Controllable Biosynthesis and Properties of Gold Nanoplates Using Yeast Extract
Corresponding Author: Yasha Yi
Nano-Micro Letters,
Vol. 9 No. 1 (2017), Article Number: 5
Abstract
Biosynthesis of gold nanostructures has drawn increasing concerns because of its green and sustainable synthetic process. However, biosynthesis of gold nanoplates is still a challenge because of the expensive source and difficulties of controllable formation of morphology and size. Herein, one-pot biosynthesis of gold nanoplates is proposed, in which cheap yeast was extracted as a green precursor. The morphologies and sizes of the gold nanostructures can be controlled via varying the pH value of the biomedium. In acid condition, gold nanoplates with side length from 1300 ± 200 to 300 ± 100 nm and height from 18 to 15 nm were obtained by increasing the pH value. Whereas, in neutral or basic condition, only gold nanoflowers and nanoparticles were obtained. It was determined that organic molecules, such as succinic acid, lactic acid, malic acid, and glutathione, which are generated in metabolism process, played important role in the reduction of gold ions. Besides, it was found that the gold nanoplates exhibited plasmonic property with prominent dipole infrared resonance in near-infrared region, indicating their potential in surface plasmon-enhanced applications, such as bioimaging and photothermal therapy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41(7), 2740–2779 (2012). doi:10.1039/c1cs15237h
- C.T. Campbell, The active site in nanoparticle gold catalysis. Science 306(5694), 234–235 (2004). doi:10.1126/science.1104246
- M. Turner, V.B. Golovko, O.P.H. Vaughan, P. Abdulkin, A. Berenguer-Murcia, M.S. Tikhov, B.F.G. Johnson, R.M. Lambert, Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454(7207), 981–983 (2008). doi:10.1038/nature07194
- S. Sarina, E.R. Waclawik, H. Zhu, Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradi ation. Green Chem. 15(7), 1814–1833 (2013). doi:10.1039/c3gc40450a
- D.H. Dahanayaka, J.X. Wang, S. Hossain, L.A. Bumm, Optically transparent Au 111 substrates: flat gold nanoparticle platforms for high-resolution scanning tunneling microscopy. J. Am. Chem. Soc. 128(18), 6052–6053 (2006). doi:10.1021/ja060862l
- K.D. Osberg, M. Rycenga, G.R. Bourret, K.A. Brown, C.A. Mirkin, Dispersible surface-enhanced Raman scattering nanosheets. Adv. Mater. 24(45), 6065–6070 (2012). doi:10.1002/adma.201202845
- A. Ohlinger, A. Deak, A.A. Lutich, J. Feldmann, Optically trapped gold nanoparticle enables listening at the microscale. Phys. Rev. Lett. 108(1), 018101 (2012). doi:10.1103/PhysRevLett.108.018101
- Z. Luo, X. Yuan, Y. Yu, Q. Zhang, D.T. Leong, J.Y. Lee, J. Xie, From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 134(40), 16662–16670 (2012). doi:10.1021/ja306199p
- S.E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C.M. Cobley, Y. Xia, Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res. 41(12), 1587–1595 (2008). doi:10.1021/ar800018v
- S.R. Beeram, F.P. Zamborini, Purification of gold nanoplates grown directly on surfaces for enhanced localized surface plasmon resonance biosensing. ACS Nano 4(7), 3633–3646 (2010). doi:10.1021/nn1007397
- L. Scarabelli, M. Coronado-Puchau, J.J. Giner-Casares, J. Langer, L.M. Liz-Marzán, Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced raman scattering. ACS Nano 8(6), 5833–5842 (2014). doi:10.1021/nn500727w
