfaces 9, 12064–12072 (2017). https://doi.org/10.1021/acsami.7b00338
- X. Ye, Y. Tian, M. Gao, F. Cheng, J. Lan et al., Efficient photocatalytic core–shell synthesis of titanate nanowire/rGO. Catalysts 14, 218 (2024). https://doi.org/10.3390/catal14040218
- H.-J. Kim, S.E. Lee, J. Lee, J.-Y. Jung, E.-S. Lee et al., Gold-coated silicon nanowire–graphene core–shell composite film as a polymer binder-free anode for rechargeable lithium-ion batteries. Physica E 61, 204–209 (2014). https://doi.org/10.1016/j.physe.2014.03.030
- S.M. Ji, A.P. Tiwari, H.Y. Kim, Graphene oxide coated zinc oxide core–shell nanofibers for enhanced photocatalytic performance and durability. Coatings 10, 1183 (2020). https://doi.org/10.3390/coatings10121183
- Y. Jia, X. Jiang, A. Ahmed, L. Zhou, Q. Fan et al., Microfluidic spinning of core–shell α-MnO2@graphene fibers with porous network structure for all-solid-state flexible supercapacitors. J. Electrochem. Soc. 168, 070514 (2021). https://doi.org/10.1149/1945-7111/ac0f85
- H. Yu, P. Joo, D. Lee, B.-S. Kim, J.H. Oh, Photoinduced charge-carrier dynamics of phototransistors based on perylene diimide/reduced graphene oxide core/shell p–n junction nanowires. Adv. Optical Mater. 3, 241–247 (2015). https://doi.org/10.1002/adom.201400346
- D. Xia, Q. Xue, J. Xie, H. Chen, C. Lv, Silicon/graphene core/shell nanowires produced by self-scrolling. Comp. Mater. Sci. 49, 588–592 (2010). https://doi.org/10.1016/j.commatsci.2010.05.053
- J. Lin, H. Jia, H. Liang, S. Chen, Y. Cai et al., In situ synthesis of vertical standing nanosized NiO encapsulated in graphene as electrodes for highperformance supercapacitors. Adv. Sci. 5, 1700687 (2018). https://doi.org/10.1002/advs.201700687
- J. Yus, Y. Bravo, A.J. Sanchez-Herencia, B. Ferrari, Z. Gonzalez, Electrophoretic deposition of RGO-NiO core-shell nanostructures driven by heterocoagulation method with high electrochemical performance. Electrochim. Acta 308, 363–372 (2019). https://doi.org/10.1016/j.electacta.2019.04.053
- F. Kirschvink, M. Stürzel, Y. Thomann, R. Mülhaupt, Gas phase mineralized graphene as core/shell nanosheet supports for single-site olefin polymerization catalysts and in-situ formation of graphene/polyolefin nanocomposites. Polymer 55, 4547–4550 (2014). https://doi.org/10.1016/j.polymer.2014.07.017
- Q. Liu, S. Wang, Q. Ren, T. Li, G. Tu et al., Stacking design in photocatalysis: synergizing cocatalyst roles and anti-corrosion functions of metallic MoS2 and graphene for remarkable hydrogen evolution over CdS. J. Mater. Chem. A 9, 1552 (2021). https://doi.org/10.1039/d0ta10255e
- L. Han, Y.N. Hao, X. Wei, X.W. Chen, Y. Shu et al., Hollow copper sulfide nanosphere−doxorubicin/graphene oxide core−shell nanocomposite for photothermo-chemotherapy. ACS Biomater. Sci. Eng. 3, 3230–3235 (2017). https://doi.org/10.1021/acsbiomaterials.7b00643
- S. Bera, A. Naskar, M. Pal, S. Jana, Low temperature synthesis of graphene hybridized surface defective hierarchical core–shell structured ZnO hollow microspheres with longterm stable and enhanced photoelectrochemical activity. RSC Adv. 6, 36058 (2016). https://doi.org/10.1039/c6ra03410a
- E. Vasilaki, N. Katsarakis, S. Dokianakis, M. Vamvakaki, rGO functionalized ZnO–TiO2 core-shell flower-like architectures for visible light photocatalysis. Catalysts 11, 332 (2021). https://doi.org/10.3390/catal11030332
- H. Liu, T. Lv, Z. Zhu, Template-assisted synthesis of hollow TiO2@rGO core–shell structural nanospheres with enhanced photocatalytic activity. J. Mol. Catal. A-Chem. 404–405, 178–185 (2015). https://doi.org/10.1016/j.molcata.2015.04.022
- D. Zhang, Q. Wei, H. Huang, L. Jiang, J. Teng et al., Ambient-condition strategy for production of hollow Ga2O3@rGO crystalline nanostructures toward efficient lithium storage. Energy Environ. Mater. 7, e12585 (2024). https://doi.org/10.1002/eem2.12585
- Y. Zhao, X. Zhang, C. Wang, Y. Zhao, H. Zhou et al., The synthesis of hierarchical nanostructured MoS2/graphene composites with enhanced visible-light photo-degradation property. Appl. Surf. Sci. 412, 207–213 (2017). https://doi.org/10.1016/j.apsusc.2017.03.181
- W. Zhai, Q. Ai, L. Chen, S. Wei, D. Li et al., Walnut-inspired microsized porous silicon/graphene core–shell composites for high-performance lithium-ion battery anodes. Nano Res. 10, 4274–4283 (2017). https://doi.org/10.1007/s12274-017-1584-5
- Y. Bu, Z. Chen, W. Li, Dramatically enhanced photocatalytic properties of Ag-modified graphene–ZnO quasi-shell–core heterojunction composite material. RSC Adv. 3, 24118 (2013). https://doi.org/10.1039/c3ra44047h
- Y. Zhang, L. Song, Y. Zhang, P. Wang, Y. Liu et al., A facile method for synthesis of well-coated ZnO@graphene core/shell structure by self-assembly of amine-functionalized ZnO and graphene oxide. Chem. Phys. Lett. 654, 107–113 (2016). https://doi.org/10.1016/j.cplett.2016.05.023
- L. Kuai, Y. Zhou, W. Tu, P. Li, H. Li et al., Rational construction of a CdS/reduced graphene oxide/TiO2 core–shell nanostructure as an allsolid-state Z-scheme system for CO2 photoreduction into solar fuels. RSC Adv. 5, 88409 (2015). https://doi.org/10.1039/c5ra14374h
- I. John-Peter, N. Rajamanickam, S. Vijaya, S. Anandan, K. Ramachandran et al., TiO2/graphene quantum dots core-shell based photo anodes with TTIP treatment—a perspective way of enhancing the short circuit current. Sol. Energy Mat. Sol. C. 205, 110239 (2020). https://doi.org/10.1016/j.solmat.2019.110239
- C. Zou, D. Ma, Y. Su, M. Zhu, B. Zhou et al., Three-dimensional Au nanops-decorated γ-Fe2O3@reduced graphene oxide core-shell heterojunctions for highly sensitive room-temperature gas sensors. Ceram. Int. 48, 37064–37074 (2022). https://doi.org/10.1016/j.ceramint.2022.08.281
- Q. Wu, H. Bai, R. Zhao, A. Gao, H. Deng et al., Core-shell ZrO2@GO hybrid for effective interfacial adhesion improvement of carbon fiber/epoxy composites. Surf. Interfaces 40, 103070 (2023). https://doi.org/10.1016/j.surfin.2023.103070
- M. Romero, V. Mello, C. Boher, A.P. Tschiptschin, C. Scandian, On the tribological behavior of cobalt-based nanocomposite coatings containing ZnO@Graphene oxide core-shell nanops. Wear 522, 204835 (2023). https://doi.org/10.1016/j.wear.2023.204835
- C. Kim, C. Park, Formation of Al2O3-graphite core shells versus growth time by using thermal chemical vapor deposition. J. Korean Phys. Soc. 69, 842–846 (2016). https://doi.org/10.3938/jkps.69.842
- A.R. Biris, D. Toloman, A. Popa, M.D. Lazar, G.K. Kannarpady et al., Synthesis of tunable core–shell nanostructures based on TiO2-graphene architectures and their application in the photodegradation of rhodamine dyes. Phys. E 81, 326–333 (2016). https://doi.org/10.1016/j.physe.2016.03.028
- M. Zubair, E.M.M. Vanhaecke, I.-H. Svenum, M. Rønning, J. Yang, Core-shell ps of C-doped CdS and graphene: a noble metal-free approach for efficient photocatalytic H2 generation. Green Energy Environ. 5, 461–472 (2020). https://doi.org/10.1016/j.gee.2020.10.017
- Q. Wu, H. Bai, R. Zhao, Z. Ye, H. Deng et al., Amine-caged ZrO2@GO multilayer core-shell hybrids in epoxy matrix for enhancing interfacial adhesion of carbon fiber composites. Compos. Part B-Eng. 245, 110207 (2022). https://doi.org/10.1016/j.compositesb.2022.110207
- S. Naghdi, A. Cherevan, A. Giesriegl, R. Guillet-Nicolas, S. Biswas et al., Selective ligand removal to improve accessibility of active sites in hierarchical MOFs for heterogeneous photocatalysis. Nat. Commun. 13, 282 (2022). https://doi.org/10.1038/s41467-021-27775-7
