Outstanding Humidity Chemiresistors Based on Imine-Linked Covalent Organic Framework Films for Human Respiration Monitoring
Corresponding Author: Zhi Yang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 149
Abstract
Human metabolite moisture detection is important in health monitoring and non-invasive diagnosis. However, ultra-sensitive quantitative extraction of respiration information in real-time remains a great challenge. Herein, chemiresistors based on imine-linked covalent organic framework (COF) films with dual-active sites are fabricated to address this issue, which demonstrates an amplified humidity-sensing signal performance. By regulation of monomers and functional groups, these COF films can be pre-engineered to achieve high response, wide detection range, fast response, and recovery time. Under the condition of relative humidity ranging from 13 to 98%, the COFTAPB-DHTA film-based humidity sensor exhibits outstanding humidity sensing performance with an expanded response value of 390 times. Furthermore, the response values of the COF film-based sensor are highly linear to the relative humidity in the range below 60%, reflecting a quantitative sensing mechanism at the molecular level. Based on the dual-site adsorption of the (–C=N–) and (C–N) stretching vibrations, the reversible tautomerism induced by hydrogen bonding with water molecules is demonstrated to be the main intrinsic mechanism for this effective humidity detection. In addition, the synthesized COF films can be further exploited to effectively detect human nasal and oral breathing as well as fabric permeability, which will inspire novel designs for effective humidity-detection devices.
Highlights:
1 Imine groups in covalent organic framework (COF) films act as dual-active sites for humidity sensing, inducing an intrinsic enhanced mechanism of reversible protonated tautomerism via water molecule-induced hydrogen bonding.
2 The cis-ketoimine reciprocal isomerization induces a stretching vibration effect for the ordered conjugated conductive frame of COF films, realizing fast response, wide range, and high sensitivity characteristics for humidity detection.
3 Resistance changes of COF film-based sensors keep a strong linear relationship with low-range relative humidity, reflecting the quantitative sensing mechanism at the molecular level.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Peng, K. Dong, C. Ning, R. Cheng, J. Yi et al., All-nanofiber self-powered skin-interfaced real-time respiratory monitoring system for obstructive sleep apnea-hypopnea syndrome diagnosing. Adv. Funct. Mater. 31(34), 2103559 (2021). https://doi.org/10.1002/adfm.202103559
- P. Zhu, S. Li, X. Jiang, Q. Wang, F. Fan et al., Noninvasive and wearable respiration sensor based on organic semiconductor film with strong electron affinity. Anal. Chem. 91(15), 10320–10327 (2019). https://doi.org/10.1021/acs.analchem.9b02811
- J. Liu, J. Zhou, J. Yao, X. Zhang, L. Li et al., Impact of meteorological factors on the COVID-19 transmission: a multi-city study in China. Sci. Total Environ. 726, 138513 (2020). https://doi.org/10.1016/j.scitotenv.2020.138513
- L.B. Baker, J.B. Model, K.A. Barnes, M.L. Anderson, S.P. Lee et al., Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications. Sci. Adv. 6(50), eabe3929 (2020). https://doi.org/10.1126/sciadv.abe3929