- C.K. Tsung, W.B. Hong, Q.H. Shi, X.S. Kou, M.H. Yeung, J.F. Wang, G.D. Stucky, Shape- and orientation-controlled gold nanoparticles formed within mesoporous silica nanofibers. Adv. Funct. Mater. 16(17), 2225–2230 (2006). doi:10.1002/adfm.200600535
- C.-K. Tsung, X. Kou, Q. Shi, J. Zhang, M.H. Yeung, J. Wang, G.D. Stucky, Selective shortening of single-crystalline gold nanorods by mild oxidation. J. Am. Chem. Soc. 128(16), 5352–5353 (2006). doi:10.1021/ja060447t
- J.E. Millstone, G.S. Metraux, C.A. Mirkin, Controlling the edge length of gold nanoprisms via a seed-mediated approach. Adv. Funct. Mater. 16(9), 1209–1214 (2006). doi:10.1002/adfm.200600066
- J.E. Millstone, W. Wei, M.R. Jones, H.J. Yoo, C.A. Mirkin, Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett. 8(8), 2526–2529 (2008). doi:10.1021/nl8016253
- H.C. Chu, C.H. Kuo, M.H. Huang, Thermal aqueous solution approach for the synthesis of triangular and hexagonal gold nanoplates with three different size ranges. Inorg. Chem. 45(2), 808–813 (2006). doi:10.1021/ic051758s
- J. Zhu, X.L. Jin, Electrochemical synthesis of gold triangular nanoplates and self-organized into rhombic nanostructures. Superlattices Microstruct. 41(4), 271–276 (2007). doi:10.1016/j.spmi.2007.03.001
- A. Miranda, E. Malheiro, E. Skiba, P. Quaresma, P.A. Carvalho, P. Eaton, B. de Castro, J.A. Shelnutt, E. Pereira, One-pot synthesis of triangular gold nanoplates allowing broad and fine tuning of edge length. Nanoscale 2(10), 2209–2216 (2010). doi:10.1039/C0NR00337A
- L. Chen, F. Ji, Y. Xu, L. He, Y.F. Mi, F. Bao, B.Q. Sun, X.H. Zhang, Q. Zhang, High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 14(12), 7201–7206 (2014). doi:10.1021/nl504126u
- Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48(1), 60–103 (2009). doi:10.1002/anie.200802248
- G.S. Métraux, Y.C. Cao, R. Jin, C.A. Mirkin, Triangular nanoframes made of gold and silver. Nano Lett. 3(4), 519–522 (2003). doi:10.1021/nl034097+
- J.E. Millstone, S.J. Hurst, G.S. Metraux, J.I. Cutler, C.A. Mirkin, Colloidal gold and silver triangular nanoprisms. Small 5(6), 646–664 (2009). doi:10.1002/smll.200801480
- J. Chen, J.M. McLellan, A. Siekkinen, Y. Xiong, Z.-Y. Li, Y. Xia, Facile synthesis of gold–silver nanocages with controllable pores on the surface. J. Am. Chem. Soc. 128(46), 14776–14777 (2006). doi:10.1021/ja066023g
- M. Grzelczak, J. Perez-Juste, P. Mulvaney, L.M. Liz-Marzan, Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37(9), 1783–1791 (2008). doi:10.1039/b711490g
- S.S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, M. Sastry, Biological synthesis of triangular gold nanoprisms. Nat. Mater. 3(7), 482–488 (2004). doi:10.1038/nmat1152
- D. Yohan, C. Cruje, X.F. Lu, D.B. Chithrani, Size dependent gold nanoparticle interaction at nano-micro interface using both monolayer and multilayer (tissue-like) cell models. Nano-Micro Lett. 8(1), 44–53 (2016). doi:10.1007/s40820-015-0060-6
- Y. Huang, A.R. Ferhan, Y. Gao, A. Dandapat, D.-H. Kim, High-yield synthesis of triangular gold nanoplates with improved shape uniformity, tunable edge length and thickness. Nanoscale 6(12), 6496–6500 (2014). doi:10.1039/c4nr00834k