- J.K. Bristow, K.L. Svane, D. Tiana, J.M. Skelton, J.D. Gale et al., Free energy of ligand removal in the metal−organic framework UiO-66. J. Phys. Chem. C 120, 9276–9281 (2016). https://doi.org/10.1021/acs.jpcc.6b01659
- C. Frank-Rotsch, N. Dropka, F.-M. Kießling, P. Rudolph, Semiconductor crystal growth under the influence of magnetic fields. Cryst. Res. Technol. 55, 1900115 (2020). https://doi.org/10.1002/crat.201900115
- A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla et al., Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2, 581–587 (2010). https://doi.org/10.1038/nchem.686
- Z. Xiang, J. Qian, Y. Zhou, F. Liu, C. Qi et al., Synthesis of quasi-core–shell Co-doped ZnO/graphene nanops. Mater. Lett. 161, 286–288 (2015). https://doi.org/10.1016/j.matlet.2015.08.128
- J. Zhang, L. Chen, Y. Wang, S. Cai, H. Yang et al., VO2(B)/Graphene composite-based symmetrical supercapacitor electrode via screen printing for intelligent packaging. Nanomaterials 8, 1020 (2018). https://doi.org/10.3390/nano8121020
- S. Mpelane, N. Mketo, M. Mlambo, N. Bingwa, P.N. Nomngongo, One-step synthesis of a Mn-doped Fe2O3/GO core−shell nanocomposite and its application for the adsorption of levofloxacin in aqueous solution. ACS Omega 7, 23302–23314 (2022). https://doi.org/10.1021/acsomega.2c01460
- R. Preetha, M. Govinda-raj, E. Vijayakumar, M.G. Narendran, B. Neppolian et al., Quasi-in situ synthesis of oxygen vacancy-enriched strontium iron oxide supported on boron-doped reduced graphene oxide to elevate the photocatalytic destruction of tetracycline. Langmuir 39, 7091–7108 (2023). https://doi.org/10.1021/acs.langmuir.3c00340
- Y.T. Xu, Y. Guo, L.X. Song, K. Zhang, M.M.F. Yuen et al., Co-reduction self-assembly of reduced graphene oxide nanosheets coated Cu2O sub-microspheres core-shell composites as lithium ion battery anode materials. Electrochim. Acta 176, 434–441 (2015). https://doi.org/10.1016/j.electacta.2015.06.093
- D. Chen, H. Quan, J. Liang, L. Guo, One-pot synthesis of hematite@graphene core@shell nanostructures for superior lithium storage. Nanoscale 5, 9684 (2013). https://doi.org/10.1039/c3nr03484d
- R. Peng, Y. Li, J. Chen, P. Si, J. Feng et al., Reduced graphene oxide wrapped Au@ZnO core-shell structure for highly selective triethylamine gas sensing application at a low temperature. Sensor. Actuat. A-Phys. 283, 128–133 (2018). https://doi.org/10.1016/j.sna.2018.09.063
- Y. Khan, A.R. Urade, A.D. Adhikari, P.C. Maity, K. Ramesh et al., Electrochemical performance of binder-free Ni(OH)2/RGO battery type electrode materials for supercapacitor. Int. J. Green Energy 20, 725–733 (2023). https://doi.org/10.1080/15435075.2022.2088238
- A. Nekooei, M.R. Miroliaei, M.S. Nejad, H. Sheibani, Enhanced visible-light photocatalytic activity of ZnS/S-graphene quantum dots reinforced with Ag2S nanops. Mat. Sci. Eng. B-Adv. 284, 115884 (2022). https://doi.org/10.1016/j.mseb.2022.115884
- G. Hong, Q.-H. Wu, J. Ren, S.-T. Lee, Mechanism of non-metal catalytic growth of graphene on silicon. Appl. Phys. Lett. 100, 231604 (2012). https://doi.org/10.1063/1.4726114
- W. Lu, D. Wang, L. Guo, Y. Jia, M. Ye et al., Bipolar carrier transfer channels in epitaxial graphene/SiC core–shell heterojunction for efficient photocatalytic hydrogen evolution. Adv. Mater. 27, 7986–7991 (2015). https://doi.org/10.1002/adma.201503606
- A. Castellano-Soria, J. López-Sánchez, C. Granados-Miralles, M. Varela, E. Navarro et al., Novel one-pot sol-gel synthesis route of Fe3C/few-layered graphene core/shell nanops embedded in a carbon matrix. J. Alloy. Compd. 902, 163662 (2022). https://doi.org/10.1016/j.jallcom.2022.163662
- M. Kırkbınar, A. Demir, S. Altındal, F. Çalıskan, The effect of different rates of ultra-thin gossamer-like rGO coatings on photocatalytic performance in ZnO core-shell structures for optoelectronic applications. Diam. Relat. Mater. 130, 109435 (2022). https://doi.org/10.1016/j.diamond.2022.109435
- X. Tie, Q. Han, C. Liang, B. Li, J. Zai et al., Si@SiOx/graphene nanosheets composite: Ball milling synthesis and enhanced lithium strorage performance. Front. Mater. 4, 47 (2018). https://doi.org/10.3389/fmats.2017.00047
- H. Tao, L. Xiong, S. Zhu, L. Zhang, X. Yang, Porous Si/C/reduced graphene oxide microspheres by spray drying as anode for Li-ion batteries. J. Electroanal. Chem. 797, 16–22 (2017). https://doi.org/10.1016/j.jelechem.2017.05.010
- Q. Pan, P. Zuo, S. Lou, T. Mu, C. Du et al., Micro-sized spherical silicon@carbon@graphene prepared by spray drying as anode material for lithium-ion batteries. J. Alloy. Compd. 723, 434–440 (2017). https://doi.org/10.1016/j.jallcom.2017.06.217
- A. Jamaluddin, B. Umesh, F. Chen, J.-K. Chang, C.-Y. Su, Facile synthesis of core–shell structured Si@graphene balls as a high-performance anode for lithium-ion batteries. Nanoscale 12, 9616 (2020). https://doi.org/10.1039/d0nr01346c
- A. Jana, D.H. Gregory, Microwave-assisted synthesis of ZnO–rGO core–shell nanorod hybrids with photo- and electro-catalytic activity. Chem. Eur. J. 26, 6703–6714 (2020). https://doi.org/10.1002/chem.202000535
- C.L. Sun, C.T. Chang, H.H. Lee, J. Zhou, J. Wang et al., Microwave-assisted synthesis of a core-shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid. ACS Nano 5, 7788–7795 (2011). https://doi.org/10.1021/nn2015908
- R.K. Singh, R. Kumar, D.P. Singh, R. Savu, S.A. Moshkalev, Progress in microwave-assisted synthesis of quantum dots (graphene/carbon/semiconducting) for bioapplications: a review. Mater. Today Chem. 12, 282–314 (2019). https://doi.org/10.1016/j.mtchem.2019.03.001
- K. Xia, G. Wang, H. Zhang, Y. Yu, L. Liu et al., Synthesis and characterization of nitrogen-doped graphene hollow spheres as electrode material for supercapacitors. J. Nanopart. Res. 19, 254 (2017). https://doi.org/10.1007/s11051-017-3954-z
- M. Liu, M. Shi, W. Lu, D. Zhu, L. Li et al., Core–shell reduced graphene oxide/MnOx@carbon hollow nanospheres for high performance supercapacitor electrodes. Chem. Eng. J. 313, 518–526 (2017). https://doi.org/10.1016/j.cej.2016.12.091
- C. Wang, J. Chen, Y. Shi, M. Zheng, Q. Dong, Preparation and performance of a core–shell carbon/sulfur material for lithium/sulfur battery. Electrochim. Acta 55, 7010–7015 (2010). https://doi.org/10.1016/j.electacta.2010.06.019
- S.I. Ghazanlou, S.I. Ghazanlou, S.I. Ghazanlou, H. Karimi, N. Azimi et al., Multifunctional performance of core–shell rGO@Fe3O4 on the mechanical, electrical/thermal, EMI, and microstructure properties of cement-based composites. Constr. Build. Mater. 394, 132182 (2023). https://doi.org/10.1016/j.conbuildmat.2023.132182
- S.S.P. Haghshenas, A. Nemati, A. Simchi, C.-U. Kim, Dispute in photocatalytic and photoluminescence behavior in ZnO/graphene oxide core-shell nanops. Mater. Lett. 240, 117–120 (2019). https://doi.org/10.1016/j.matlet.2018.12.095
- P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV−Vis spectra. J. Phys. Chem. Lett. 9, 6814–6817 (2018). https://doi.org/10.1021/acs.jpclett.8b02892
- S. Qu, J. Wan, X. Ye, J. Lan, Y. Fei et al., Interfacial charge transfer of MoS2/ZnO/Ag2S nanotube array for efficient photocatalytic performance. J. Photoch. Photobio. A 447, 115200 (2024). https://doi.org/10.1016/j.jphotochem.2023.115200
- W.Y. Teoh, J.A. Scott, R. Amal, Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J. Phys. Chem. Lett. 3, 629–639 (2012). https://doi.org/10.1021/jz3000646
- O. Defaoui, A. Boudjemaa, B. Sabrina, B. Hayoun, M. Bourouina et al., Kinetic modeling and experimental study of photocatalytic process using graphene oxide/TiO2 composites. A case for wastewater treatment under sunlight. Reac. Kinet. Mech. Cat. 133, 1141–1162 (2021)