- R. Xie, Q. Du, B. Zou, Y. Chen, K. Zhang et al., Wearable leather-based electronics for respiration monitoring. ACS Appl. Bio Mater. 2(4), 1427–1431 (2019). https://doi.org/10.1021/acsabm.9b00082
- C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31(9), e1801072 (2019). https://doi.org/10.1002/adma.201801072
- X. Xiao, C. Li, S. Fan, Y. Liu, Y. Liu, Optical-thermally actuated graphene mechanical resonator for humidity sensing. Sens. Actuators B Chem. 374, 132851 (2023). https://doi.org/10.1016/j.snb.2022.132851
- B. Adhikari, S. Majumdar, Polymers in sensor applications. Prog. Polym. Sci. 29(7), 699–766 (2004). https://doi.org/10.1016/j.progpolymsci.2004.03.002
- R. Freund, O. Zaremba, G. Arnauts, R. Ameloot, G. Skorupskii et al., The current status of MOF and COF applications. Angew. Chem. Int. Ed. 60(45), 23975–24001 (2021). https://doi.org/10.1002/anie.202106259
- X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi2S3 nanosheets. Nano-Micro Lett. 14(1), 8 (2021). https://doi.org/10.1007/s40820-021-00740-1
- P. Li, N. Su, Z. Wang, J. Qiu, A Ti3C2Tx Mxene-based energy-harvesting soft actuator with self-powered humidity sensing and real-time motion tracking capability. ACS Nano 15(10), 16811–16818 (2021). https://doi.org/10.1021/acsnano.1c07186
- H. Xing, X. Li, Y. Lu, Y. Wu, Y. He et al., Mxene/MWCNT electronic fabric with enhanced mechanical robustness on humidity sensing for real-time respiration monitoring. Sens. Actuators B Chem. 361, 131704 (2022). https://doi.org/10.1016/j.snb.2022.131704
- A.P. Côté, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger et al., Porous, crystalline, covalent organic frameworks. Science 310(5751), 1166–1170 (2005). https://doi.org/10.1126/science.1120411
- K. Geng, T. He, R. Liu, S. Dalapati, K. Tan et al., Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120(16), 8814–8933 (2020). https://doi.org/10.1021/acs.chemrev.9b00550
- R.-R. Liang, S.-Y. Jiang, R.-H. A, X. Zhao, Two-dimensional covalent organic frameworks with hierarchical porosity. Chem. Soc. Rev. 49(12), 3920–3951 (2020). https://doi.org/10.1039/d0cs00049c
- L. Guo, L. Yang, M. Li, L. Kuang, Y. Song et al., Covalent organic frameworks for fluorescent sensing: recent developments and future challenges. Coord. Chem. Rev. 440, 213957 (2021). https://doi.org/10.1016/j.ccr.2021.213957
- D.D. Medina, V. Werner, F. Auras, R. Tautz, M. Dogru et al., Oriented thin films of a benzodithiophene covalent organic framework. ACS Nano 8(4), 4042–4052 (2014). https://doi.org/10.1021/nn5000223
- A.M. Evans, M.J. Strauss, A.R. Corcos, Z. Hirani, W. Ji et al., Two-dimensional polymers and polymerizations. Chem. Rev. 122(1), 442–564 (2022). https://doi.org/10.1021/acs.chemrev.0c01184
- S. Jhulki, A.M. Evans, X. Hao, M.W. Cooper, C.H. Feriante et al., Humidity sensing through reversible isomerization of a covalent organic framework. J. Am. Chem. Soc. 142(2), 783–791 (2020). https://doi.org/10.1021/jacs.9b08628
- T.Q. Trung, N.E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater. 28(22), 4338–4372 (2016). https://doi.org/10.1002/adma.201504244
- H. Yuan, N. Li, J. Linghu, J. Dong, Y. Wang et al., Chip-level integration of covalent organic frameworks for trace benzene sensing. ACS Sens. 5(5), 1474–1481 (2020). https://doi.org/10.1021/acssensors.0c00495
