Single-Crystalline InGaAs Nanowires for Room-Temperature High-Performance Near-Infrared Photodetectors
Corresponding Author: Anlian Pan
Nano-Micro Letters,
Vol. 8 No. 1 (2016), Article Number: 29-35
Abstract
InGaAs is an important bandgap-variable ternary semiconductor which has wide applications in electronics and optoelectronics. In this work, single-crystal InGaAs nanowires were synthesized by a chemical vapor deposition method. Photoluminescence measurements indicate the InGaAs nanowires have strong light emission in near-infrared region. For the first time, photodetector based on as-grown InGaAs nanowires was also constructed. It shows good light response over a broad spectral range in infrared region with responsivity of 6.5 × 103 A W−1 and external quantum efficiency of 5.04 × 105 %. This photodetector may have potential applications in integrated optoelectronic devices and systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.F. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Single-nanowire electrically driven lasers. Nature 421(6920), 241–245 (2003). doi:10.1038/nature01353
- A.L. Pan, W. Zhou, E.S.P. Leong, R. Liu, A.H. Chin, B.S. Zou, C.Z. Ning, Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. Nano Lett. 9(2), 784–788 (2009). doi:10.1021/nl803456k
- J.Y. Xu, L. Ma, P.F. Guo, X.J. Zhuang, X.L. Zhu, W. Hu, X.F. Duan, A.L. Pan, Room-temperature dual-wavelength lasing from single nanoribbon lateral heterostructures. J. Am. Chem. Soc. 134(30), 12394–12397 (2012). doi:10.1021/ja3050458
- T. Katsuhiro, Y. Masatoshi, F. Takashi, A III-V nanowire channel on silicon for high-performance vertical transistors. Nature 488(7410), 189–192 (2012). doi:10.1038/nature11293
- Y.Y. Cao, Z.M. Wu, J.C. Ni, W.A. Bhutto, J. Li, S.P. Li, K. Huang, J.Y. Kang, Type-II core/shell nanowire heterostructures and their photovoltaic applications. Nano-Micro Lett. 4(3), 135–141 (2012). doi:10.3786/nml.v4i3.p135-141
- M.X. Wang, G.H. Yue, Y.D. Lin, X. Wen, D.L. Peng, Z.R. Geng, Synthesis, optical properties and photovoltaic application of the SnS quasi-one-dimensional nanostructures. Nano-Micro Lett. 5(1), 1–6 (2013). doi:10.3786/nml.v5i1.p1-6
- N. Guo, W.D. Hu, L. Liao, S. Yip, J.C. Ho et al., Anomalous and highly efficient InAs nanowire phototransistors based on majority carrier transport at room temperature. Adv. Mater. 26(48), 8203–8209 (2014). doi:10.1002/adma.201403664
- P. Ren, W. Hu, Q. Zhang, X. Zhu, X. Zhuang et al., Band-selective infrared photodetectors with complete-composition-range InAsxP1−x alloy nanowires. Adv. Mater. 26(44), 7444–7499 (2014). doi:10.1002/adma.201402945
- Q.L. Li, Y. Li, J. Gao, S.D. Wang, X.H. Sun, High performance single In2Se3 nanowire Photodetector. Appl. Phys. Lett. 99(24), 243105 (2011). doi:10.1063/1.3669513
- L. Ma, W. Hu, Q. Zhang, P. Ren, X. Zhuang et al., Room-temperature near-infrared photodetectors based on single heterojunction nanowires. Nano Lett. 14(2), 694–698 (2014). doi:10.1021/nl403951f
- K.M. Deng, L. Li, CdS nanoscale photodetectors. Adv. Mater. 26(17), 2619–2635 (2014). doi:10.1002/adma.201304621
- X.Q. Liu, X. Liu, J.L. Wang, C.N. Liao, X.H. Xiao et al., Scalable integration of indium zinc oxide/photosensitive-nanowire composite thin-film transistors for transparent multicolor photodetectors array. Adv. Mater. 26(18), 2919–2924 (2014). doi:10.1002/adma.201305073