- A. Azadbakht, A.R. Abbasi, Z. Derikvand, Z. Karimi, The electrochemical behavior of Au/AuNPs/PNA/ZnSe-QD/ACA electrode towards CySH oxidation. Nano-Micro Lett. 7(2), 152–164 (2015). doi:10.1007/s40820-014-0028-y
- B. Tangeysh, K.M. Tibbetts, J.H. Odhner, B.B. Wayland, R.J. Levis, Triangular gold nanoplate growth by oriented attachment of Au seeds generated by strong field laser reduction. Nano Lett. 15(5), 3377–3382 (2015). doi:10.1021/acs.nanolett.5b00709
- G. Zhan, L. Ke, Q. Li, J. Huang, D. Hua, A.-R. Ibrahim, D. Sun, Synthesis of gold nanoplates with bioreducing agent using syringepumps: akinetic control. Ind. Eng. Chem. Res. 51(48), 15753–15762 (2012). doi:10.1021/ie302483d
- S.K. Das, A.R. Das, A.K. Guha, Microbial synthesis of multishaped gold nanostructures. Small 6(9), 1012–1021 (2010). doi:10.1002/smll.200902011
- G. Fleet, Yeast interactions and wine flavour. Int. J. Food Microbiol. 86(1–2), 11–22 (2003). doi:10.1016/s0168-1605(03)00245-9
- G. Beltran, M. Novo, N. Rozes, A. Mas, J.M. Guillamon, Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations. FEMS Yeast Res. 4(6), 625–632 (2004). doi:10.1016/j.femsyr.2003.12.004
- K. Takeshige, M. Baba, S. Tsuboi, T. Noda, Y. Ohsumi, Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol. 119(2), 301–311 (1992). doi:10.1083/jcb.119.2.301
- E. Nevoigt, Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. R. 72(3), 379–412 (2008). doi:10.1128/MMBR.00025-07
- S.K. Das, C. Dickinson, F. Lafir, D.F. Brougham, E. Marsili, Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem. 14(5), 1322–1334 (2012). doi:10.1039/c2gc16676c
- J.M. Otero, D. Cimini, K.R. Patil, S.G. Poulsen, L. Olsson, J. Nielsen, Industrial systems biology of saccharomyces cerevisiaeenables novel succinic acid cell factory. PLoS One 8(1), e54144 (2013). doi:10.1371/journal.pone.0054144
- O.V. Kharissova, H.V. Dias, B.I. Kharisov, B.O. Perez, V.M. Perez, The greener synthesis of nanoparticles. Trends Biotechnol. 31(4), 240–248 (2013). doi:10.1016/j.tibtech.2013.01.003
- A.P. Gasch, M. Werner-Washburne, The genomics of yeast responses to environmental stress and starvation. Funct. Integr. Genomics 2(4–5), 181–192 (2002). doi:10.1007/s10142-002-0058-2
- L. Cyrne, L.U. Martins, L. Fernandes, H.S. Marinho, Regulation of antioxidant enzymes gene expression in the yeast Saccharomyces cerevisiae during stationary phase. Free Radical Biol. Med. 34(3), 385–393 (2003). doi:10.1016/s0891-5849(02)01300-x
- C. Lofton, W. Sigmund, Mechanisms controlling crystal habits of gold and silver colloids. Adv. Funct. Mater. 15(7), 1197–1208 (2005). doi:10.1002/adfm.200400091
- D. Aherne, D.M. Ledwith, M. Gara, J.M. Kelly, Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv. Funct. Mater. 18(14), 2005–2016 (2008). doi:10.1002/adfm.200800233
- B. Lim, P.H.C. Camargo, Y.N. Xia, Mechanistic study of the synthesis of an nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4 with poly(vinylpyrrolidone). Langmuir 24(18), 10437–10442 (2008). doi:10.1021/la801803z
- B. Rodríguez-González, I. Pastoriza-Santos, L.M. Liz-Marzán, Bending contours in silver nanoprisms. J. Phys. Chem. B 110(24), 11796–11799 (2006). doi:10.1021/jp0611951
- A. Guerrero-Martínez, J. Pérez-Juste, E. Carbó-Argibay, G. Tardajos, L.M. Liz-Marzán, Gemini-surfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices. Angew. Chem. Int. Ed. 48(50), 9484–9488 (2009). doi:10.1002/anie.200904118