- S. Harpreet, T. Vijay, J. Nityasaga, B. Indu, S. Nidhi et al., A porous, crystalline truxene-based covalent organic framework and its application in humidity sensing. J. Mater. Chem. A 5(41), 21820–21827 (2017). https://doi.org/10.1039/c7ta05043g
- Y. Liang, Q. Ding, H. Wang, Z. Wu, J. Li et al., Humidity sensing of stretchable and transparent hydrogel films for wireless respiration monitoring. Nano-Micro Lett. 14(1), 183 (2022). https://doi.org/10.1007/s40820-022-00934-1
- W. Wang, W. Zhao, H. Xu, S. Liu, W. Huang et al., Fabrication of ultra-thin 2D covalent organic framework nanosheets and their application in functional electronic devices. Coord. Chem. Rev. 429, 213616 (2021). https://doi.org/10.1016/j.ccr.2020.213616
- N. Keller, T. Bein, Optoelectronic processes in covalent organic frameworks. Chem. Soc. Rev. 50(3), 1813–1845 (2021). https://doi.org/10.1039/d0cs00793e
- C. Fan, H. Wu, J. Guan, X. You, C. Yang et al., Scalable fabrication of crystalline COF membranes from amorphous polymeric membranes. Angew. Chem. Int. Ed. 60(33), 18051–18058 (2021). https://doi.org/10.1002/anie.202102965
- Q. Hao, C. Zhao, B. Sun, C. Lu, J. Liu et al., Confined synthesis of two-dimensional covalent organic framework thin films within superspreading water layer. J. Am. Chem. Soc. 140(38), 12152–12158 (2018). https://doi.org/10.1021/jacs.8b07120
- H. Jiang, Z. Guo, H. Wang, X. Liu, Y. Ren et al., Solvent-processable 0D covalent organic framework quantum dot engineered composite membranes for biogas upgrading. J. Membr. Sci. 640, 119803 (2021). https://doi.org/10.1016/j.memsci.2021.119803
- Z. Pang, T. Zhou, R. Liang, Q. Qi, X. Zhao, Regulating the topology of 2D covalent organic frameworks by the rational introduction of substituents. Chem. Sci. 8(5), 3866–3870 (2017). https://doi.org/10.1039/C6SC05673C
- K. Dey, M. Pal, K.C. Rout, S. Kunjattu, A. Das et al., Selective molecular separation by interfacially crystallized covalent organic framework thin films. J. Am. Chem. Soc. 139(37), 13083–13091 (2017). https://doi.org/10.1021/jacs.7b06640
- D. Zhou, X. Tan, H. Wu, L. Tian, M. Li, Synthesis of C–C bonded two-dimensional conjugated covalent organic framework films by Suzuki polymerization on a liquid-liquid interface. Angew. Chem. Int. Ed. 58(5), 1376–1381 (2019). https://doi.org/10.1002/anie.201811399
- S. Marco, C. Alessio, M. Manuela, Z. Massimo, C. Grabriella et al., Self-assembly of functionalized oligothiophene into hygroscopic fibers: fabrication of highly sensitive and fast humidity sensors. Adv. Electron. Mater. 4(10), 1700382 (2018). https://doi.org/10.1002/aelm.201700382
- B. Zhang, L. Chen, Z. Zhang, Q. Li, P. Khangale et al., Modulating the band structure of metal coordinated salen COFs and an in situ constructed charge transfer heterostructure for electrocatalysis hydrogen evolution. Adv. Sci. 9(22), e2105912 (2022). https://doi.org/10.1002/advs.202105912
- Q. Xu, Y. Tang, X. Zhang, Y. Oshima, Q. Chen et al., Template conversion of covalent organic frameworks into 2D conducting nanocarbons for catalyzing oxygen reduction reaction. Adv. Mater. 30(15), e1706330 (2018). https://doi.org/10.1002/adma.201706330
- Y. Li, W. Cui, Q. Jiang, R. Liang, X. Li et al., Arousing electrochemiluminescence out of non-electroluminescent monomers within covalent organic frameworks. ACS Appl. Mater. Interfaces 13(40), 47921–47931 (2021). https://doi.org/10.1021/acsami.1c12958
