Soft Electronics for Health Monitoring Assisted by Machine Learning
Corresponding Author: Jianhua Zhou
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 66
Abstract
Due to the development of the novel materials, the past two decades have witnessed the rapid advances of soft electronics. The soft electronics have huge potential in the physical sign monitoring and health care. One of the important advantages of soft electronics is forming good interface with skin, which can increase the user scale and improve the signal quality. Therefore, it is easy to build the specific dataset, which is important to improve the performance of machine learning algorithm. At the same time, with the assistance of machine learning algorithm, the soft electronics have become more and more intelligent to realize real-time analysis and diagnosis. The soft electronics and machining learning algorithms complement each other very well. It is indubitable that the soft electronics will bring us to a healthier and more intelligent world in the near future. Therefore, in this review, we will give a careful introduction about the new soft material, physiological signal detected by soft devices, and the soft devices assisted by machine learning algorithm. Some soft materials will be discussed such as two-dimensional material, carbon nanotube, nanowire, nanomesh, and hydrogel. Then, soft sensors will be discussed according to the physiological signal types (pulse, respiration, human motion, intraocular pressure, phonation, etc.). After that, the soft electronics assisted by various algorithms will be reviewed, including some classical algorithms and powerful neural network algorithms. Especially, the soft device assisted by neural network will be introduced carefully. Finally, the outlook, challenge, and conclusion of soft system powered by machine learning algorithm will be discussed.
Highlights:
1 This review introduces soft electronics for health monitoring assisted by machine learning, and discusses soft materials, physiological signals, and machine learning algorithms in sequence and their relationships.
2 The principles of classic machine learning algorithms and neural network algorithms are summarized and explained by representative examples combining with soft electronics.
3 The potential challenges of soft electronics assisted by machine learning especially in health monitoring field are outlined, and future research directions are outlooked.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Niu, N. Matsuhisa, L. Beker, J. Li, S. Wang et al., A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2(8), 361–368 (2019). https://doi.org/10.1038/s41928-019-0286-2
- X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang et al., Large-area display textiles integrated with functional systems. Nature 591(7849), 240–245 (2021). https://doi.org/10.1038/s41586-021-03295-8
- M.S. White, M. Kaltenbrunner, E.D. Głowacki, K. Gutnichenko, G. Kettlgruber et al., Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics 7(10), 811–816 (2013). https://doi.org/10.1038/nphoton.2013.188
- J.R. Sempionatto, M. Lin, L. Yin, K. Pei, T. Sonsa-ard et al., An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5(7), 737–748 (2021). https://doi.org/10.1038/s41551-021-00685-1
- S. Park, S.W. Heo, W. Lee, D. Inoue, Z. Jiang et al., Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 561(7724), 516–521 (2018). https://doi.org/10.1038/s41586-018-0536-x
- T.Y. Wang, J.L. Meng, L. Chen, H. Zhu, Q.Q. Sun et al., Flexible 3D memristor array for binary storage and multi-states neuromorphic computing applications. InfoMat 3(2), 212–221 (2021). https://doi.org/10.1002/inf2.12158
- Z. Chen, J.W. To, C. Wang, Z. Lu, N. Liu et al., A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery electrodes. Adv. Energy Mater. 4(12), 1400207 (2014). https://doi.org/10.1002/aenm.201400207
- T.R. Ray, J. Choi, A.J. Bandodkar, S. Krishnan, P. Gutruf et al., Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119(8), 5461–5533 (2019). https://doi.org/10.1021/acs.chemrev.8b00573
- A. Fitzgerald, R. Iyer, R. Dauskardt, T. Kenny, Subcritical crack growth in single-crystal silicon using micromachined specimens. J. Mater. Res. 17(3), 683–692 (2002). https://doi.org/10.1557/JMR.2002.0097
- R.C. Webb, A.P. Bonifas, A. Behnaz, Y. Zhang, K.J. Yu et al., Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12(10), 938–944 (2013). https://doi.org/10.1038/nmat3755
- A. Miyamoto, S. Lee, N.F. Cooray, S. Lee, M. Mori et al., Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12(9), 907 (2017). https://doi.org/10.1038/nnano.2017.125
- S. Lee, D. Sasaki, D. Kim, M. Mori, T. Yokota et al., Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nat. Nanotechnol. 14(2), 156–160 (2019). https://doi.org/10.1038/s41565-018-0331-8
- W.M. Choi, J. Song, D.Y. Khang, H. Jiang, Y.Y. Huang et al., Biaxially stretchable “wavy” silicon nanomembranes. Nano Lett. 7(6), 1655–1663 (2007). https://doi.org/10.1021/nl0706244
- Y. Qiao, X. Li, T. Hirtz, G. Deng, Y. Wei et al., Graphene-based wearable sensors. Nanoscale 11(41), 18923–18945 (2019). https://doi.org/10.1039/C9NR05532K