- S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem. Mater. 17(3), 566–572 (2005). doi:10.1021/cm048292g
- E. Vekris, V. Kitaev, D.D. Perovic, J.S. Aitchison, G.A. Ozin, Visualization of stacking faults and their formation in colloidal photonic cystal films. Adv. Mater. 20(6), 1110–1116 (2008). doi:10.1002/adma.200702431
- N.G. Bastus, J. Comenge, V. Puntes, Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27(17), 11098–11105 (2011). doi:10.1021/la201938u
- V. Germain, J. Li, D. Ingert, Z.L. Wang, M.P. Pileni, Stacking faults in formation of silver nanodisks. J. Phys. Chem. B 107(34), 8717–8720 (2003). doi:10.1021/jp0303826
- R.P. Andres, T. Bein, M. Dorogi, S. Feng, J.I. Henderson, C.P. Kubiak, W. Mahoney, R.G. Osifchin, R. Reifenberger, Coulomb staircase at room temperature in a self-assembled molecular nanostructure. Science 272(5266), 1323–1325 (1996). doi:10.1126/science.272.5266.1323
- F. Qin, T. Zhao, R.B. Jiang, N.N. Jiang, Q.F. Ruan, J.F. Wang, L.-D. Sun, C.-H. Yan, H.-Q. Lin, Thickness control produces gold nanoplates with their plasmon in the visible and near-infrared regions. Adv. Opt. Mater. 4(1), 76–85 (2016). doi:10.1002/adom.201500496
- J. Xie, Y. Zheng, J.Y. Ying, Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 131(3), 888–889 (2009). doi:10.1021/ja806804u
- M.S. Bakshi, Nanoshape control tendency of phospholipids and proteins: protein–nanoparticle composites, seeding, self-aggregation, and their applications in bionanotechnology and nanotoxicology. J. Phys. Chem. C 115(29), 13947–13960 (2011). doi:10.1021/jp202454k
- M.-X. Zhang, R. Cui, Z.-Q. Tian, Z.-L. Zhang, D.-W. Pang, Kinetics-controlled formation of gold clusters using a quasi-biological system. Adv. Funct. Mater. 20(21), 3673–3677 (2010). doi:10.1002/adfm.201001185
- X. Ji, X. Song, J. Li, Y. Bai, W. Yang, X. Peng, Size control of gold nanocrystals in citrate reduction: the third role of citrate. J. Am. Chem. Soc. 129(45), 13939–13948 (2007). doi:10.1021/ja074447k
- R. Cui, M.X. Zhang, Z.Q. Tian, Z.L. Zhang, D.W. Pang, Intermediate-dominated controllable biomimetic synthesis of gold nanoparticles in a quasi-biological system. Nanoscale 2(10), 2120–2125 (2010). doi:10.1039/c0nr00193g
- A.C. Templeton, W.P. Wuelfing, R.W. Murray, Monolayer-protected cluster molecules. Acc. Chem. Res. 33(1), 27–36 (2000). doi:10.1021/ar9602664
References
E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41(7), 2740–2779 (2012). doi:10.1039/c1cs15237h
C.T. Campbell, The active site in nanoparticle gold catalysis. Science 306(5694), 234–235 (2004). doi:10.1126/science.1104246
M. Turner, V.B. Golovko, O.P.H. Vaughan, P. Abdulkin, A. Berenguer-Murcia, M.S. Tikhov, B.F.G. Johnson, R.M. Lambert, Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454(7207), 981–983 (2008). doi:10.1038/nature07194
S. Sarina, E.R. Waclawik, H. Zhu, Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradi ation. Green Chem. 15(7), 1814–1833 (2013). doi:10.1039/c3gc40450a
D.H. Dahanayaka, J.X. Wang, S. Hossain, L.A. Bumm, Optically transparent Au 111 substrates: flat gold nanoparticle platforms for high-resolution scanning tunneling microscopy. J. Am. Chem. Soc. 128(18), 6052–6053 (2006). doi:10.1021/ja060862l