- J. Zhao, J. Ren, G. Zhang, Z. Zhao, S. Liu et al., Donor-acceptor type covalent organic frameworks. Chem. Eur. J. 27(42), 10781–10797 (2021). https://doi.org/10.1002/chem.202101135
- S. Kano, K. Kim, M. Fujii, Fast-response and flexible nanocrystal-based humidity sensor for monitoring human respiration and water evaporation on skin. ACS Sens. 2(6), 828–833 (2017). https://doi.org/10.1021/acssensors.7b00199
- J. Liang, X. Zhang, J. Ji, Hygroscopic phase change composite material-a review. J. Energy Storage 36, 102395 (2021). https://doi.org/10.1016/j.est.2021.102395
- H. Li, X. Li, X. Li, C. Chong, J. Jin et al., Multifunctional smart mask: enabling self-dehumidification and self-powered wearables via transpiration-driven electrokinetic power generation from human breath. Chem. Eng. J. 461, 142083 (2023). https://doi.org/10.1016/j.cej.2023.142083
- Z. Zhen, Z. Li, X. Zhao, Y. Zhong, L. Zhang et al., Formation of uniform water microdroplets on wrinkled graphene for ultrafast humidity sensing. Small 14(15), e1703848 (2018). https://doi.org/10.1002/smll.201703848
- R. Wei, D. Breite, C. Song, D. Gräsing, T. Ploss et al., Biocatalytic degradation efficiency of postconsumer polyethylene terephthalate packaging determined by their polymer microstructures. Adv. Sci. 6(14), 1900491 (2019). https://doi.org/10.1002/advs.201900491
- Y. Zhang, J. Guo, G. Han, Y. Bai, Q. Ge et al., Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Sci. Adv. 7(13), eabe8706 (2021). https://doi.org/10.1126/sciadv.abe8706
- W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Gr. 14, 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5
- F. Neese, The ORCA program system. WIREs Comput. Mol. Sci. 2(1), 73–78 (2011). https://doi.org/10.1002/wcms.81
- T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012). https://doi.org/10.1002/jcc.22885
- H. Zhang, L. Zhang, S. Dong, X. Duan, D. Zhu et al., Regulating energy band structures of triazine covalent organic frameworks with electron-donating/withdrawing substituents for visible-light-responsive photocatalytic tetracycline degradation and Cr(VI) reduction. J. Hazard. Mater. 446, 130756 (2023). https://doi.org/10.1016/j.jhazmat.2023.130756
- S. Liu, X. Zhou, W. Han, J. Li, X. Sun et al., Theoretical and experimental insights into the OH-mediated mineralization mechanism of flutriafol. Electrochim. Acta 235, 223–232 (2017). https://doi.org/10.1016/j.electacta.2017.03.062
- Q. Wei, K. Paul, K. Yevhen, X. Qiu, K. Hartmut et al., Conjugation-induced thermally activated delayed fluorescence (TADF): from conventional non-TADF units to TADF-active polymers. Adv. Funct. Mater. 27(7), 1605051 (2017). https://doi.org/10.1002/adfm.201605051
- J. Xu, S. An, X. Song, Y. Cao, N. Wang et al., Towards high performance Li–S batteries via sulfonate-rich COF-modified separator. Adv. Mater. 33(49), e2105178 (2021). https://doi.org/10.1002/adma.202105178
- X. Xu, R. Xiong, Z. Zhang, X. Zhang, C. Gu et al., Space-partitioning and metal coordination in free-standing covalent organic framework nano-films: over 230 mWh/cm3 energy density for flexible in-plane micro-supercapacitors. Chem. Eng. J. 447, 137447 (2022). https://doi.org/10.1016/j.cej.2022.137447
