Novel Evolution Process of Zn-Induced Nanoclusters on Si(111)-(7×7) Surface
Corresponding Author: Junyong Kang
Nano-Micro Letters,
Vol. 7 No. 2 (2015), Article Number: 194-202
Abstract
A tiny number of Zn atoms were deposited on Si(111)-(7×7) surface to study the evolution process of Zn-induced nanoclusters. After the deposition, three types (type I, II, and III) of Zn-induced nanoclusters were observed to occupy preferably in the faulted half-unit cells. These Zn-induced nanoclusters are found to be related to one, two, and three displaced Si edge adatoms, and simultaneously cause the depression of one, two, and three closest Si edge adatoms in the neighboring unfaulted half-unit cells at negative voltages, respectively. First-principles adsorption energy calculations show that the observed type I, II, and III nanoclusters can reasonably be assigned as the Zn3Si1, Zn5Si2, and Zn7Si3 clusters, respectively. And Zn3Si1, Zn5Si2, and Zn7Si3 clusters are, respectively, the most stable structures in cases of one, two, and three displaced Si edge adatoms. Based on the above energy-preferred models, the simulated bias-dependent STM images are all well consistent with the experimental observations. Therefore, the most stable Zn7Si3 nanoclusters adsorbed on the Si(111)-(7×7) surface should grow up on the base of Zn3Si1 and Zn5Si2 clusters. A novel evolution process from Zn3Si1 to Zn5Si2, and finally to Zn7Si3 nanocluster is unveiled.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.J. Cho, Y. Kim, J.K. Kim, Ultrahigh-density array of silver nanoclusters for SERS substrate with high sensitivity and excellent reproducibility. ACS Nano 6(1), 249–255 (2012). doi:10.1021/nn2035236
- S.F. Li, X.J. Zhao, X.S. Xu, Y.F. Gao, Z.Y. Zhang, Stacking principle and magic sizes of transition metal nanoclusters based on generalized Wulff construction. Phys. Rev. Lett. 111(11), 115501 (2013). doi:10.1103/PhysRevLett.111.115501
- M.C. Patterson, B.F. Habenicht, R.L. Kurtz, L. Liu, Y. Xu, P.T. Sprunger, Formation and stability of dense arrays of Au nanoclusters on hexagonal boron nitride/Rh(111). Phys. Rev. B 89(20), 205423 (2014). doi:10.1103/PhysRevB.89.205423
- J. Pal, M. Smerieri, E. Celasco, L. Savio, L. Vattuone, M. Rocca, Morphology of monolayer MgO films on Ag(100): switching from corrugated islands to extended flat terraces. Phys. Rev. Lett. 112(12), 126102 (2014). doi:10.1103/PhysRevLett.112.126102
- A.O. Orlov, I. Amlani, G.H. Bernstein, C.S. Lent, G.L. Snider, Realization of a functional cell for quantum-dot cellular automata. Science 277(5328), 928–930 (1997). doi:10.1126/science.277.5328.928
- R.P. Andres, T. Bein, M. Dorogi, S. Feng, J.I. Henderson, C.P. Kubiak, W. Mahoney, R.G. Osifchin, R. Reifenberger, “Coulomb staircase” at room temperature in a self-assembled molecular nanostructure. Science 272(5266), 1323–1325 (1996). doi:10.1126/science.272.5266.1323
- T.W. Kim, D.C. Choo, J.H. Shim, S.O. Kang, Single-electron transistors operating at room temperature, fabricated utilizing nanocrystals created by focused-ion beam. Appl. Phys. Lett. 80(12), 2168–2170 (2002). doi:10.1063/1.1458685