K.D. Osberg, M. Rycenga, G.R. Bourret, K.A. Brown, C.A. Mirkin, Dispersible surface-enhanced Raman scattering nanosheets. Adv. Mater. 24(45), 6065–6070 (2012). doi:10.1002/adma.201202845
A. Ohlinger, A. Deak, A.A. Lutich, J. Feldmann, Optically trapped gold nanoparticle enables listening at the microscale. Phys. Rev. Lett. 108(1), 018101 (2012). doi:10.1103/PhysRevLett.108.018101
Z. Luo, X. Yuan, Y. Yu, Q. Zhang, D.T. Leong, J.Y. Lee, J. Xie, From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 134(40), 16662–16670 (2012). doi:10.1021/ja306199p
S.E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C.M. Cobley, Y. Xia, Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res. 41(12), 1587–1595 (2008). doi:10.1021/ar800018v
S.R. Beeram, F.P. Zamborini, Purification of gold nanoplates grown directly on surfaces for enhanced localized surface plasmon resonance biosensing. ACS Nano 4(7), 3633–3646 (2010). doi:10.1021/nn1007397
L. Scarabelli, M. Coronado-Puchau, J.J. Giner-Casares, J. Langer, L.M. Liz-Marzán, Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced raman scattering. ACS Nano 8(6), 5833–5842 (2014). doi:10.1021/nn500727w
C.K. Tsung, W.B. Hong, Q.H. Shi, X.S. Kou, M.H. Yeung, J.F. Wang, G.D. Stucky, Shape- and orientation-controlled gold nanoparticles formed within mesoporous silica nanofibers. Adv. Funct. Mater. 16(17), 2225–2230 (2006). doi:10.1002/adfm.200600535
C.-K. Tsung, X. Kou, Q. Shi, J. Zhang, M.H. Yeung, J. Wang, G.D. Stucky, Selective shortening of single-crystalline gold nanorods by mild oxidation. J. Am. Chem. Soc. 128(16), 5352–5353 (2006). doi:10.1021/ja060447t
J.E. Millstone, G.S. Metraux, C.A. Mirkin, Controlling the edge length of gold nanoprisms via a seed-mediated approach. Adv. Funct. Mater. 16(9), 1209–1214 (2006). doi:10.1002/adfm.200600066
J.E. Millstone, W. Wei, M.R. Jones, H.J. Yoo, C.A. Mirkin, Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett. 8(8), 2526–2529 (2008). doi:10.1021/nl8016253
H.C. Chu, C.H. Kuo, M.H. Huang, Thermal aqueous solution approach for the synthesis of triangular and hexagonal gold nanoplates with three different size ranges. Inorg. Chem. 45(2), 808–813 (2006). doi:10.1021/ic051758s
J. Zhu, X.L. Jin, Electrochemical synthesis of gold triangular nanoplates and self-organized into rhombic nanostructures. Superlattices Microstruct. 41(4), 271–276 (2007). doi:10.1016/j.spmi.2007.03.001
A. Miranda, E. Malheiro, E. Skiba, P. Quaresma, P.A. Carvalho, P. Eaton, B. de Castro, J.A. Shelnutt, E. Pereira, One-pot synthesis of triangular gold nanoplates allowing broad and fine tuning of edge length. Nanoscale 2(10), 2209–2216 (2010). doi:10.1039/C0NR00337A
L. Chen, F. Ji, Y. Xu, L. He, Y.F. Mi, F. Bao, B.Q. Sun, X.H. Zhang, Q. Zhang, High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 14(12), 7201–7206 (2014). doi:10.1021/nl504126u
Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48(1), 60–103 (2009). doi:10.1002/anie.200802248
G.S. Métraux, Y.C. Cao, R. Jin, C.A. Mirkin, Triangular nanoframes made of gold and silver. Nano Lett. 3(4), 519–522 (2003). doi:10.1021/nl034097+
J.E. Millstone, S.J. Hurst, G.S. Metraux, J.I. Cutler, C.A. Mirkin, Colloidal gold and silver triangular nanoprisms. Small 5(6), 646–664 (2009). doi:10.1002/smll.200801480