- Md. Rakibuddin, R. Ananthakrishnan, Effective photocatalytic dechlorination of 2,4-dichlorophenol by a novel graphene encapsulated ZnO/Co3O4 core–shell hybrid under visible light. Photochem. Photobiol. Sci. 15, 86 (2016). https://doi.org/10.1039/c5pp00305a
- H. Liu, X. Dong, X. Wang, C. Sun, J. Li et al., A green and direct synthesis of graphene oxide encapsulated TiO2 core/shell structures with enhanced photoactivity. Chem. Eng. J. 230, 279–285 (2013). https://doi.org/10.1016/j.cej.2013.06.092
- X. Li, S. Zheng, C. Zhang, C. Hu, F. Chen et al., Synergistic promotion of photocatalytic performance by core@shell structured TiO2/Au@rGO ternary photocatalyst. Mol. Catal. 438, 55–65 (2017). https://doi.org/10.1016/j.mcat.2017.05.016
- M. Wang, J. Han, H. Xiong, R. Guo, Yolk@shell nanoarchitecture of Au@r-GO/TiO2 hybrids as powerful visible light photocatalysts. Langmuir 31, 6220–6228 (2015). https://doi.org/10.1021/acs.langmuir.5b01099
- H. Shen, X. Zhao, L. Duan, R. Liu, H. Wu et al., Influence of interface combination of RGO-photosensitized SnO2@RGO core-shell structures on their photocatalytic performance. Appl. Surf. Sci. 391, 627–634 (2017). https://doi.org/10.1016/j.apsusc.2016.06.031
- D.V. Dao, T.T.N. Bich, N.T.T. Ha, W. Wang, T. Kim et al., Hematite Fe2O3@nitrogen-doped graphene core-shell photocatalyst for efficient cephalexin degradation under visible light irradiation. Ceram. Int. 48, 34533–34542 (2022). https://doi.org/10.1016/j.ceramint.2022.08.037
- Q. Gong, Y. Liua, Z. Dang, Core-shell structured Fe3O4@GO@MIL-100(Fe) magnetic nanops as heterogeneous photo-Fenton catalyst for 2,4-dichlorophenol degradation under visible light. J. Hazard. Mater. 371, 677–686 (2019). https://doi.org/10.1016/j.jhazmat.2019.03.019
- C. Feng, Y. Deng, L. Tang, G. Zeng, J. Wang et al., Core-shell Ag2CrO4/N-GQDs@g-C3N4 composites with anti-photocorrosion performance for enhanced full-spectrum-light photocatalytic activities. Appl. Catal. B-Environ. 239, 525–536 (2018). https://doi.org/10.1016/j.apcatb.2018.08.049
- L. Allagui, B. Chouchene, T. Gries, G. Medjahdi, E. Girot et al., Core/shell rGO/BiOBr ps with visible photocatalytic activity towards water pollutants. Appl. Surf. Sci. 490, 580–591 (2019). https://doi.org/10.1016/j.apsusc.2019.06.091
- F. Gao, Q. Wan, J. Yuan, R. Lei, S. Lin et al., Highly efficient and durable core-shell catalyst with dual functions: Tungsten nitride quantum dots encapsulated in ultra-thin graphene. Appl. Catal. B-Environ. 299, 120692 (2021). https://doi.org/10.1016/j.apcatb.2021.120692
- N. Thangavel, S. Bellamkonda, A.D. Arulraj, G.R. Rao, B. Neppolian, Visible light induced efficient hydrogen production through semiconductor–conductor–semiconductor (S–C–S) interfaces formed between g-C3N4 and rGO/Fe2O3 core–shell composites. Catal. Sci. Technol. 8, 5081 (2018). https://doi.org/10.1039/c8cy01248b
- R.A. Rather, S. Singh, B. Pal, Core–shell morphology of Au-TiO2@graphene oxide nanocomposite exhibiting enhanced hydrogen production from water. J. Ind. Eng. Chem. 37, 288–294 (2016). https://doi.org/10.1016/j.jiec.2016.03.039
- H. Jung, J. Song, S. Lee, Y.W. Lee, D.H. Wi et al., Hierarchical metal–semiconductor–graphene ternary heteronanostructures for plasmonenhanced wide-range visible-light photocatalysis. J. Mater. Chem. A 7, 15831 (2019). https://doi.org/10.1039/c9ta03934a
- M. Zubair, I.-H. Svenum, M. Rønning, J. Yang, Core-shell nanostructures of graphene-wrapped CdS nanops and TiO2 (CdS@G@TiO2): the role of graphene in enhanced photocatalytic H2 generation. Catalysts 10, 358 (2020). https://doi.org/10.3390/catal10040358
- S. Bai, J. Ge, L. Wang, M. Gong, M. Deng et al., A unique semiconductor–metal–graphene stack design to harness charge flow for photocatalysis. Adv. Mater. 26, 5689–5695 (2014). https://doi.org/10.1002/adma.201401817
- D.V. Dao, G.D. Liberto, H. Ko, J. Park, W. Wang et al., LaFeO3 meets nitrogen-doped graphene functionalized with ultralow Pt loading in an impactful Z-scheme platform for photocatalytic hydrogen evolution. J. Mater. Chem. A 10, 3330 (2022). https://doi.org/10.1039/d1ta10376h
- X. Fan, G. Zhang, F. Zhang, Multiple roles of graphene in heterogeneous catalysis. Chem. Soc. Rev. 44, 3023 (2015). https://doi.org/10.1039/c5cs00094g
- X. Qu, Q. Hu, Z. Song, Z. Sun, B. Zhang et al., Adsorption and desorption mechanisms on graphene oxide nanosheets: Kinetics and tuning. The Innovation 2, 100137 (2021). https://doi.org/10.1016/j.xinn.2021.100137
- Y. Yang, M. Liu, S. Han, H. Xi, C. Xu et al., Double-sided modification of TiO2 spherical shell by graphene sheets with enhanced photocatalytic activity for CO2 reduction. Appl. Surf. Sci. 537, 147991 (2021). https://doi.org/10.1016/j.apsusc.2020.147991
- Y. Zhao, Y. Wei, X. Wu, H. Zheng, Z. Zhao et al., Graphene-wrapped Pt/TiO2 photocatalysts with enhanced photogenerated charges separation and reactant adsorption for high selective photoreduction of CO2 to CH4. Appl. Catal. B-Environ. 226, 360–372 (2018). https://doi.org/10.1016/j.apcatb.2017.12.071
- M. Zhang, M. Wu, Z. Wang, R. Cheng, D.Y.C. Leung et al., Efficient sunlight driven CO2 reduction on Graphene-wrapped Cu-Pt/rTiO2@SiO2. Mater. Sci. Energy Technol. 3, 734–741 (2020). https://doi.org/10.1016/j.mset.2020.09.001
- L. Pei, Y. Yuan, W. Bai, T. Li, H. Zhu et al., In situ-grown island-shaped hollow graphene on TaON with spatially separated active sites achieving enhanced visible-light CO2 reduction. ACS Catal. 10, 15083–15091 (2020). https://doi.org/10.1021/acscatal.0c03918
- Y.-H. Chen, J.-K. Ye, Y.-J. Chang, T.-W. Liu, Y.-H. Chuang et al., Mechanisms behind photocatalytic CO2 reduction by CsPbBr3 perovskite-graphene-based nanoheterostructures. Appl. Catal. B-Environ. 284, 119751 (2021). https://doi.org/10.1016/j.apcatb.2020.119751
- P. Kumar, C. Joshi, A. Barras, B. Sieber, A. Addad et al., Core–shell structured reduced graphene oxide wrapped magnetically separable rGO@CuZnO@Fe3O4 microspheres as superior photocatalyst for CO2 reduction under visible light. Appl. Catal. B-Environ. 205, 654–665 (2017). https://doi.org/10.1016/j.apcatb.2016.11.060
- L. Wang, H. Tan, L. Zhang, B. Cheng, J. Yu, In-situ growth of few-layer graphene on ZnO with intimate interfacial contact for enhanced photocatalytic CO2 reduction activity. Chem. Eng. J. 411, 128501 (2021). https://doi.org/10.1016/j.cej.2021.128501
- R. Guo, J. Wang, Z. Bi, X. Chen, X. Hu et al., Recent advances and perspectives of core-shell nanostructured materials for photocatalytic CO2 reduction. Small 19, 2206314 (2023). https://doi.org/10.1002/smll.202206314
- L. Qi, Z. Zheng, C. Xing, Z. Wang, X. Luan et al., 1D nanowire heterojunction electrocatalysts of MnCo2O4/GDY for efficient overall water splitting. Adv. Funct. Mater. 32, 2107179 (2022). https://doi.org/10.1002/adfm.202107179
- H. Sun, C. Jing, W. Shang, F. Wang, M. Zeng et al., Polyoxometalate-based composite cluster with core–shell structure: Co4(PW9)2@graphdiyne as stable electrocatalyst for oxygen evolution and its mechanism research. New J. Chem. 46, 11553 (2022). https://doi.org/10.1039/d2nj01459a
- J. He, X. Miao, Y. Wu, Z. Jin, Phosphating core–shell graphdiyne/CuI/Cu3P S-scheme heterojunction confirmed with in situ XPS characterization for efficient photocatalytic hydrogen production. Catal. Sci. Technol. 13, 5610 (2023). https://doi.org/10.1039/d3cy00850a
- B. Zhai, H. Li, G. Gao, Y. Wang, P. Niu et al., A crystalline carbon nitride based near-infrared active photocatalyst. Adv. Funct. Mater. 32, 2207375 (2022). https://doi.org/10.1002/adfm.202207375
- H. Wang, X. Liu, P. Niu, S. Wang, J. Shi et al., Porous two-dimensional materials for photocatalytic and electrocatalytic applications. Matter 2, 1377–1413 (2020). https://doi.org/10.1016/j.matt.2020.04.002