- S.H. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287(5460), 1989–1992 (2000). doi:10.1126/science.287.5460.1989
- K. Koike, H. Matsuyama, Y. Hirayama, K. Tanahashi, T. Kanemura, O. Kitakami, Y. Shimada, Magnetic block array for patterned magnetic media. Appl. Phys. Lett. 78(6), 784–786 (2001). doi:10.1063/1.1345804
- T. Koide, H. Miyauchi, J. Okamoto, T. Shidara, A. Fujimori, H. Fukutani, K. Amemiya, H. Rakeshita, S. Yuasa, T. Katayama, Y. Suzuki, Direct determination of interfacial magnetic moments with a magnetic phase transition in Co nanoclusters on Au(111). Phys. Rev. Lett. 87(25), 257201 (2001). doi:10.1103/PhysRevLett.87.257201
- K.H. Wu, Y. Fujikawa, T. Nagao, Y. Hasegawa, K.S. Nakayama, Q.K. Xue, E.G. Wang, T. Briere, V. Kumar, Y. Kawazoe, S.B. Zhang, T. Sakurai, Na adsorption on the Si(111)-(7×7) surface: from two-dimensional gas to nanocluster array. Phys. Rev. Lett. 91(12), 126101 (2003). doi:10.1103/PhysRevLett.91.126101
- J.R. Ahn, G.J. Yoo, J.T. Seo, J.H. Byun, H.W. Yeom, Electronic states of two-dimensional adatom gas and nanocluster array: Na on Si(111)7×7. Phys. Rev. B 72(11), 113309 (2005). doi:10.1103/PhysRevB.72.113309
- Y.P. Wu, Y.H. Zhou, C.J. Zhou, H.H. Zhan, J.Y. Kang, Atomic structure and formation mechanism of identically sized Au clusters grown on Si(111)-7×7 surface. J. Chem. Phys. 133(12), 124706 (2010). doi:10.1063/1.3481483
- C.J. Zhou, Q.K. Xue, J.F. Jia, H.H. Zhan, J.Y. Kang, Structural and electronic properties of identical-sized Zn nanoclusters grown on Si(111)-(7×7) surfaces. J. Chem. Phys. 130(2), 024701 (2009). doi:10.1063/1.3046682
- J.F. Jia, J.Z. Wang, X. Liu, Q.K. Xue, Z.Q. Li, Y. Kawazoe, S.B. Zhang, Artificial nanocluster crystal: lattice of indentical Al clusters. Appl. Phys. Lett. 80(17), 3186–3188 (2002). doi:10.1063/1.1474620
- R.W. Li, J.H.G. Owen, S. Kusano, K. Miki, Dynamic behavior and phase transition of magic Al clusters on Si(111)-7×7 surfaces. Appl. Phys. Lett. 89(7), 073116 (2006). doi:10.1063/1.2337522
- V.G. Kotlyar, A.V. Zotov, A.A. Saranin, T.V. Kasyanova, M.A. Cherevik, I.V. Pisarenko, V.G. Lifshits, Formation of the ordered arrays of Al magic clusters on Si(111)7×7. Phys. Rev. B 66(16), 165401 (2002). doi:10.1103/PhysRevB.66.165401
- M.Y. Lai, Y.L. Wang, Self-organized two-dimensional lattice of magic clusters. Phys. Rev. B 64(24), 241404 (2001). doi:10.1103/PhysRevB.64.241404
- L. Vitali, M.G. Ramsey, F.P. Netzer, Nanodot formation on the Si(111)-(7×7) surface by adatom trapping. Phys. Rev. Lett. 83(2), 316–319 (1999). doi:10.1103/PhysRevLett.83.316
- J.L. Li, J.F. Jia, X.J. Liang, X. Liu, J.Z. Wang, Q.K. Xue, Z.Q. Li, J.S. Tse, Z.Y. Zhang, S.B. Zhang, Spontaneous assembly of perfectly ordered identical-size nanocluster arrays. Phys. Rev. Lett. 88(6), 066101 (2002). doi:10.1103/PhysRevLett.88.066101
- S.C. Li, J.F. Jia, R.F. Dou, Q.K. Xue, I.G. Batyrev, S.B. Zhang, Borderline magic clustering: the fabrication of tetravalent Pb cluster arrays on Si(111)-(7×7) surfaces. Phys. Rev. Lett. 93(11), 116103 (2004). doi:10.1103/PhysRevLett.93.116103