- X.M. Xie, G.Z. Shen, Single-crystalline In2S3 nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse. Nanoscale 7(11), 5046–5052 (2015). doi:10.1039/C5NR00410A
- R. Basori, A.K. Raychaudhuri, Role of contact and contact modification on photo-response in a charge transfer complex single nanowire device. Nano-Micro Lett. 6(1), 63–69 (2014). doi:10.5101/nml.v6i1.p63-69
- C.-H. Kuo, J.-M. Wu, S.-J. Lin, W.-C. Chang, High sensitivity of middle-wavelength infrared photodetectors based on an individual InSb nanowire. Nanoscale Res. Lett. 8(1), 327 (2013). doi:10.1186/1556-276X-8-327
- J.S. Miao, W.D. Hu, N. Guo, Z.Y. Lu, X.M. Zou et al., Single InAs nanowire room-temperature near-infrared photodetectors. ACS Nano 8(4), 3628–3635 (2014). doi:10.1021/nn500201g
- Z. Liu, T. Luo, B. Liang, G. Chen, G. Yu, X.M. Xie, D. Chen, G.Z. Shen, High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res. 6(11), 775–783 (2013). doi:10.1007/s12274-013-0356-0
- Y. Hou, J.R. Liu, M. Buchanan, A.J.S. Thorpe, P.J. Poole, H.C. Liu, K. Wu, S. Roorda, X.P. Zhang, Terahertz generation using implanted InGaAs photomixers and multi-wavelength quantum dot lasers. Nano-Micro Lett. 4(1), 10–13 (2012). doi:10.3786/nml.v4i1.p10-13
- J.C. Shin, K.H. Kim, K.J. Yu, H.F. Hu, L.J. Yin, C.Z. Ning, J.A. Rogers, J.-M. Zuo, X.L. Li, InxGa1−xAs nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics. Nano Lett. 11(11), 4831–4838 (2011). doi:10.1021/nl202676b
- J.J. Hou, F.Y. Wang, N. Han, F. Xiu, S.P. Yip, M. Fang, H. Lin, F.T. Hung, J.C. Ho, Stoichiometric effect on electrical, optical, and structural properties of composition-tunable InxGa1−xAs nanowires. ACS Nano 6(10), 9320–9325 (2012). doi:10.1021/nn304174g
- K.A. Dick, K. Deppert, L.S. Karlsson, L.R. Wallenberg, L. Samuelson, W. Seifert, A new understanding of Au-assisted growth of III–V semiconductor nanowires. Adv. Funct. Mater. 15(10), 1603–1610 (2005). doi:10.1002/adfm.200500157
- J. Groenen, R. Carles, G. Landa, Optical-phonon behavior in Ga1−xInxAs: the role of microscopic strains and ionic plasmon coupling. Phys. Rev. B 58(16), 10452–10462 (1998). doi:10.1103/PhysRevB.58.10452
- C.S. Jung, H.S. Kim, G.B. Jung, K.J. Gong, Y.J. Cho, S.Y. Jang, C.H. Kim, C.-W. Lee, J. Park, Composition and phase tuned InGaAs alloy nanowires. J. Phys. Chem. C 115(16), 7843–7850 (2011). doi:10.1021/jp2003276
- S. Morkötter, S. Funk, M. Liang, M. Döblinger, S. Hertenberger et al., Role of microstructure on optical properties in high-uniformity In1−xGaxAs nanowire arrays: evidence of a wider wurtzite band gap. Phys. Rev. B 87(20), 205303 (2013). doi:10.1103/PhysRevB.87.205303
- Y.P. Varshni, Temperature dependence of the energy gap in semiconductors. Physica 34(1), 149–154 (1967). doi:10.1016/0031-8914(67)90062-6
- T. Umezawa, K. Akahane, N. Yamamoto, A. Kanno, T. Kawanishi, Highly sensitive photodetector using ultra-high-density 1.5-μm quantum dots for advanced optical fiber communications. IEEE 20(6), 3801907 (2014). doi:10.1109/JSTQE.2014.2321288
- Y.L. Lee, C.C. Huang, C.L. Ho, M.C. Wu, Planar InGaAs p-i-n photodiodes with transparent-conducting-based antireflection and double-path reflector. IEEE Electron Device Lett. 34(11), 1406–1408 (2013). doi:10.1109/LED.2013.2281830
- Z. Liu, G. Chen, B. Liang, G. Yu, H.T. Huang, D. Chen, G.Z. Shen, Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible-light photodetectors. Opt. Express 21(6), 7799–7810 (2013). doi:10.1364/OE.21.007799