- W. Xu, Y. Sun, X. Dong, S. Li, H. Wang et al., Local order and vibrational coupling of the C=O stretching mode of gamma-caprolactone in liquid binary mixtures. Sci. Rep. 7(1), 12182 (2017). https://doi.org/10.1038/s41598-017-12030-1
- C.R. DeBlase, K.H. Burgos, K.E. Silberstein, G.G. Rodríguez, R.P. Bisbey et al., Rapid and efficient redox processes within 2D covalent organic framework thin films. ACS Nano 9(3), 3178–3183 (2015). https://doi.org/10.1021/acsnano.5b00184
- S.A. Ahmed, Q. Shen, Q. Liao, J. Zhou, S. Hanif et al., Mass transfer modulation and gas mapping based on covalent organic frameworks-covered theta micropipette. Anal. Chem. 92(10), 7343–7348 (2020). https://doi.org/10.1021/acs.analchem.0c01152
- L. Zhang, Y. Shi, Y. Wang, N.R. Shiju, Nanocarbon catalysts: recent understanding regarding the active sites. Adv. Sci. 7(5), 1902126 (2020). https://doi.org/10.1002/advs.201902126
- L. Zhang, T. Ritter, A perspective on late-stage aromatic C–H bond functionalization. J. Am. Chem. Soc. 144(6), 2399–2414 (2022). https://doi.org/10.1021/jacs.1c10783
- D. Zhang, P. Ren, W. Liu, Y. Li, S. Salli et al., Photocatalytic abstraction of hydrogen atoms from water using hydroxylated graphitic carbon nitride for hydrogenative coupling reactions. Angew. Chem. Int. Ed. 61(24), e202204256 (2022). https://doi.org/10.1002/anie.202204256
References
X. Peng, K. Dong, C. Ning, R. Cheng, J. Yi et al., All-nanofiber self-powered skin-interfaced real-time respiratory monitoring system for obstructive sleep apnea-hypopnea syndrome diagnosing. Adv. Funct. Mater. 31(34), 2103559 (2021). https://doi.org/10.1002/adfm.202103559
P. Zhu, S. Li, X. Jiang, Q. Wang, F. Fan et al., Noninvasive and wearable respiration sensor based on organic semiconductor film with strong electron affinity. Anal. Chem. 91(15), 10320–10327 (2019). https://doi.org/10.1021/acs.analchem.9b02811
J. Liu, J. Zhou, J. Yao, X. Zhang, L. Li et al., Impact of meteorological factors on the COVID-19 transmission: a multi-city study in China. Sci. Total Environ. 726, 138513 (2020). https://doi.org/10.1016/j.scitotenv.2020.138513
L.B. Baker, J.B. Model, K.A. Barnes, M.L. Anderson, S.P. Lee et al., Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications. Sci. Adv. 6(50), eabe3929 (2020). https://doi.org/10.1126/sciadv.abe3929
R. Xie, Q. Du, B. Zou, Y. Chen, K. Zhang et al., Wearable leather-based electronics for respiration monitoring. ACS Appl. Bio Mater. 2(4), 1427–1431 (2019). https://doi.org/10.1021/acsabm.9b00082
C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31(9), e1801072 (2019). https://doi.org/10.1002/adma.201801072
X. Xiao, C. Li, S. Fan, Y. Liu, Y. Liu, Optical-thermally actuated graphene mechanical resonator for humidity sensing. Sens. Actuators B Chem. 374, 132851 (2023). https://doi.org/10.1016/j.snb.2022.132851
B. Adhikari, S. Majumdar, Polymers in sensor applications. Prog. Polym. Sci. 29(7), 699–766 (2004). https://doi.org/10.1016/j.progpolymsci.2004.03.002
R. Freund, O. Zaremba, G. Arnauts, R. Ameloot, G. Skorupskii et al., The current status of MOF and COF applications. Angew. Chem. Int. Ed. 60(45), 23975–24001 (2021). https://doi.org/10.1002/anie.202106259
X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi2S3 nanosheets. Nano-Micro Lett. 14(1), 8 (2021). https://doi.org/10.1007/s40820-021-00740-1