- H. de Lasa, B. Serrano, M. Salaices, Photocatalytic reaction engineering (Springer, New York, 2005)
- S. Barata-Vallejo, S.M. Bonesi, A. Postigo, Photocatalytic fluoroalkylation reactions of organic compounds. Org. Biomol. Chem. 13, 11153 (2015). https://doi.org/10.1039/c5ob01486g
- F. Zhang, X. Wang, H. Liu, C. Liu, Y. Wan et al., Recent advances and applications of semiconductor photocatalytic technology. Appl. Sci. 9, 2489 (2019). https://doi.org/10.3390/app9122489
- J. Chen, J. Shi, X. Wang, H. Cui, M. Fu, Recent progress in the preparation and application of semiconductor/graphene composite photocatalysts. Chin. J. Catal. 34, 621–640 (2016). https://doi.org/10.1016/s1872-2067(12)60530-0
- Y. Guo, X. Tong, N. Yang, Photocatalytic and electrocatalytic generation of hydrogen peroxide: principles, catalyst design and performance. Nano-Micro Lett. 15, 77 (2023). https://doi.org/10.1007/s40820-023-01052-2
- M.G. Lee, J.W. Yang, H. Park, C.W. Moon, D.M. Andoshe et al., Crystal facet engineering of TiO2 nanostructures for enhancing photoelectrochemical water splitting with BiVO4 nanodots. Nano-Micro Lett. 14, 48 (2022). https://doi.org/10.1007/s40820-022-00795-8
- P. Zhang, Y. Zhao, Y. Li, N. Li, S.R.P. Silva et al., Revealing the selective bifunctional electrocatalytic sites via in situ irradiated X-ray photoelectron spectroscopy for lithium–sulfur battery. Adv. Sci. 10, 2206786 (2023). https://doi.org/10.1002/advs.202206786
- Y. Li, Y. Zhang, R. Hou, Y. Ai, M. Cai et al., Revealing electron numbers-binding energy relationships in heterojunctions via in-situ irradiated XPS. Appl. Catal. B-Environ. Energy 356, 124223 (2024). https://doi.org/10.1016/j.apcatb.2024.124223
References
F. Wang, Q. Li, D. Xu, Recent progress in semiconductor-based nanocomposite photocatalysts for solar-to-chemical energy conversion. Adv. Energy Mater. 7, 1700529 (2017). https://doi.org/10.1002/aenm.201700529
H. Zhou, Y. Qu, T. Zeida, X. Duan, Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ. Sci. 5, 6732 (2012). https://doi.org/10.1039/c2ee03447f
Z.H. Jabbar, S.E. Ebrahim, Recent advances in nano-semiconductors photocatalysis for degrading organic contaminants and microbial disinfection in wastewater: a comprehensive review. Environ. Nanotechnol. Monit. Manage. 17, 100666 (2022). https://doi.org/10.1016/j.enmm.2022.100666
L. Zhang, M. Jaroniec, Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications. Appl. Surf. Sci. 430, 2–17 (2018). https://doi.org/10.1016/j.apsusc.2017.07.192
M. Pirhashemi, A. Habibi-Yangjeh, S.R. Pouran, Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. J. Ind. Eng. Chem. 62, 1–25 (2018). https://doi.org/10.1016/j.jiec.2018.01.012
H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li et al., Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234 (2014). https://doi.org/10.1039/c4cs00126e
C. Feng, Z.-P. Wu, K.-W. Huang, J. Ye, H. Zhang, Surface modification of 2D photocatalysts for solar energy conversion. Adv. Mater. 34, 2200180 (2022). https://doi.org/10.1002/adma.202200180
S.A. Jitan, G. Palmisano, C. Garlisi, Synthesis and surface modification of TiO2-based photocatalysts for the conversion of CO2. Catalysts 10, 227 (2020). https://doi.org/10.3390/catal10020227
L. Jiang, X. Huang, Y. Zhou, S. Huang, Y. Wang et al., High photocatalytic performance of ferroelectric AgNbO3 in a doping state. J. Environ. Chem. Eng. 11, 110402 (2023). https://doi.org/10.1016/j.jece.2023.110402
T. Xu, X. Liu, S. Wang, L. Li, Ferroelectric oxide nanocomposites with trimodal pore structure for high photocatalytic performance. Nano-Micro Lett. 11, 37 (2019). https://doi.org/10.1007/s40820-019-0268-y
Y. Li, L. Wang, F. Zhang, W. Zhang, G. Shao et al., Detecting and quantifying wavelength-dependent electrons transfer in heterostructure catalyst via in situ irradiation XPS. Adv. Sci. 10, 2205020 (2023). https://doi.org/10.1002/advs.202205020
L. Wang, Y. Li, Y. Ai, E. Fan, F. Zhang et al., Tracking heterogeneous interface charge reverse separation in SrTiO3/NiO/NiS nanofibers with in situ irradiation XPS. Adv. Funct. Mater. 33, 2306466 (2023). https://doi.org/10.1002/adfm.202306466
S. Liu, N. Zhang, Y.-J. Xu, Core–shell structured nanocomposites for photocatalytic selective organic transformations. Part. Part. Syst. Charact. 31, 540–556 (2014). https://doi.org/10.1002/ppsc.201300235
A. Shafiee, N. Rabiee, S. Ahmadi, M. Baneshi, M. Khatami et al., Core−shell nanophotocatalysts: Review of materials and applications. ACS Appl. Nano Mater. 5, 55–86 (2022). https://doi.org/10.1021/acsanm.1c03714
S. Wang, Y. Zhang, Y. Zheng, Y. Xu, G. Yang et al., Plasmonic metal mediated charge transfer in stacked core–shell semiconductor heterojunction for significantly enhanced CO2 photoreduction. Small 19, 2204774 (2023). https://doi.org/10.1002/smll.202204774
D. He, C. Zhang, G. Zeng, Y. Yang, D. Huang et al., A multifunctional platform by controlling of carbon nitride in the core-shell structure: from design to construction, and catalysis applications. Appl. Catal. B-Environ. 258, 117957 (2019). https://doi.org/10.1016/j.apcatb.2019.117957
I. Khan, N. Baig, S. Ali, M. Usman, S.A. Khan et al., Progress in layered cathode and anode nanoarchitectures for charge storage devices: challenges and future perspective. Energy Storage Mater. 35, 443–469 (2021). https://doi.org/10.1016/j.ensm.2020.11.033
W. Luo, S. Zafeiratos, A brief review of the synthesis and catalytic applications of graphene-coated oxides. ChemCatChem 9, 2432–2442 (2017). https://doi.org/10.1002/cctc.201700178
W. Lu, L. Guo, Y. Jia, Y. Guo, Z. Li et al., Significant enhancement in photocatalytic activity of high quality SiC/graphene core–shell heterojunction with optimal structural parameters. RSC Adv. 4, 46771 (2014). https://doi.org/10.1039/c4ra06026a
N. Gao, X. Fang, Synthesis and development of graphene−inorganic semiconductor nanocomposites. Chem. Rev. 115, 8294–8343 (2015). https://doi.org/10.1021/cr400607y
J.S. Lee, K.H. You, C.B. Park, Highly photoactive, low bandgap TiO2 nanops wrapped by graphene. Adv. Mater. 24, 1084–1088 (2012). https://doi.org/10.1002/adma.201104110
S. Lin, Y. Lu, J. Xu, S. Feng, J. Li, High performance graphene/semiconductor van der Waals heterostructure optoelectronic devices. Nano Energy 40, 122–148 (2017). https://doi.org/10.1016/j.nanoen.2017.07.036
H.T. Tung, H.K. Dan, D. Thomas, H.K. Jun, L.T.N. Tu, The preparation of reduced graphene oxide—Cu2S by hydrothermal method for quantum dot sensitized solar cells. Opt. Mater. 139, 113725 (2023). https://doi.org/10.1016/j.optmat.2023.113725
H. Yin, G. Zhan, R. Yan, X. Wu, Q. Hu et al., P–n heterogeneous Sb2S3/SnO2 quantum dot anchored reduced graphene oxide nanosheets for high-performance lithium-ion batteries. Dalton Trans. 53, 7142–7151 (2024). https://doi.org/10.1039/d4dt00153b
L. Syam-Sundar, M. Amin-Mir, M. Waqar-Ashraf, F. Djavanroodi, Synthesis and characterization of graphene and its composites for Lithium-Ion battery applications: a comprehensive review. Alex. Eng. J. 78, 224–245 (2023). https://doi.org/10.1016/j.aej.2023.07.044
R. Hou, S. Zhang, Y. Zhang, N. Li, S. Wang et al., A “three-region” configuration for enhanced electrochemical kinetics and high-areal capacity lithium–sulfur batteries. Adv. Funct. Mater. 32, 2200302 (2022). https://doi.org/10.1002/adfm.202200302
Y. Zhang, Z. Wu, S. Wang, N. Li, S.R.P. Silva et al., Complex permittivity-dependent plasma confinementassisted growth of asymmetric vertical graphene nanofiber membrane for high-performance Li-S full cells. InfoMat 4, e12294 (2022). https://doi.org/10.1002/inf2.12294