- C. Soci, A. Zhang, X.-Y. Bao, H. Kim, Y. Lo, D.L. Wang, Nanowire photodetectors. J. Nanosci. Nanotechnol. 10(3), 1430–1499 (2010). doi:10.1166/jnn.2010.2157
- R. Basori, K. Das, P. Kumar, K.S. Narayan, A.K. Raychaudhuri, Single CuTCNQ charge transfer complex nanowire as ultra high responsivity photodetector. Opt. Express 22(5), 4944–4952 (2014). doi:10.1364/OE.22.004944
- H. Kind, H.Q. Yan, B. Messer, M. Law, P.D. Yang, Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 14(2), 158–160 (2002). doi:10.1002/1521-4095(20020116)14:2<158:AID-ADMA158>3.0.CO;2-W
References
X.F. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Single-nanowire electrically driven lasers. Nature 421(6920), 241–245 (2003). doi:10.1038/nature01353
A.L. Pan, W. Zhou, E.S.P. Leong, R. Liu, A.H. Chin, B.S. Zou, C.Z. Ning, Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. Nano Lett. 9(2), 784–788 (2009). doi:10.1021/nl803456k
J.Y. Xu, L. Ma, P.F. Guo, X.J. Zhuang, X.L. Zhu, W. Hu, X.F. Duan, A.L. Pan, Room-temperature dual-wavelength lasing from single nanoribbon lateral heterostructures. J. Am. Chem. Soc. 134(30), 12394–12397 (2012). doi:10.1021/ja3050458
T. Katsuhiro, Y. Masatoshi, F. Takashi, A III-V nanowire channel on silicon for high-performance vertical transistors. Nature 488(7410), 189–192 (2012). doi:10.1038/nature11293
Y.Y. Cao, Z.M. Wu, J.C. Ni, W.A. Bhutto, J. Li, S.P. Li, K. Huang, J.Y. Kang, Type-II core/shell nanowire heterostructures and their photovoltaic applications. Nano-Micro Lett. 4(3), 135–141 (2012). doi:10.3786/nml.v4i3.p135-141
M.X. Wang, G.H. Yue, Y.D. Lin, X. Wen, D.L. Peng, Z.R. Geng, Synthesis, optical properties and photovoltaic application of the SnS quasi-one-dimensional nanostructures. Nano-Micro Lett. 5(1), 1–6 (2013). doi:10.3786/nml.v5i1.p1-6
N. Guo, W.D. Hu, L. Liao, S. Yip, J.C. Ho et al., Anomalous and highly efficient InAs nanowire phototransistors based on majority carrier transport at room temperature. Adv. Mater. 26(48), 8203–8209 (2014). doi:10.1002/adma.201403664
P. Ren, W. Hu, Q. Zhang, X. Zhu, X. Zhuang et al., Band-selective infrared photodetectors with complete-composition-range InAsxP1−x alloy nanowires. Adv. Mater. 26(44), 7444–7499 (2014). doi:10.1002/adma.201402945
Q.L. Li, Y. Li, J. Gao, S.D. Wang, X.H. Sun, High performance single In2Se3 nanowire Photodetector. Appl. Phys. Lett. 99(24), 243105 (2011). doi:10.1063/1.3669513
L. Ma, W. Hu, Q. Zhang, P. Ren, X. Zhuang et al., Room-temperature near-infrared photodetectors based on single heterojunction nanowires. Nano Lett. 14(2), 694–698 (2014). doi:10.1021/nl403951f
K.M. Deng, L. Li, CdS nanoscale photodetectors. Adv. Mater. 26(17), 2619–2635 (2014). doi:10.1002/adma.201304621
X.Q. Liu, X. Liu, J.L. Wang, C.N. Liao, X.H. Xiao et al., Scalable integration of indium zinc oxide/photosensitive-nanowire composite thin-film transistors for transparent multicolor photodetectors array. Adv. Mater. 26(18), 2919–2924 (2014). doi:10.1002/adma.201305073
X.M. Xie, G.Z. Shen, Single-crystalline In2S3 nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse. Nanoscale 7(11), 5046–5052 (2015). doi:10.1039/C5NR00410A
R. Basori, A.K. Raychaudhuri, Role of contact and contact modification on photo-response in a charge transfer complex single nanowire device. Nano-Micro Lett. 6(1), 63–69 (2014). doi:10.5101/nml.v6i1.p63-69
C.-H. Kuo, J.-M. Wu, S.-J. Lin, W.-C. Chang, High sensitivity of middle-wavelength infrared photodetectors based on an individual InSb nanowire. Nanoscale Res. Lett. 8(1), 327 (2013). doi:10.1186/1556-276X-8-327