P. Li, N. Su, Z. Wang, J. Qiu, A Ti3C2Tx Mxene-based energy-harvesting soft actuator with self-powered humidity sensing and real-time motion tracking capability. ACS Nano 15(10), 16811–16818 (2021). https://doi.org/10.1021/acsnano.1c07186
H. Xing, X. Li, Y. Lu, Y. Wu, Y. He et al., Mxene/MWCNT electronic fabric with enhanced mechanical robustness on humidity sensing for real-time respiration monitoring. Sens. Actuators B Chem. 361, 131704 (2022). https://doi.org/10.1016/j.snb.2022.131704
A.P. Côté, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger et al., Porous, crystalline, covalent organic frameworks. Science 310(5751), 1166–1170 (2005). https://doi.org/10.1126/science.1120411
K. Geng, T. He, R. Liu, S. Dalapati, K. Tan et al., Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120(16), 8814–8933 (2020). https://doi.org/10.1021/acs.chemrev.9b00550
R.-R. Liang, S.-Y. Jiang, R.-H. A, X. Zhao, Two-dimensional covalent organic frameworks with hierarchical porosity. Chem. Soc. Rev. 49(12), 3920–3951 (2020). https://doi.org/10.1039/d0cs00049c
L. Guo, L. Yang, M. Li, L. Kuang, Y. Song et al., Covalent organic frameworks for fluorescent sensing: recent developments and future challenges. Coord. Chem. Rev. 440, 213957 (2021). https://doi.org/10.1016/j.ccr.2021.213957
D.D. Medina, V. Werner, F. Auras, R. Tautz, M. Dogru et al., Oriented thin films of a benzodithiophene covalent organic framework. ACS Nano 8(4), 4042–4052 (2014). https://doi.org/10.1021/nn5000223
A.M. Evans, M.J. Strauss, A.R. Corcos, Z. Hirani, W. Ji et al., Two-dimensional polymers and polymerizations. Chem. Rev. 122(1), 442–564 (2022). https://doi.org/10.1021/acs.chemrev.0c01184
S. Jhulki, A.M. Evans, X. Hao, M.W. Cooper, C.H. Feriante et al., Humidity sensing through reversible isomerization of a covalent organic framework. J. Am. Chem. Soc. 142(2), 783–791 (2020). https://doi.org/10.1021/jacs.9b08628
T.Q. Trung, N.E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater. 28(22), 4338–4372 (2016). https://doi.org/10.1002/adma.201504244
H. Yuan, N. Li, J. Linghu, J. Dong, Y. Wang et al., Chip-level integration of covalent organic frameworks for trace benzene sensing. ACS Sens. 5(5), 1474–1481 (2020). https://doi.org/10.1021/acssensors.0c00495
S. Harpreet, T. Vijay, J. Nityasaga, B. Indu, S. Nidhi et al., A porous, crystalline truxene-based covalent organic framework and its application in humidity sensing. J. Mater. Chem. A 5(41), 21820–21827 (2017). https://doi.org/10.1039/c7ta05043g
Y. Liang, Q. Ding, H. Wang, Z. Wu, J. Li et al., Humidity sensing of stretchable and transparent hydrogel films for wireless respiration monitoring. Nano-Micro Lett. 14(1), 183 (2022). https://doi.org/10.1007/s40820-022-00934-1
W. Wang, W. Zhao, H. Xu, S. Liu, W. Huang et al., Fabrication of ultra-thin 2D covalent organic framework nanosheets and their application in functional electronic devices. Coord. Chem. Rev. 429, 213616 (2021). https://doi.org/10.1016/j.ccr.2020.213616
N. Keller, T. Bein, Optoelectronic processes in covalent organic frameworks. Chem. Soc. Rev. 50(3), 1813–1845 (2021). https://doi.org/10.1039/d0cs00793e
C. Fan, H. Wu, J. Guan, X. You, C. Yang et al., Scalable fabrication of crystalline COF membranes from amorphous polymeric membranes. Angew. Chem. Int. Ed. 60(33), 18051–18058 (2021). https://doi.org/10.1002/anie.202102965