S. Nongthombam, N.A. Devi, S. Sinha, R. Bhujel, S. Rai et al., Reduced graphene oxide/gallium nitride nanocomposites for supercapacitor applications. J. Phys. Chem. Solids 141, 109406 (2020). https://doi.org/10.1016/j.jpcs.2020.109406
S. Nagarani, G. Sasikala, M. Yuvaraj, R. Dhilip-Kumar, S. Balachandran et al., ZnO-CuO nanops enameled on reduced graphene nanosheets as electrode materials for supercapacitors applications. J. Energy Storage 52, 104969 (2022). https://doi.org/10.1016/j.est.2022.104969
H. Tian, A. Hu, Q. Liu, X. He, X. Guo, Interface-induced high responsivity in hybrid graphene/GaAs photodetector. Adv. Optical Mater. 2020, 1901741 (2020). https://doi.org/10.1002/adom.201901741
M.A. Iqbal, N. Anwar, M. Malik, M. Al-Bahrani, M.R. Islam et al., Nanostructures/graphene/silicon junction-based high-performance photodetection systems: progress, challenges, and future trends. Adv. Mater. Interfaces 10, 2202208 (2023). https://doi.org/10.1002/admi.202202208
Y. Hu, C. Zhou, H. Wang, M. Chen, G. Zeng et al., Recent advance of graphene/semiconductor composite nanocatalysts: synthesis, mechanism, applications and perspectives. Chem. Eng. J. 414, 128795 (2021). https://doi.org/10.1016/j.cej.2021.128795
M.A. Ahmed, A.A. Mohamed, Recent progress in semiconductor/graphene photocatalysts: synthesis, photocatalytic applications, and challenges. RSC Adv. 13, 421 (2023). https://doi.org/10.1039/d2ra07225d
A. Mondal, A. Prabhakaran, S. Gupta, V.R. Subramanian, Boosting photocatalytic activity using reduced graphene oxide (RGO)/semiconductor nanocomposites: issues and future scope. ACS Omega 6, 8734–8743 (2021). https://doi.org/10.1021/acsomega.0c06045
Y. Chen, B.Y. Zhai, Y.N. Liang, Y. Li, Hybrid photocatalysts using semiconductor/MOF/graphene oxide for superior photodegradation of organic pollutants under visible light. Mat. Sci. Semicon. Proc. 107, 104838 (2020). https://doi.org/10.1016/j.mssp.2019.104838
C. He, X. Bu, S. Yang, P. He, G. Ding et al., Core-shell SrTiO3/graphene structure by chemical vapor deposition for enhanced photocatalytic performance. Appl. Surf. Sci. 436, 373–381 (2018). https://doi.org/10.1016/j.apsusc.2017.12.063
Y. Zhang, D. Li, Y. Zhang, X. Zhou, S. Guo et al., Graphene-wrapped Bi2O2CO3 core–shell structures with enhanced quantum efficiency profit from an ultrafast electron transfer process. J. Mater. Chem. A 2, 8273 (2014). https://doi.org/10.1039/c4ta00088a
D. Shao, M. Yu, H. Sun, T. Hu, J. Lian et al., High responsivity, fast ultraviolet photodetector fabricated from ZnO nanop–graphene core–shell structures. Nanoscale 5, 3664 (2013). https://doi.org/10.1039/c3nr00369h
L. Yu, Q. Yang, G. Zhu, R. Che, Preparation and lithium storage of core–shell honeycomb-like Co3O4@C microspheres. RSC Adv. 12, 29818 (2022). https://doi.org/10.1039/d2ra05204k
W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang et al., A general strategy toward graphene@metal oxide core–shell nanostructures for high-performance lithium storage. Energy Environ. Sci. 4, 4954 (2011). https://doi.org/10.1039/c1ee02168k
Q. Wu, L. Yang, X. Wang, Z. Hu, Carbon-based nanocages: a new platform for advanced energy storage and conversion. Adv. Mater. 32, 1904177 (2020). https://doi.org/10.1002/adma.201904177
M.I.A. Abdel-Maksoud, R.A. Fahim, A.E. Shalan, M. Abd-Elkodous, S.O. Olojede et al., Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environ. Chem. Lett. 19, 375–437 (2021). https://doi.org/10.1007/s10311-020-01075-w
H. Zhang, D. Yang, A. Lau, T. Ma, H. Lin et al., Hybridized graphene for supercapacitors: beyond the limitation of pure graphene. Small 17, 2007311 (2021). https://doi.org/10.1002/smll.202007311
H. Feng, L. Tang, G. Zeng, J. Tang, Y. Deng et al., Carbon-based core–shell nanostructured materials for electrochemical energy storage. J. Mater. Chem. A 6, 7310 (2018). https://doi.org/10.1039/c8ta01257a
K.S. Lee, J. Shim, J.S. Lee, J. Lee, H.G. Moon et al., Adsorption behavior of NO2 molecules in ZnO-mono/multilayer graphene core–shell quantum dots for NO2 gas sensor. J. Ind. Eng. Chem. 106, 279–286 (2022). https://doi.org/10.1016/j.jiec.2021.11.003
X. Chen, Y. Zhan, A. Sun, Q. Feng, W. Yang et al., Anchoring the TiO2@crumpled graphene oxide core–shell sphere onto electrospun polymer fibrous membrane for the fast separation of multi-component pollutant-oil–water emulsion. Sep. Purif. Technol. 298, 121605 (2022). https://doi.org/10.1016/j.seppur.2022.121605
M.M. Tavakoli, H. Aashuri, A. Simchi, S. Kalytchuk, Z. Fan, Quasi core/shell lead sulfide/graphene quantum dots for bulk heterojunction solar cells. J. Phys. Chem. C 119, 18886–18895 (2015). https://doi.org/10.1021/acs.jpcc.5b04195
P. Shankar, M.Q. Hafzan-Ishak, J.K. Padarti, N. Mintcheva, S. Iwamori et al., ZnO@graphene oxide core@shell nanops prepared via one-pot approach based on laser ablation in water. Appl. Surf. Sci. 531, 147365 (2020). https://doi.org/10.1016/j.apsusc.2020.147365
D.I. Son, B.W. Kwon, D.H. Park, W.-S. Seo, Y. Yi et al., Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 7, 465–471 (2012). https://doi.org/10.1038/nnano.2012.71
Y. Fei, X. Ye, A.S. Al-Baldawy, J. Wan, J. Lan et al., Enhanced photocatalytic performance of TiO2 nanowires by substituting noble metal ps with reduced graphene oxide. Curr. Appl. Phys. 44, 33–39 (2022). https://doi.org/10.1016/j.cap.2022.09.008
X. Li, Y. Zhang, T. Li, Q. Zhong, H. Li et al., Graphene nanoscrolls encapsulated TiO2 (B) nanowires for lithium storage. J. Power. Sources 268, 372–378 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.056
S. Kang, J. Hwang, rGO-wrapped Ag-doped TiO2 nanofibers for photocatalytic CO2 reduction under visible light. J. Clean. Prod. 374, 134022 (2022). https://doi.org/10.1016/j.jclepro.2022.134022
D. Kathiravan, B.-R. Huang, A. Saravanan, Self-assembled hierarchical interfaces of ZnO nanotubes/graphene heterostructures for efficient room temperature hydrogen sensors. ACS Appl. Mater. Interfaces 9, 12064–12072 (2017). https://doi.org/10.1021/acsami.7b00338
X. Ye, Y. Tian, M. Gao, F. Cheng, J. Lan et al., Efficient photocatalytic core–shell synthesis of titanate nanowire/rGO. Catalysts 14, 218 (2024). https://doi.org/10.3390/catal14040218
H.-J. Kim, S.E. Lee, J. Lee, J.-Y. Jung, E.-S. Lee et al., Gold-coated silicon nanowire–graphene core–shell composite film as a polymer binder-free anode for rechargeable lithium-ion batteries. Physica E 61, 204–209 (2014). https://doi.org/10.1016/j.physe.2014.03.030
S.M. Ji, A.P. Tiwari, H.Y. Kim, Graphene oxide coated zinc oxide core–shell nanofibers for enhanced photocatalytic performance and durability. Coatings 10, 1183 (2020). https://doi.org/10.3390/coatings10121183
Y. Jia, X. Jiang, A. Ahmed, L. Zhou, Q. Fan et al., Microfluidic spinning of core–shell α-MnO2@graphene fibers with porous network structure for all-solid-state flexible supercapacitors. J. Electrochem. Soc. 168, 070514 (2021). https://doi.org/10.1149/1945-7111/ac0f85
H. Yu, P. Joo, D. Lee, B.-S. Kim, J.H. Oh, Photoinduced charge-carrier dynamics of phototransistors based on perylene diimide/reduced graphene oxide core/shell p–n junction nanowires. Adv. Optical Mater. 3, 241–247 (2015). https://doi.org/10.1002/adom.201400346
D. Xia, Q. Xue, J. Xie, H. Chen, C. Lv, Silicon/graphene core/shell nanowires produced by self-scrolling. Comp. Mater. Sci. 49, 588–592 (2010). https://doi.org/10.1016/j.commatsci.2010.05.053
J. Lin, H. Jia, H. Liang, S. Chen, Y. Cai et al., In situ synthesis of vertical standing nanosized NiO encapsulated in graphene as electrodes for highperformance supercapacitors. Adv. Sci. 5, 1700687 (2018). https://doi.org/10.1002/advs.201700687