J. Chen, J.M. McLellan, A. Siekkinen, Y. Xiong, Z.-Y. Li, Y. Xia, Facile synthesis of gold–silver nanocages with controllable pores on the surface. J. Am. Chem. Soc. 128(46), 14776–14777 (2006). doi:10.1021/ja066023g
M. Grzelczak, J. Perez-Juste, P. Mulvaney, L.M. Liz-Marzan, Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37(9), 1783–1791 (2008). doi:10.1039/b711490g
S.S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, M. Sastry, Biological synthesis of triangular gold nanoprisms. Nat. Mater. 3(7), 482–488 (2004). doi:10.1038/nmat1152
D. Yohan, C. Cruje, X.F. Lu, D.B. Chithrani, Size dependent gold nanoparticle interaction at nano-micro interface using both monolayer and multilayer (tissue-like) cell models. Nano-Micro Lett. 8(1), 44–53 (2016). doi:10.1007/s40820-015-0060-6
Y. Huang, A.R. Ferhan, Y. Gao, A. Dandapat, D.-H. Kim, High-yield synthesis of triangular gold nanoplates with improved shape uniformity, tunable edge length and thickness. Nanoscale 6(12), 6496–6500 (2014). doi:10.1039/c4nr00834k
A. Azadbakht, A.R. Abbasi, Z. Derikvand, Z. Karimi, The electrochemical behavior of Au/AuNPs/PNA/ZnSe-QD/ACA electrode towards CySH oxidation. Nano-Micro Lett. 7(2), 152–164 (2015). doi:10.1007/s40820-014-0028-y
B. Tangeysh, K.M. Tibbetts, J.H. Odhner, B.B. Wayland, R.J. Levis, Triangular gold nanoplate growth by oriented attachment of Au seeds generated by strong field laser reduction. Nano Lett. 15(5), 3377–3382 (2015). doi:10.1021/acs.nanolett.5b00709
G. Zhan, L. Ke, Q. Li, J. Huang, D. Hua, A.-R. Ibrahim, D. Sun, Synthesis of gold nanoplates with bioreducing agent using syringepumps: akinetic control. Ind. Eng. Chem. Res. 51(48), 15753–15762 (2012). doi:10.1021/ie302483d
S.K. Das, A.R. Das, A.K. Guha, Microbial synthesis of multishaped gold nanostructures. Small 6(9), 1012–1021 (2010). doi:10.1002/smll.200902011
G. Fleet, Yeast interactions and wine flavour. Int. J. Food Microbiol. 86(1–2), 11–22 (2003). doi:10.1016/s0168-1605(03)00245-9
G. Beltran, M. Novo, N. Rozes, A. Mas, J.M. Guillamon, Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations. FEMS Yeast Res. 4(6), 625–632 (2004). doi:10.1016/j.femsyr.2003.12.004
K. Takeshige, M. Baba, S. Tsuboi, T. Noda, Y. Ohsumi, Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol. 119(2), 301–311 (1992). doi:10.1083/jcb.119.2.301
E. Nevoigt, Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. R. 72(3), 379–412 (2008). doi:10.1128/MMBR.00025-07
S.K. Das, C. Dickinson, F. Lafir, D.F. Brougham, E. Marsili, Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem. 14(5), 1322–1334 (2012). doi:10.1039/c2gc16676c
J.M. Otero, D. Cimini, K.R. Patil, S.G. Poulsen, L. Olsson, J. Nielsen, Industrial systems biology of saccharomyces cerevisiaeenables novel succinic acid cell factory. PLoS One 8(1), e54144 (2013). doi:10.1371/journal.pone.0054144
O.V. Kharissova, H.V. Dias, B.I. Kharisov, B.O. Perez, V.M. Perez, The greener synthesis of nanoparticles. Trends Biotechnol. 31(4), 240–248 (2013). doi:10.1016/j.tibtech.2013.01.003
A.P. Gasch, M. Werner-Washburne, The genomics of yeast responses to environmental stress and starvation. Funct. Integr. Genomics 2(4–5), 181–192 (2002). doi:10.1007/s10142-002-0058-2
L. Cyrne, L.U. Martins, L. Fernandes, H.S. Marinho, Regulation of antioxidant enzymes gene expression in the yeast Saccharomyces cerevisiae during stationary phase. Free Radical Biol. Med. 34(3), 385–393 (2003). doi:10.1016/s0891-5849(02)01300-x