Q. Hao, C. Zhao, B. Sun, C. Lu, J. Liu et al., Confined synthesis of two-dimensional covalent organic framework thin films within superspreading water layer. J. Am. Chem. Soc. 140(38), 12152–12158 (2018). https://doi.org/10.1021/jacs.8b07120
H. Jiang, Z. Guo, H. Wang, X. Liu, Y. Ren et al., Solvent-processable 0D covalent organic framework quantum dot engineered composite membranes for biogas upgrading. J. Membr. Sci. 640, 119803 (2021). https://doi.org/10.1016/j.memsci.2021.119803
Z. Pang, T. Zhou, R. Liang, Q. Qi, X. Zhao, Regulating the topology of 2D covalent organic frameworks by the rational introduction of substituents. Chem. Sci. 8(5), 3866–3870 (2017). https://doi.org/10.1039/C6SC05673C
K. Dey, M. Pal, K.C. Rout, S. Kunjattu, A. Das et al., Selective molecular separation by interfacially crystallized covalent organic framework thin films. J. Am. Chem. Soc. 139(37), 13083–13091 (2017). https://doi.org/10.1021/jacs.7b06640
D. Zhou, X. Tan, H. Wu, L. Tian, M. Li, Synthesis of C–C bonded two-dimensional conjugated covalent organic framework films by Suzuki polymerization on a liquid-liquid interface. Angew. Chem. Int. Ed. 58(5), 1376–1381 (2019). https://doi.org/10.1002/anie.201811399
S. Marco, C. Alessio, M. Manuela, Z. Massimo, C. Grabriella et al., Self-assembly of functionalized oligothiophene into hygroscopic fibers: fabrication of highly sensitive and fast humidity sensors. Adv. Electron. Mater. 4(10), 1700382 (2018). https://doi.org/10.1002/aelm.201700382
B. Zhang, L. Chen, Z. Zhang, Q. Li, P. Khangale et al., Modulating the band structure of metal coordinated salen COFs and an in situ constructed charge transfer heterostructure for electrocatalysis hydrogen evolution. Adv. Sci. 9(22), e2105912 (2022). https://doi.org/10.1002/advs.202105912
Q. Xu, Y. Tang, X. Zhang, Y. Oshima, Q. Chen et al., Template conversion of covalent organic frameworks into 2D conducting nanocarbons for catalyzing oxygen reduction reaction. Adv. Mater. 30(15), e1706330 (2018). https://doi.org/10.1002/adma.201706330
Y. Li, W. Cui, Q. Jiang, R. Liang, X. Li et al., Arousing electrochemiluminescence out of non-electroluminescent monomers within covalent organic frameworks. ACS Appl. Mater. Interfaces 13(40), 47921–47931 (2021). https://doi.org/10.1021/acsami.1c12958
J. Zhao, J. Ren, G. Zhang, Z. Zhao, S. Liu et al., Donor-acceptor type covalent organic frameworks. Chem. Eur. J. 27(42), 10781–10797 (2021). https://doi.org/10.1002/chem.202101135
S. Kano, K. Kim, M. Fujii, Fast-response and flexible nanocrystal-based humidity sensor for monitoring human respiration and water evaporation on skin. ACS Sens. 2(6), 828–833 (2017). https://doi.org/10.1021/acssensors.7b00199
J. Liang, X. Zhang, J. Ji, Hygroscopic phase change composite material-a review. J. Energy Storage 36, 102395 (2021). https://doi.org/10.1016/j.est.2021.102395
H. Li, X. Li, X. Li, C. Chong, J. Jin et al., Multifunctional smart mask: enabling self-dehumidification and self-powered wearables via transpiration-driven electrokinetic power generation from human breath. Chem. Eng. J. 461, 142083 (2023). https://doi.org/10.1016/j.cej.2023.142083
Z. Zhen, Z. Li, X. Zhao, Y. Zhong, L. Zhang et al., Formation of uniform water microdroplets on wrinkled graphene for ultrafast humidity sensing. Small 14(15), e1703848 (2018). https://doi.org/10.1002/smll.201703848