J. Yus, Y. Bravo, A.J. Sanchez-Herencia, B. Ferrari, Z. Gonzalez, Electrophoretic deposition of RGO-NiO core-shell nanostructures driven by heterocoagulation method with high electrochemical performance. Electrochim. Acta 308, 363–372 (2019). https://doi.org/10.1016/j.electacta.2019.04.053
F. Kirschvink, M. Stürzel, Y. Thomann, R. Mülhaupt, Gas phase mineralized graphene as core/shell nanosheet supports for single-site olefin polymerization catalysts and in-situ formation of graphene/polyolefin nanocomposites. Polymer 55, 4547–4550 (2014). https://doi.org/10.1016/j.polymer.2014.07.017
Q. Liu, S. Wang, Q. Ren, T. Li, G. Tu et al., Stacking design in photocatalysis: synergizing cocatalyst roles and anti-corrosion functions of metallic MoS2 and graphene for remarkable hydrogen evolution over CdS. J. Mater. Chem. A 9, 1552 (2021). https://doi.org/10.1039/d0ta10255e
L. Han, Y.N. Hao, X. Wei, X.W. Chen, Y. Shu et al., Hollow copper sulfide nanosphere−doxorubicin/graphene oxide core−shell nanocomposite for photothermo-chemotherapy. ACS Biomater. Sci. Eng. 3, 3230–3235 (2017). https://doi.org/10.1021/acsbiomaterials.7b00643
S. Bera, A. Naskar, M. Pal, S. Jana, Low temperature synthesis of graphene hybridized surface defective hierarchical core–shell structured ZnO hollow microspheres with longterm stable and enhanced photoelectrochemical activity. RSC Adv. 6, 36058 (2016). https://doi.org/10.1039/c6ra03410a
E. Vasilaki, N. Katsarakis, S. Dokianakis, M. Vamvakaki, rGO functionalized ZnO–TiO2 core-shell flower-like architectures for visible light photocatalysis. Catalysts 11, 332 (2021). https://doi.org/10.3390/catal11030332
H. Liu, T. Lv, Z. Zhu, Template-assisted synthesis of hollow TiO2@rGO core–shell structural nanospheres with enhanced photocatalytic activity. J. Mol. Catal. A-Chem. 404–405, 178–185 (2015). https://doi.org/10.1016/j.molcata.2015.04.022
D. Zhang, Q. Wei, H. Huang, L. Jiang, J. Teng et al., Ambient-condition strategy for production of hollow Ga2O3@rGO crystalline nanostructures toward efficient lithium storage. Energy Environ. Mater. 7, e12585 (2024). https://doi.org/10.1002/eem2.12585
Y. Zhao, X. Zhang, C. Wang, Y. Zhao, H. Zhou et al., The synthesis of hierarchical nanostructured MoS2/graphene composites with enhanced visible-light photo-degradation property. Appl. Surf. Sci. 412, 207–213 (2017). https://doi.org/10.1016/j.apsusc.2017.03.181
W. Zhai, Q. Ai, L. Chen, S. Wei, D. Li et al., Walnut-inspired microsized porous silicon/graphene core–shell composites for high-performance lithium-ion battery anodes. Nano Res. 10, 4274–4283 (2017). https://doi.org/10.1007/s12274-017-1584-5
Y. Bu, Z. Chen, W. Li, Dramatically enhanced photocatalytic properties of Ag-modified graphene–ZnO quasi-shell–core heterojunction composite material. RSC Adv. 3, 24118 (2013). https://doi.org/10.1039/c3ra44047h
Y. Zhang, L. Song, Y. Zhang, P. Wang, Y. Liu et al., A facile method for synthesis of well-coated ZnO@graphene core/shell structure by self-assembly of amine-functionalized ZnO and graphene oxide. Chem. Phys. Lett. 654, 107–113 (2016). https://doi.org/10.1016/j.cplett.2016.05.023
L. Kuai, Y. Zhou, W. Tu, P. Li, H. Li et al., Rational construction of a CdS/reduced graphene oxide/TiO2 core–shell nanostructure as an allsolid-state Z-scheme system for CO2 photoreduction into solar fuels. RSC Adv. 5, 88409 (2015). https://doi.org/10.1039/c5ra14374h
I. John-Peter, N. Rajamanickam, S. Vijaya, S. Anandan, K. Ramachandran et al., TiO2/graphene quantum dots core-shell based photo anodes with TTIP treatment—a perspective way of enhancing the short circuit current. Sol. Energy Mat. Sol. C. 205, 110239 (2020). https://doi.org/10.1016/j.solmat.2019.110239
C. Zou, D. Ma, Y. Su, M. Zhu, B. Zhou et al., Three-dimensional Au nanops-decorated γ-Fe2O3@reduced graphene oxide core-shell heterojunctions for highly sensitive room-temperature gas sensors. Ceram. Int. 48, 37064–37074 (2022). https://doi.org/10.1016/j.ceramint.2022.08.281
Q. Wu, H. Bai, R. Zhao, A. Gao, H. Deng et al., Core-shell ZrO2@GO hybrid for effective interfacial adhesion improvement of carbon fiber/epoxy composites. Surf. Interfaces 40, 103070 (2023). https://doi.org/10.1016/j.surfin.2023.103070
M. Romero, V. Mello, C. Boher, A.P. Tschiptschin, C. Scandian, On the tribological behavior of cobalt-based nanocomposite coatings containing ZnO@Graphene oxide core-shell nanops. Wear 522, 204835 (2023). https://doi.org/10.1016/j.wear.2023.204835
C. Kim, C. Park, Formation of Al2O3-graphite core shells versus growth time by using thermal chemical vapor deposition. J. Korean Phys. Soc. 69, 842–846 (2016). https://doi.org/10.3938/jkps.69.842
A.R. Biris, D. Toloman, A. Popa, M.D. Lazar, G.K. Kannarpady et al., Synthesis of tunable core–shell nanostructures based on TiO2-graphene architectures and their application in the photodegradation of rhodamine dyes. Phys. E 81, 326–333 (2016). https://doi.org/10.1016/j.physe.2016.03.028
M. Zubair, E.M.M. Vanhaecke, I.-H. Svenum, M. Rønning, J. Yang, Core-shell ps of C-doped CdS and graphene: a noble metal-free approach for efficient photocatalytic H2 generation. Green Energy Environ. 5, 461–472 (2020). https://doi.org/10.1016/j.gee.2020.10.017
Q. Wu, H. Bai, R. Zhao, Z. Ye, H. Deng et al., Amine-caged ZrO2@GO multilayer core-shell hybrids in epoxy matrix for enhancing interfacial adhesion of carbon fiber composites. Compos. Part B-Eng. 245, 110207 (2022). https://doi.org/10.1016/j.compositesb.2022.110207
S. Naghdi, A. Cherevan, A. Giesriegl, R. Guillet-Nicolas, S. Biswas et al., Selective ligand removal to improve accessibility of active sites in hierarchical MOFs for heterogeneous photocatalysis. Nat. Commun. 13, 282 (2022). https://doi.org/10.1038/s41467-021-27775-7
J.K. Bristow, K.L. Svane, D. Tiana, J.M. Skelton, J.D. Gale et al., Free energy of ligand removal in the metal−organic framework UiO-66. J. Phys. Chem. C 120, 9276–9281 (2016). https://doi.org/10.1021/acs.jpcc.6b01659
C. Frank-Rotsch, N. Dropka, F.-M. Kießling, P. Rudolph, Semiconductor crystal growth under the influence of magnetic fields. Cryst. Res. Technol. 55, 1900115 (2020). https://doi.org/10.1002/crat.201900115
A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla et al., Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2, 581–587 (2010). https://doi.org/10.1038/nchem.686
Z. Xiang, J. Qian, Y. Zhou, F. Liu, C. Qi et al., Synthesis of quasi-core–shell Co-doped ZnO/graphene nanops. Mater. Lett. 161, 286–288 (2015). https://doi.org/10.1016/j.matlet.2015.08.128
J. Zhang, L. Chen, Y. Wang, S. Cai, H. Yang et al., VO2(B)/Graphene composite-based symmetrical supercapacitor electrode via screen printing for intelligent packaging. Nanomaterials 8, 1020 (2018). https://doi.org/10.3390/nano8121020
S. Mpelane, N. Mketo, M. Mlambo, N. Bingwa, P.N. Nomngongo, One-step synthesis of a Mn-doped Fe2O3/GO core−shell nanocomposite and its application for the adsorption of levofloxacin in aqueous solution. ACS Omega 7, 23302–23314 (2022). https://doi.org/10.1021/acsomega.2c01460
R. Preetha, M. Govinda-raj, E. Vijayakumar, M.G. Narendran, B. Neppolian et al., Quasi-in situ synthesis of oxygen vacancy-enriched strontium iron oxide supported on boron-doped reduced graphene oxide to elevate the photocatalytic destruction of tetracycline. Langmuir 39, 7091–7108 (2023). https://doi.org/10.1021/acs.langmuir.3c00340