J.S. Miao, W.D. Hu, N. Guo, Z.Y. Lu, X.M. Zou et al., Single InAs nanowire room-temperature near-infrared photodetectors. ACS Nano 8(4), 3628–3635 (2014). doi:10.1021/nn500201g
Z. Liu, T. Luo, B. Liang, G. Chen, G. Yu, X.M. Xie, D. Chen, G.Z. Shen, High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res. 6(11), 775–783 (2013). doi:10.1007/s12274-013-0356-0
Y. Hou, J.R. Liu, M. Buchanan, A.J.S. Thorpe, P.J. Poole, H.C. Liu, K. Wu, S. Roorda, X.P. Zhang, Terahertz generation using implanted InGaAs photomixers and multi-wavelength quantum dot lasers. Nano-Micro Lett. 4(1), 10–13 (2012). doi:10.3786/nml.v4i1.p10-13
J.C. Shin, K.H. Kim, K.J. Yu, H.F. Hu, L.J. Yin, C.Z. Ning, J.A. Rogers, J.-M. Zuo, X.L. Li, InxGa1−xAs nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics. Nano Lett. 11(11), 4831–4838 (2011). doi:10.1021/nl202676b
J.J. Hou, F.Y. Wang, N. Han, F. Xiu, S.P. Yip, M. Fang, H. Lin, F.T. Hung, J.C. Ho, Stoichiometric effect on electrical, optical, and structural properties of composition-tunable InxGa1−xAs nanowires. ACS Nano 6(10), 9320–9325 (2012). doi:10.1021/nn304174g
K.A. Dick, K. Deppert, L.S. Karlsson, L.R. Wallenberg, L. Samuelson, W. Seifert, A new understanding of Au-assisted growth of III–V semiconductor nanowires. Adv. Funct. Mater. 15(10), 1603–1610 (2005). doi:10.1002/adfm.200500157
J. Groenen, R. Carles, G. Landa, Optical-phonon behavior in Ga1−xInxAs: the role of microscopic strains and ionic plasmon coupling. Phys. Rev. B 58(16), 10452–10462 (1998). doi:10.1103/PhysRevB.58.10452
C.S. Jung, H.S. Kim, G.B. Jung, K.J. Gong, Y.J. Cho, S.Y. Jang, C.H. Kim, C.-W. Lee, J. Park, Composition and phase tuned InGaAs alloy nanowires. J. Phys. Chem. C 115(16), 7843–7850 (2011). doi:10.1021/jp2003276
S. Morkötter, S. Funk, M. Liang, M. Döblinger, S. Hertenberger et al., Role of microstructure on optical properties in high-uniformity In1−xGaxAs nanowire arrays: evidence of a wider wurtzite band gap. Phys. Rev. B 87(20), 205303 (2013). doi:10.1103/PhysRevB.87.205303
Y.P. Varshni, Temperature dependence of the energy gap in semiconductors. Physica 34(1), 149–154 (1967). doi:10.1016/0031-8914(67)90062-6
T. Umezawa, K. Akahane, N. Yamamoto, A. Kanno, T. Kawanishi, Highly sensitive photodetector using ultra-high-density 1.5-μm quantum dots for advanced optical fiber communications. IEEE 20(6), 3801907 (2014). doi:10.1109/JSTQE.2014.2321288
Y.L. Lee, C.C. Huang, C.L. Ho, M.C. Wu, Planar InGaAs p-i-n photodiodes with transparent-conducting-based antireflection and double-path reflector. IEEE Electron Device Lett. 34(11), 1406–1408 (2013). doi:10.1109/LED.2013.2281830
Z. Liu, G. Chen, B. Liang, G. Yu, H.T. Huang, D. Chen, G.Z. Shen, Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible-light photodetectors. Opt. Express 21(6), 7799–7810 (2013). doi:10.1364/OE.21.007799
C. Soci, A. Zhang, X.-Y. Bao, H. Kim, Y. Lo, D.L. Wang, Nanowire photodetectors. J. Nanosci. Nanotechnol. 10(3), 1430–1499 (2010). doi:10.1166/jnn.2010.2157
R. Basori, K. Das, P. Kumar, K.S. Narayan, A.K. Raychaudhuri, Single CuTCNQ charge transfer complex nanowire as ultra high responsivity photodetector. Opt. Express 22(5), 4944–4952 (2014). doi:10.1364/OE.22.004944
H. Kind, H.Q. Yan, B. Messer, M. Law, P.D. Yang, Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 14(2), 158–160 (2002). doi:10.1002/1521-4095(20020116)14:2<158:AID-ADMA158>3.0.CO;2-W