R. Wei, D. Breite, C. Song, D. Gräsing, T. Ploss et al., Biocatalytic degradation efficiency of postconsumer polyethylene terephthalate packaging determined by their polymer microstructures. Adv. Sci. 6(14), 1900491 (2019). https://doi.org/10.1002/advs.201900491
Y. Zhang, J. Guo, G. Han, Y. Bai, Q. Ge et al., Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Sci. Adv. 7(13), eabe8706 (2021). https://doi.org/10.1126/sciadv.abe8706
W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Gr. 14, 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5
F. Neese, The ORCA program system. WIREs Comput. Mol. Sci. 2(1), 73–78 (2011). https://doi.org/10.1002/wcms.81
T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012). https://doi.org/10.1002/jcc.22885
H. Zhang, L. Zhang, S. Dong, X. Duan, D. Zhu et al., Regulating energy band structures of triazine covalent organic frameworks with electron-donating/withdrawing substituents for visible-light-responsive photocatalytic tetracycline degradation and Cr(VI) reduction. J. Hazard. Mater. 446, 130756 (2023). https://doi.org/10.1016/j.jhazmat.2023.130756
S. Liu, X. Zhou, W. Han, J. Li, X. Sun et al., Theoretical and experimental insights into the OH-mediated mineralization mechanism of flutriafol. Electrochim. Acta 235, 223–232 (2017). https://doi.org/10.1016/j.electacta.2017.03.062
Q. Wei, K. Paul, K. Yevhen, X. Qiu, K. Hartmut et al., Conjugation-induced thermally activated delayed fluorescence (TADF): from conventional non-TADF units to TADF-active polymers. Adv. Funct. Mater. 27(7), 1605051 (2017). https://doi.org/10.1002/adfm.201605051
J. Xu, S. An, X. Song, Y. Cao, N. Wang et al., Towards high performance Li–S batteries via sulfonate-rich COF-modified separator. Adv. Mater. 33(49), e2105178 (2021). https://doi.org/10.1002/adma.202105178
X. Xu, R. Xiong, Z. Zhang, X. Zhang, C. Gu et al., Space-partitioning and metal coordination in free-standing covalent organic framework nano-films: over 230 mWh/cm3 energy density for flexible in-plane micro-supercapacitors. Chem. Eng. J. 447, 137447 (2022). https://doi.org/10.1016/j.cej.2022.137447
W. Xu, Y. Sun, X. Dong, S. Li, H. Wang et al., Local order and vibrational coupling of the C=O stretching mode of gamma-caprolactone in liquid binary mixtures. Sci. Rep. 7(1), 12182 (2017). https://doi.org/10.1038/s41598-017-12030-1
C.R. DeBlase, K.H. Burgos, K.E. Silberstein, G.G. Rodríguez, R.P. Bisbey et al., Rapid and efficient redox processes within 2D covalent organic framework thin films. ACS Nano 9(3), 3178–3183 (2015). https://doi.org/10.1021/acsnano.5b00184
S.A. Ahmed, Q. Shen, Q. Liao, J. Zhou, S. Hanif et al., Mass transfer modulation and gas mapping based on covalent organic frameworks-covered theta micropipette. Anal. Chem. 92(10), 7343–7348 (2020). https://doi.org/10.1021/acs.analchem.0c01152
L. Zhang, Y. Shi, Y. Wang, N.R. Shiju, Nanocarbon catalysts: recent understanding regarding the active sites. Adv. Sci. 7(5), 1902126 (2020). https://doi.org/10.1002/advs.201902126
L. Zhang, T. Ritter, A perspective on late-stage aromatic C–H bond functionalization. J. Am. Chem. Soc. 144(6), 2399–2414 (2022). https://doi.org/10.1021/jacs.1c10783
D. Zhang, P. Ren, W. Liu, Y. Li, S. Salli et al., Photocatalytic abstraction of hydrogen atoms from water using hydroxylated graphitic carbon nitride for hydrogenative coupling reactions. Angew. Chem. Int. Ed. 61(24), e202204256 (2022). https://doi.org/10.1002/anie.202204256