- M.A.K. Zilani, H. Xu, T. Liu, Y.Y. Sun, Y.P. Feng, X.S. Wang, A.T.S. Wee, Electronic structure of Co-induced magic clusters grown on Si(111)-(7×7): scanning tunneling microscopy and spectroscopy and real-space multiple-scattering calculations. Phys. Rev. B 73(19), 195415 (2006). doi:10.1103/PhysRevB.73.195415
- M.A.K. Zilani, Y.Y. Sun, H. Xu, L. Liu, Y.P. Feng, X.S. Wang, A.T.S. Wee, Reactive Co magic cluster formation on Si(111)-(7×7). Phys. Rev. B 72(19), 193402 (2005). doi:10.1103/PhysRevB.72.193402
- J. Alvarez, A.L.V. Deparga, J.J. Hinarejos, J. Delafiguera, E.G. Michel, C. Ocal, R. Miranda, Initial stages of the growth of Fe on Si(111)7×7. Phys. Rev. B 47(23), 16048–16051 (1993). doi:10.1103/PhysRevB.47.16048
- M.K.J. Johansson, S.M. Gray, L.S.O. Johansson, Studies of low coverage adsorption of Li on Si(001): observation of negative differential resistance and electron trapping. J. Vac. Sci. Technol., B 14(2), 1015–1018 (1996). doi:10.1116/1.588445
- N.P. Guisinger, M.E. Greene, R. Basu, A.S. Baluch, M.C. Hersam, Room temperature negative differential resistance through individual organic molecules on silicon surfaces. Nano Lett. 4(1), 55–59 (2004). doi:10.1021/nl0348589
- J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46(11), 6671–6687 (1992). doi:10.1103/PhysRevB.46.6671
- Y. Wang, J.P. Perdew, Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys. Rev. B 44(24), 13298–13307 (1991). doi:10.1103/PhysRevB.44.13298
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). doi:10.1103/PhysRevB.59.1758
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). doi:10.1103/PhysRevB.54.11169
- G. Kresse, J. Furthmüller, Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). doi:10.1016/0927-0256(96)00008-0
- M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64(4), 1045–1097 (1992). doi:10.1103/RevModPhys.64.1045
- K. Takayanagi, Y. Tanishiro, M. Takahashi, S. Takahashi, Structural analysis of Si(111)-7×7 by UHV-transmission electron diffraction and microscopy. J. Vac. Sci. Technol., A 3(3), 1502–1506 (1985). doi:10.1116/1.573160
- G. Lee, C.G. Hwang, N.D. Kim, J. Chung, J.S. Kim, S. Lee, Ab initio study of thallium nanoclusters on Si(111)-7×7. Phys. Rev. B 76(24), 245409 (2007). doi:10.1103/PhysRevB.76.245409
- J. Tersoff, D.R. Hamann, Theory of the scanning tunneling microscope. Phys. Rev. B 31(2), 805–813 (1985). doi:10.1103/PhysRevB.31.805
References
W.J. Cho, Y. Kim, J.K. Kim, Ultrahigh-density array of silver nanoclusters for SERS substrate with high sensitivity and excellent reproducibility. ACS Nano 6(1), 249–255 (2012). doi:10.1021/nn2035236
S.F. Li, X.J. Zhao, X.S. Xu, Y.F. Gao, Z.Y. Zhang, Stacking principle and magic sizes of transition metal nanoclusters based on generalized Wulff construction. Phys. Rev. Lett. 111(11), 115501 (2013). doi:10.1103/PhysRevLett.111.115501
M.C. Patterson, B.F. Habenicht, R.L. Kurtz, L. Liu, Y. Xu, P.T. Sprunger, Formation and stability of dense arrays of Au nanoclusters on hexagonal boron nitride/Rh(111). Phys. Rev. B 89(20), 205423 (2014). doi:10.1103/PhysRevB.89.205423