Y.T. Xu, Y. Guo, L.X. Song, K. Zhang, M.M.F. Yuen et al., Co-reduction self-assembly of reduced graphene oxide nanosheets coated Cu2O sub-microspheres core-shell composites as lithium ion battery anode materials. Electrochim. Acta 176, 434–441 (2015). https://doi.org/10.1016/j.electacta.2015.06.093
D. Chen, H. Quan, J. Liang, L. Guo, One-pot synthesis of hematite@graphene core@shell nanostructures for superior lithium storage. Nanoscale 5, 9684 (2013). https://doi.org/10.1039/c3nr03484d
R. Peng, Y. Li, J. Chen, P. Si, J. Feng et al., Reduced graphene oxide wrapped Au@ZnO core-shell structure for highly selective triethylamine gas sensing application at a low temperature. Sensor. Actuat. A-Phys. 283, 128–133 (2018). https://doi.org/10.1016/j.sna.2018.09.063
Y. Khan, A.R. Urade, A.D. Adhikari, P.C. Maity, K. Ramesh et al., Electrochemical performance of binder-free Ni(OH)2/RGO battery type electrode materials for supercapacitor. Int. J. Green Energy 20, 725–733 (2023). https://doi.org/10.1080/15435075.2022.2088238
A. Nekooei, M.R. Miroliaei, M.S. Nejad, H. Sheibani, Enhanced visible-light photocatalytic activity of ZnS/S-graphene quantum dots reinforced with Ag2S nanops. Mat. Sci. Eng. B-Adv. 284, 115884 (2022). https://doi.org/10.1016/j.mseb.2022.115884
G. Hong, Q.-H. Wu, J. Ren, S.-T. Lee, Mechanism of non-metal catalytic growth of graphene on silicon. Appl. Phys. Lett. 100, 231604 (2012). https://doi.org/10.1063/1.4726114
W. Lu, D. Wang, L. Guo, Y. Jia, M. Ye et al., Bipolar carrier transfer channels in epitaxial graphene/SiC core–shell heterojunction for efficient photocatalytic hydrogen evolution. Adv. Mater. 27, 7986–7991 (2015). https://doi.org/10.1002/adma.201503606
A. Castellano-Soria, J. López-Sánchez, C. Granados-Miralles, M. Varela, E. Navarro et al., Novel one-pot sol-gel synthesis route of Fe3C/few-layered graphene core/shell nanops embedded in a carbon matrix. J. Alloy. Compd. 902, 163662 (2022). https://doi.org/10.1016/j.jallcom.2022.163662
M. Kırkbınar, A. Demir, S. Altındal, F. Çalıskan, The effect of different rates of ultra-thin gossamer-like rGO coatings on photocatalytic performance in ZnO core-shell structures for optoelectronic applications. Diam. Relat. Mater. 130, 109435 (2022). https://doi.org/10.1016/j.diamond.2022.109435
X. Tie, Q. Han, C. Liang, B. Li, J. Zai et al., Si@SiOx/graphene nanosheets composite: Ball milling synthesis and enhanced lithium strorage performance. Front. Mater. 4, 47 (2018). https://doi.org/10.3389/fmats.2017.00047
H. Tao, L. Xiong, S. Zhu, L. Zhang, X. Yang, Porous Si/C/reduced graphene oxide microspheres by spray drying as anode for Li-ion batteries. J. Electroanal. Chem. 797, 16–22 (2017). https://doi.org/10.1016/j.jelechem.2017.05.010
Q. Pan, P. Zuo, S. Lou, T. Mu, C. Du et al., Micro-sized spherical silicon@carbon@graphene prepared by spray drying as anode material for lithium-ion batteries. J. Alloy. Compd. 723, 434–440 (2017). https://doi.org/10.1016/j.jallcom.2017.06.217
A. Jamaluddin, B. Umesh, F. Chen, J.-K. Chang, C.-Y. Su, Facile synthesis of core–shell structured Si@graphene balls as a high-performance anode for lithium-ion batteries. Nanoscale 12, 9616 (2020). https://doi.org/10.1039/d0nr01346c
A. Jana, D.H. Gregory, Microwave-assisted synthesis of ZnO–rGO core–shell nanorod hybrids with photo- and electro-catalytic activity. Chem. Eur. J. 26, 6703–6714 (2020). https://doi.org/10.1002/chem.202000535
C.L. Sun, C.T. Chang, H.H. Lee, J. Zhou, J. Wang et al., Microwave-assisted synthesis of a core-shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid. ACS Nano 5, 7788–7795 (2011). https://doi.org/10.1021/nn2015908
R.K. Singh, R. Kumar, D.P. Singh, R. Savu, S.A. Moshkalev, Progress in microwave-assisted synthesis of quantum dots (graphene/carbon/semiconducting) for bioapplications: a review. Mater. Today Chem. 12, 282–314 (2019). https://doi.org/10.1016/j.mtchem.2019.03.001
K. Xia, G. Wang, H. Zhang, Y. Yu, L. Liu et al., Synthesis and characterization of nitrogen-doped graphene hollow spheres as electrode material for supercapacitors. J. Nanopart. Res. 19, 254 (2017). https://doi.org/10.1007/s11051-017-3954-z
M. Liu, M. Shi, W. Lu, D. Zhu, L. Li et al., Core–shell reduced graphene oxide/MnOx@carbon hollow nanospheres for high performance supercapacitor electrodes. Chem. Eng. J. 313, 518–526 (2017). https://doi.org/10.1016/j.cej.2016.12.091
C. Wang, J. Chen, Y. Shi, M. Zheng, Q. Dong, Preparation and performance of a core–shell carbon/sulfur material for lithium/sulfur battery. Electrochim. Acta 55, 7010–7015 (2010). https://doi.org/10.1016/j.electacta.2010.06.019
S.I. Ghazanlou, S.I. Ghazanlou, S.I. Ghazanlou, H. Karimi, N. Azimi et al., Multifunctional performance of core–shell rGO@Fe3O4 on the mechanical, electrical/thermal, EMI, and microstructure properties of cement-based composites. Constr. Build. Mater. 394, 132182 (2023). https://doi.org/10.1016/j.conbuildmat.2023.132182
S.S.P. Haghshenas, A. Nemati, A. Simchi, C.-U. Kim, Dispute in photocatalytic and photoluminescence behavior in ZnO/graphene oxide core-shell nanops. Mater. Lett. 240, 117–120 (2019). https://doi.org/10.1016/j.matlet.2018.12.095
P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV−Vis spectra. J. Phys. Chem. Lett. 9, 6814–6817 (2018). https://doi.org/10.1021/acs.jpclett.8b02892
S. Qu, J. Wan, X. Ye, J. Lan, Y. Fei et al., Interfacial charge transfer of MoS2/ZnO/Ag2S nanotube array for efficient photocatalytic performance. J. Photoch. Photobio. A 447, 115200 (2024). https://doi.org/10.1016/j.jphotochem.2023.115200
W.Y. Teoh, J.A. Scott, R. Amal, Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J. Phys. Chem. Lett. 3, 629–639 (2012). https://doi.org/10.1021/jz3000646
O. Defaoui, A. Boudjemaa, B. Sabrina, B. Hayoun, M. Bourouina et al., Kinetic modeling and experimental study of photocatalytic process using graphene oxide/TiO2 composites. A case for wastewater treatment under sunlight. Reac. Kinet. Mech. Cat. 133, 1141–1162 (2021)
Md. Rakibuddin, R. Ananthakrishnan, Effective photocatalytic dechlorination of 2,4-dichlorophenol by a novel graphene encapsulated ZnO/Co3O4 core–shell hybrid under visible light. Photochem. Photobiol. Sci. 15, 86 (2016). https://doi.org/10.1039/c5pp00305a
H. Liu, X. Dong, X. Wang, C. Sun, J. Li et al., A green and direct synthesis of graphene oxide encapsulated TiO2 core/shell structures with enhanced photoactivity. Chem. Eng. J. 230, 279–285 (2013). https://doi.org/10.1016/j.cej.2013.06.092
X. Li, S. Zheng, C. Zhang, C. Hu, F. Chen et al., Synergistic promotion of photocatalytic performance by core@shell structured TiO2/Au@rGO ternary photocatalyst. Mol. Catal. 438, 55–65 (2017). https://doi.org/10.1016/j.mcat.2017.05.016
M. Wang, J. Han, H. Xiong, R. Guo, Yolk@shell nanoarchitecture of Au@r-GO/TiO2 hybrids as powerful visible light photocatalysts. Langmuir 31, 6220–6228 (2015). https://doi.org/10.1021/acs.langmuir.5b01099
H. Shen, X. Zhao, L. Duan, R. Liu, H. Wu et al., Influence of interface combination of RGO-photosensitized SnO2@RGO core-shell structures on their photocatalytic performance. Appl. Surf. Sci. 391, 627–634 (2017). https://doi.org/10.1016/j.apsusc.2016.06.031
D.V. Dao, T.T.N. Bich, N.T.T. Ha, W. Wang, T. Kim et al., Hematite Fe2O3@nitrogen-doped graphene core-shell photocatalyst for efficient cephalexin degradation under visible light irradiation. Ceram. Int. 48, 34533–34542 (2022). https://doi.org/10.1016/j.ceramint.2022.08.037
Q. Gong, Y. Liua, Z. Dang, Core-shell structured Fe3O4@GO@MIL-100(Fe) magnetic nanops as heterogeneous photo-Fenton catalyst for 2,4-dichlorophenol degradation under visible light. J. Hazard. Mater. 371, 677–686 (2019). https://doi.org/10.1016/j.jhazmat.2019.03.019