C. Lofton, W. Sigmund, Mechanisms controlling crystal habits of gold and silver colloids. Adv. Funct. Mater. 15(7), 1197–1208 (2005). doi:10.1002/adfm.200400091
D. Aherne, D.M. Ledwith, M. Gara, J.M. Kelly, Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv. Funct. Mater. 18(14), 2005–2016 (2008). doi:10.1002/adfm.200800233
B. Lim, P.H.C. Camargo, Y.N. Xia, Mechanistic study of the synthesis of an nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4 with poly(vinylpyrrolidone). Langmuir 24(18), 10437–10442 (2008). doi:10.1021/la801803z
B. Rodríguez-González, I. Pastoriza-Santos, L.M. Liz-Marzán, Bending contours in silver nanoprisms. J. Phys. Chem. B 110(24), 11796–11799 (2006). doi:10.1021/jp0611951
A. Guerrero-Martínez, J. Pérez-Juste, E. Carbó-Argibay, G. Tardajos, L.M. Liz-Marzán, Gemini-surfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices. Angew. Chem. Int. Ed. 48(50), 9484–9488 (2009). doi:10.1002/anie.200904118
S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem. Mater. 17(3), 566–572 (2005). doi:10.1021/cm048292g
E. Vekris, V. Kitaev, D.D. Perovic, J.S. Aitchison, G.A. Ozin, Visualization of stacking faults and their formation in colloidal photonic cystal films. Adv. Mater. 20(6), 1110–1116 (2008). doi:10.1002/adma.200702431
N.G. Bastus, J. Comenge, V. Puntes, Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27(17), 11098–11105 (2011). doi:10.1021/la201938u
V. Germain, J. Li, D. Ingert, Z.L. Wang, M.P. Pileni, Stacking faults in formation of silver nanodisks. J. Phys. Chem. B 107(34), 8717–8720 (2003). doi:10.1021/jp0303826
R.P. Andres, T. Bein, M. Dorogi, S. Feng, J.I. Henderson, C.P. Kubiak, W. Mahoney, R.G. Osifchin, R. Reifenberger, Coulomb staircase at room temperature in a self-assembled molecular nanostructure. Science 272(5266), 1323–1325 (1996). doi:10.1126/science.272.5266.1323
F. Qin, T. Zhao, R.B. Jiang, N.N. Jiang, Q.F. Ruan, J.F. Wang, L.-D. Sun, C.-H. Yan, H.-Q. Lin, Thickness control produces gold nanoplates with their plasmon in the visible and near-infrared regions. Adv. Opt. Mater. 4(1), 76–85 (2016). doi:10.1002/adom.201500496
J. Xie, Y. Zheng, J.Y. Ying, Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 131(3), 888–889 (2009). doi:10.1021/ja806804u
M.S. Bakshi, Nanoshape control tendency of phospholipids and proteins: protein–nanoparticle composites, seeding, self-aggregation, and their applications in bionanotechnology and nanotoxicology. J. Phys. Chem. C 115(29), 13947–13960 (2011). doi:10.1021/jp202454k
M.-X. Zhang, R. Cui, Z.-Q. Tian, Z.-L. Zhang, D.-W. Pang, Kinetics-controlled formation of gold clusters using a quasi-biological system. Adv. Funct. Mater. 20(21), 3673–3677 (2010). doi:10.1002/adfm.201001185
X. Ji, X. Song, J. Li, Y. Bai, W. Yang, X. Peng, Size control of gold nanocrystals in citrate reduction: the third role of citrate. J. Am. Chem. Soc. 129(45), 13939–13948 (2007). doi:10.1021/ja074447k
R. Cui, M.X. Zhang, Z.Q. Tian, Z.L. Zhang, D.W. Pang, Intermediate-dominated controllable biomimetic synthesis of gold nanoparticles in a quasi-biological system. Nanoscale 2(10), 2120–2125 (2010). doi:10.1039/c0nr00193g
A.C. Templeton, W.P. Wuelfing, R.W. Murray, Monolayer-protected cluster molecules. Acc. Chem. Res. 33(1), 27–36 (2000). doi:10.1021/ar9602664