J. Pal, M. Smerieri, E. Celasco, L. Savio, L. Vattuone, M. Rocca, Morphology of monolayer MgO films on Ag(100): switching from corrugated islands to extended flat terraces. Phys. Rev. Lett. 112(12), 126102 (2014). doi:10.1103/PhysRevLett.112.126102
A.O. Orlov, I. Amlani, G.H. Bernstein, C.S. Lent, G.L. Snider, Realization of a functional cell for quantum-dot cellular automata. Science 277(5328), 928–930 (1997). doi:10.1126/science.277.5328.928
R.P. Andres, T. Bein, M. Dorogi, S. Feng, J.I. Henderson, C.P. Kubiak, W. Mahoney, R.G. Osifchin, R. Reifenberger, “Coulomb staircase” at room temperature in a self-assembled molecular nanostructure. Science 272(5266), 1323–1325 (1996). doi:10.1126/science.272.5266.1323
T.W. Kim, D.C. Choo, J.H. Shim, S.O. Kang, Single-electron transistors operating at room temperature, fabricated utilizing nanocrystals created by focused-ion beam. Appl. Phys. Lett. 80(12), 2168–2170 (2002). doi:10.1063/1.1458685
S.H. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287(5460), 1989–1992 (2000). doi:10.1126/science.287.5460.1989
K. Koike, H. Matsuyama, Y. Hirayama, K. Tanahashi, T. Kanemura, O. Kitakami, Y. Shimada, Magnetic block array for patterned magnetic media. Appl. Phys. Lett. 78(6), 784–786 (2001). doi:10.1063/1.1345804
T. Koide, H. Miyauchi, J. Okamoto, T. Shidara, A. Fujimori, H. Fukutani, K. Amemiya, H. Rakeshita, S. Yuasa, T. Katayama, Y. Suzuki, Direct determination of interfacial magnetic moments with a magnetic phase transition in Co nanoclusters on Au(111). Phys. Rev. Lett. 87(25), 257201 (2001). doi:10.1103/PhysRevLett.87.257201
K.H. Wu, Y. Fujikawa, T. Nagao, Y. Hasegawa, K.S. Nakayama, Q.K. Xue, E.G. Wang, T. Briere, V. Kumar, Y. Kawazoe, S.B. Zhang, T. Sakurai, Na adsorption on the Si(111)-(7×7) surface: from two-dimensional gas to nanocluster array. Phys. Rev. Lett. 91(12), 126101 (2003). doi:10.1103/PhysRevLett.91.126101
J.R. Ahn, G.J. Yoo, J.T. Seo, J.H. Byun, H.W. Yeom, Electronic states of two-dimensional adatom gas and nanocluster array: Na on Si(111)7×7. Phys. Rev. B 72(11), 113309 (2005). doi:10.1103/PhysRevB.72.113309
Y.P. Wu, Y.H. Zhou, C.J. Zhou, H.H. Zhan, J.Y. Kang, Atomic structure and formation mechanism of identically sized Au clusters grown on Si(111)-7×7 surface. J. Chem. Phys. 133(12), 124706 (2010). doi:10.1063/1.3481483
C.J. Zhou, Q.K. Xue, J.F. Jia, H.H. Zhan, J.Y. Kang, Structural and electronic properties of identical-sized Zn nanoclusters grown on Si(111)-(7×7) surfaces. J. Chem. Phys. 130(2), 024701 (2009). doi:10.1063/1.3046682
J.F. Jia, J.Z. Wang, X. Liu, Q.K. Xue, Z.Q. Li, Y. Kawazoe, S.B. Zhang, Artificial nanocluster crystal: lattice of indentical Al clusters. Appl. Phys. Lett. 80(17), 3186–3188 (2002). doi:10.1063/1.1474620
R.W. Li, J.H.G. Owen, S. Kusano, K. Miki, Dynamic behavior and phase transition of magic Al clusters on Si(111)-7×7 surfaces. Appl. Phys. Lett. 89(7), 073116 (2006). doi:10.1063/1.2337522
V.G. Kotlyar, A.V. Zotov, A.A. Saranin, T.V. Kasyanova, M.A. Cherevik, I.V. Pisarenko, V.G. Lifshits, Formation of the ordered arrays of Al magic clusters on Si(111)7×7. Phys. Rev. B 66(16), 165401 (2002). doi:10.1103/PhysRevB.66.165401