C. Feng, Y. Deng, L. Tang, G. Zeng, J. Wang et al., Core-shell Ag2CrO4/N-GQDs@g-C3N4 composites with anti-photocorrosion performance for enhanced full-spectrum-light photocatalytic activities. Appl. Catal. B-Environ. 239, 525–536 (2018). https://doi.org/10.1016/j.apcatb.2018.08.049
L. Allagui, B. Chouchene, T. Gries, G. Medjahdi, E. Girot et al., Core/shell rGO/BiOBr ps with visible photocatalytic activity towards water pollutants. Appl. Surf. Sci. 490, 580–591 (2019). https://doi.org/10.1016/j.apsusc.2019.06.091
F. Gao, Q. Wan, J. Yuan, R. Lei, S. Lin et al., Highly efficient and durable core-shell catalyst with dual functions: Tungsten nitride quantum dots encapsulated in ultra-thin graphene. Appl. Catal. B-Environ. 299, 120692 (2021). https://doi.org/10.1016/j.apcatb.2021.120692
N. Thangavel, S. Bellamkonda, A.D. Arulraj, G.R. Rao, B. Neppolian, Visible light induced efficient hydrogen production through semiconductor–conductor–semiconductor (S–C–S) interfaces formed between g-C3N4 and rGO/Fe2O3 core–shell composites. Catal. Sci. Technol. 8, 5081 (2018). https://doi.org/10.1039/c8cy01248b
R.A. Rather, S. Singh, B. Pal, Core–shell morphology of Au-TiO2@graphene oxide nanocomposite exhibiting enhanced hydrogen production from water. J. Ind. Eng. Chem. 37, 288–294 (2016). https://doi.org/10.1016/j.jiec.2016.03.039
H. Jung, J. Song, S. Lee, Y.W. Lee, D.H. Wi et al., Hierarchical metal–semiconductor–graphene ternary heteronanostructures for plasmonenhanced wide-range visible-light photocatalysis. J. Mater. Chem. A 7, 15831 (2019). https://doi.org/10.1039/c9ta03934a
M. Zubair, I.-H. Svenum, M. Rønning, J. Yang, Core-shell nanostructures of graphene-wrapped CdS nanops and TiO2 (CdS@G@TiO2): the role of graphene in enhanced photocatalytic H2 generation. Catalysts 10, 358 (2020). https://doi.org/10.3390/catal10040358
S. Bai, J. Ge, L. Wang, M. Gong, M. Deng et al., A unique semiconductor–metal–graphene stack design to harness charge flow for photocatalysis. Adv. Mater. 26, 5689–5695 (2014). https://doi.org/10.1002/adma.201401817
D.V. Dao, G.D. Liberto, H. Ko, J. Park, W. Wang et al., LaFeO3 meets nitrogen-doped graphene functionalized with ultralow Pt loading in an impactful Z-scheme platform for photocatalytic hydrogen evolution. J. Mater. Chem. A 10, 3330 (2022). https://doi.org/10.1039/d1ta10376h
X. Fan, G. Zhang, F. Zhang, Multiple roles of graphene in heterogeneous catalysis. Chem. Soc. Rev. 44, 3023 (2015). https://doi.org/10.1039/c5cs00094g
X. Qu, Q. Hu, Z. Song, Z. Sun, B. Zhang et al., Adsorption and desorption mechanisms on graphene oxide nanosheets: Kinetics and tuning. The Innovation 2, 100137 (2021). https://doi.org/10.1016/j.xinn.2021.100137
Y. Yang, M. Liu, S. Han, H. Xi, C. Xu et al., Double-sided modification of TiO2 spherical shell by graphene sheets with enhanced photocatalytic activity for CO2 reduction. Appl. Surf. Sci. 537, 147991 (2021). https://doi.org/10.1016/j.apsusc.2020.147991
Y. Zhao, Y. Wei, X. Wu, H. Zheng, Z. Zhao et al., Graphene-wrapped Pt/TiO2 photocatalysts with enhanced photogenerated charges separation and reactant adsorption for high selective photoreduction of CO2 to CH4. Appl. Catal. B-Environ. 226, 360–372 (2018). https://doi.org/10.1016/j.apcatb.2017.12.071
M. Zhang, M. Wu, Z. Wang, R. Cheng, D.Y.C. Leung et al., Efficient sunlight driven CO2 reduction on Graphene-wrapped Cu-Pt/rTiO2@SiO2. Mater. Sci. Energy Technol. 3, 734–741 (2020). https://doi.org/10.1016/j.mset.2020.09.001
L. Pei, Y. Yuan, W. Bai, T. Li, H. Zhu et al., In situ-grown island-shaped hollow graphene on TaON with spatially separated active sites achieving enhanced visible-light CO2 reduction. ACS Catal. 10, 15083–15091 (2020). https://doi.org/10.1021/acscatal.0c03918
Y.-H. Chen, J.-K. Ye, Y.-J. Chang, T.-W. Liu, Y.-H. Chuang et al., Mechanisms behind photocatalytic CO2 reduction by CsPbBr3 perovskite-graphene-based nanoheterostructures. Appl. Catal. B-Environ. 284, 119751 (2021). https://doi.org/10.1016/j.apcatb.2020.119751
P. Kumar, C. Joshi, A. Barras, B. Sieber, A. Addad et al., Core–shell structured reduced graphene oxide wrapped magnetically separable rGO@CuZnO@Fe3O4 microspheres as superior photocatalyst for CO2 reduction under visible light. Appl. Catal. B-Environ. 205, 654–665 (2017). https://doi.org/10.1016/j.apcatb.2016.11.060
L. Wang, H. Tan, L. Zhang, B. Cheng, J. Yu, In-situ growth of few-layer graphene on ZnO with intimate interfacial contact for enhanced photocatalytic CO2 reduction activity. Chem. Eng. J. 411, 128501 (2021). https://doi.org/10.1016/j.cej.2021.128501
R. Guo, J. Wang, Z. Bi, X. Chen, X. Hu et al., Recent advances and perspectives of core-shell nanostructured materials for photocatalytic CO2 reduction. Small 19, 2206314 (2023). https://doi.org/10.1002/smll.202206314
L. Qi, Z. Zheng, C. Xing, Z. Wang, X. Luan et al., 1D nanowire heterojunction electrocatalysts of MnCo2O4/GDY for efficient overall water splitting. Adv. Funct. Mater. 32, 2107179 (2022). https://doi.org/10.1002/adfm.202107179
H. Sun, C. Jing, W. Shang, F. Wang, M. Zeng et al., Polyoxometalate-based composite cluster with core–shell structure: Co4(PW9)2@graphdiyne as stable electrocatalyst for oxygen evolution and its mechanism research. New J. Chem. 46, 11553 (2022). https://doi.org/10.1039/d2nj01459a
J. He, X. Miao, Y. Wu, Z. Jin, Phosphating core–shell graphdiyne/CuI/Cu3P S-scheme heterojunction confirmed with in situ XPS characterization for efficient photocatalytic hydrogen production. Catal. Sci. Technol. 13, 5610 (2023). https://doi.org/10.1039/d3cy00850a
B. Zhai, H. Li, G. Gao, Y. Wang, P. Niu et al., A crystalline carbon nitride based near-infrared active photocatalyst. Adv. Funct. Mater. 32, 2207375 (2022). https://doi.org/10.1002/adfm.202207375
H. Wang, X. Liu, P. Niu, S. Wang, J. Shi et al., Porous two-dimensional materials for photocatalytic and electrocatalytic applications. Matter 2, 1377–1413 (2020). https://doi.org/10.1016/j.matt.2020.04.002
H. de Lasa, B. Serrano, M. Salaices, Photocatalytic reaction engineering (Springer, New York, 2005)
S. Barata-Vallejo, S.M. Bonesi, A. Postigo, Photocatalytic fluoroalkylation reactions of organic compounds. Org. Biomol. Chem. 13, 11153 (2015). https://doi.org/10.1039/c5ob01486g
F. Zhang, X. Wang, H. Liu, C. Liu, Y. Wan et al., Recent advances and applications of semiconductor photocatalytic technology. Appl. Sci. 9, 2489 (2019). https://doi.org/10.3390/app9122489
J. Chen, J. Shi, X. Wang, H. Cui, M. Fu, Recent progress in the preparation and application of semiconductor/graphene composite photocatalysts. Chin. J. Catal. 34, 621–640 (2016). https://doi.org/10.1016/s1872-2067(12)60530-0
Y. Guo, X. Tong, N. Yang, Photocatalytic and electrocatalytic generation of hydrogen peroxide: principles, catalyst design and performance. Nano-Micro Lett. 15, 77 (2023). https://doi.org/10.1007/s40820-023-01052-2
M.G. Lee, J.W. Yang, H. Park, C.W. Moon, D.M. Andoshe et al., Crystal facet engineering of TiO2 nanostructures for enhancing photoelectrochemical water splitting with BiVO4 nanodots. Nano-Micro Lett. 14, 48 (2022). https://doi.org/10.1007/s40820-022-00795-8
P. Zhang, Y. Zhao, Y. Li, N. Li, S.R.P. Silva et al., Revealing the selective bifunctional electrocatalytic sites via in situ irradiated X-ray photoelectron spectroscopy for lithium–sulfur battery. Adv. Sci. 10, 2206786 (2023). https://doi.org/10.1002/advs.202206786
Y. Li, Y. Zhang, R. Hou, Y. Ai, M. Cai et al., Revealing electron numbers-binding energy relationships in heterojunctions via in-situ irradiated XPS. Appl. Catal. B-Environ. Energy 356, 124223 (2024). https://doi.org/10.1016/j.apcatb.2024.124223