M.Y. Lai, Y.L. Wang, Self-organized two-dimensional lattice of magic clusters. Phys. Rev. B 64(24), 241404 (2001). doi:10.1103/PhysRevB.64.241404
L. Vitali, M.G. Ramsey, F.P. Netzer, Nanodot formation on the Si(111)-(7×7) surface by adatom trapping. Phys. Rev. Lett. 83(2), 316–319 (1999). doi:10.1103/PhysRevLett.83.316
J.L. Li, J.F. Jia, X.J. Liang, X. Liu, J.Z. Wang, Q.K. Xue, Z.Q. Li, J.S. Tse, Z.Y. Zhang, S.B. Zhang, Spontaneous assembly of perfectly ordered identical-size nanocluster arrays. Phys. Rev. Lett. 88(6), 066101 (2002). doi:10.1103/PhysRevLett.88.066101
S.C. Li, J.F. Jia, R.F. Dou, Q.K. Xue, I.G. Batyrev, S.B. Zhang, Borderline magic clustering: the fabrication of tetravalent Pb cluster arrays on Si(111)-(7×7) surfaces. Phys. Rev. Lett. 93(11), 116103 (2004). doi:10.1103/PhysRevLett.93.116103
M.A.K. Zilani, H. Xu, T. Liu, Y.Y. Sun, Y.P. Feng, X.S. Wang, A.T.S. Wee, Electronic structure of Co-induced magic clusters grown on Si(111)-(7×7): scanning tunneling microscopy and spectroscopy and real-space multiple-scattering calculations. Phys. Rev. B 73(19), 195415 (2006). doi:10.1103/PhysRevB.73.195415
M.A.K. Zilani, Y.Y. Sun, H. Xu, L. Liu, Y.P. Feng, X.S. Wang, A.T.S. Wee, Reactive Co magic cluster formation on Si(111)-(7×7). Phys. Rev. B 72(19), 193402 (2005). doi:10.1103/PhysRevB.72.193402
J. Alvarez, A.L.V. Deparga, J.J. Hinarejos, J. Delafiguera, E.G. Michel, C. Ocal, R. Miranda, Initial stages of the growth of Fe on Si(111)7×7. Phys. Rev. B 47(23), 16048–16051 (1993). doi:10.1103/PhysRevB.47.16048
M.K.J. Johansson, S.M. Gray, L.S.O. Johansson, Studies of low coverage adsorption of Li on Si(001): observation of negative differential resistance and electron trapping. J. Vac. Sci. Technol., B 14(2), 1015–1018 (1996). doi:10.1116/1.588445
N.P. Guisinger, M.E. Greene, R. Basu, A.S. Baluch, M.C. Hersam, Room temperature negative differential resistance through individual organic molecules on silicon surfaces. Nano Lett. 4(1), 55–59 (2004). doi:10.1021/nl0348589
J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46(11), 6671–6687 (1992). doi:10.1103/PhysRevB.46.6671
Y. Wang, J.P. Perdew, Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys. Rev. B 44(24), 13298–13307 (1991). doi:10.1103/PhysRevB.44.13298
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). doi:10.1103/PhysRevB.59.1758
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). doi:10.1103/PhysRevB.54.11169
G. Kresse, J. Furthmüller, Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). doi:10.1016/0927-0256(96)00008-0
M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64(4), 1045–1097 (1992). doi:10.1103/RevModPhys.64.1045
K. Takayanagi, Y. Tanishiro, M. Takahashi, S. Takahashi, Structural analysis of Si(111)-7×7 by UHV-transmission electron diffraction and microscopy. J. Vac. Sci. Technol., A 3(3), 1502–1506 (1985). doi:10.1116/1.573160
G. Lee, C.G. Hwang, N.D. Kim, J. Chung, J.S. Kim, S. Lee, Ab initio study of thallium nanoclusters on Si(111)-7×7. Phys. Rev. B 76(24), 245409 (2007). doi:10.1103/PhysRevB.76.245409
J. Tersoff, D.R. Hamann, Theory of the scanning tunneling microscope. Phys. Rev. B 31(2), 805–813 (1985). doi:10.1103/PhysRevB.31.805