- J. Shi, X. Li, H. Cheng, Z. Liu, L. Zhao et al., Graphene reinforced carbon nanotube networks for wearable strain sensors. Adv. Funct. Mater. 26(13), 2078–2084 (2016). https://doi.org/10.1002/adfm.201504804
- T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa et al., Ultraflexible organic photonic skin. Sci. Adv. 2(4), e1501856 (2016). https://doi.org/10.1126/sciadv.1501856
- H. Lee, T.K. Choi, Y.B. Lee, H.R. Cho, R. Ghaffari et al., A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11(6), 566–572 (2016). https://doi.org/10.1038/nnano.2016.38
- C. Wang, D. Hwang, Z. Yu, K. Takei, J. Park et al., User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 12(10), 899–904 (2013). https://doi.org/10.1038/nmat3711
- T. Someya, M. Amagai, Toward a new generation of smart skins. Nat. Biotechnol. 37(4), 382–388 (2019). https://doi.org/10.1038/s41587-019-0079-1
- Y. Chu, J. Zhong, H. Liu, Y. Ma, N. Liu et al., Human pulse diagnosis for medical assessments using a wearable piezoelectret sensing system. Adv. Funct. Mater. 28(40), 1803413 (2018). https://doi.org/10.1002/adfm.201803413
- Y. Pang, J. Jian, T. Tu, Z. Yang, J. Ling et al., Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosens. Bioelectron. 116, 123–129 (2018). https://doi.org/10.1016/j.bios.2018.05.038
- J. Laguarta, F. Hueto, B. Subirana, Covid-19 artificial intelligence diagnosis using only cough recordings. IEEE Open J. Eng. Med. Biol. 1, 275–281 (2020). https://doi.org/10.1109/OJEMB.2020.3026928
- Y. Pang, Y. Li, X. Wang, C. Qi, Y. Yang et al., A contact lens promising for non-invasive continuous intraocular pressure monitoring. RSC Adv. 9(9), 5076–5082 (2019). https://doi.org/10.1039/C8RA10257K
- A. Boehm, X. Yu, W. Neu, S. Leonhardt, D. Teichmann, A novel 12-lead ECG T-shirt with active electrodes. Electronics 5(4), 75 (2016). https://doi.org/10.3390/electronics5040075
- J.H. Lee, J.Y. Hwang, J. Zhu, H.R. Hwang, S.M. Lee et al., Flexible conductive composite integrated with personal earphone for wireless, real-time monitoring of electrophysiological signs. ACS Appl. Mater. Interfaces 10(25), 21184–21190 (2018). https://doi.org/10.1021/acsami.8b06484
- G.Y. Gou, X.S. Li, J.M. Jian, H. Tian, F. Wu et al., Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum. Sci. Adv. 8(13), eabn2156 (2022). https://doi.org/10.1126/sciadv.abn2156
- Y. Liu, J.J. Norton, R. Qazi, Z. Zou, K.R. Ammann et al., Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Sci. Adv. 2(11), e1601185 (2016). https://doi.org/10.1126/sciadv.1601185
- S. Mishra, Y.S. Kim, J. Intarasirisawat, Y.T. Kwon, Y. Lee et al., Soft, wireless periocular wearable electronics for real-time detection of eye vergence in a virtual reality toward mobile eye therapies. Sci. Adv. 6(11), eaay1729 (2020). https://doi.org/10.1126/sciadv.aay1729
- S.H. Lee, Y.S. Kim, M.K. Yeo, M. Mahmood, N. Zavanelli et al., Fully portable continuous real-time auscultation with a soft wearable stethoscope designed for automated disease diagnosis. Sci. Adv. 8(21), eabo5867 (2022). https://doi.org/10.1126/sciadv.abo5867
- Y.T. Kwon, Y.S. Kim, S. Kwon, M. Mahmood, H.R. Lim et al., All-printed nanomembrane wireless bioelectronics using a biocompatible solderable graphene for multimodal human-machine interfaces. Nat. Commun. 11, 3450 (2020). https://doi.org/10.1038/s41467-020-17288-0
- Z. Zhou, K. Chen, X. Li, S. Zhang, Y. Wu et al., Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3(9), 571–578 (2020). https://doi.org/10.1038/s41928-020-0428-6
- M. Mahmood, D. Mzurikwao, Y.S. Kim, Y. Lee, S. Mishra et al., Fully portable and wireless universal brain-machine interfaces enabled by flexible scalp electronics and deep learning algorithm. Nat. Mach. Intell. 1(9), 412–422 (2019). https://doi.org/10.1038/s42256-019-0091-7
- Y. Luo, Y. Li, P. Sharma, W. Shou, K. Wu et al., Learning human-environment interactions using conformal tactile textiles. Nat. Electron. 4(3), 193–201 (2021). https://doi.org/10.1038/s41928-021-00558-0
- J. Hughes, A. Spielberg, M. Chounlakone, G. Chang, W. Matusik et al., A simple, inexpensive, wearable glove with hybrid resistive-pressure sensors for computational sensing, proprioception, and task identification. Adv. Intell. Syst. 2(6), 2000002 (2020). https://doi.org/10.1002/aisy.202000002
- L. Xiang, H. Zhang, Y. Hu, L.M. Peng, Carbon nanotube-based flexible electronics. J. Mater. Chem. C 6(29), 7714–7727 (2018). https://doi.org/10.1039/C8TC02280A
- L. Cai, C. Wang, Carbon nanotube flexible and stretchable electronics. Nanoscale Res. Lett. 10, 320 (2015). https://doi.org/10.1186/s11671-015-1013-1
- C. Zhu, A. Chortos, Y. Wang, R. Pfattner, T. Lei et al., Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron. 1(3), 183–190 (2018). https://doi.org/10.1038/s41928-018-0041-0
- M. Rother, S.P. Schießl, Y. Zakharko, F. Gannott, J. Zaumseil, Understanding charge transport in mixed networks of semiconducting carbon nanotubes. ACS Appl. Mater. Interfaces 8(8), 5571–5579 (2016). https://doi.org/10.1021/acsami.6b00074
- L.M. Peng, A new stage for flexible nanotube devices. Nat. Electron. 1(3), 158–159 (2018). https://doi.org/10.1038/s41928-018-0045-9
- Y. Wu, X. Zhao, Y. Shang, S. Chang, L. Dai et al., Application-driven carbon nanotube functional materials. ACS Nano 15(5), 7946–7974 (2021). https://doi.org/10.1021/acsnano.0c10662
- A. Corletto, J.G. Shapter, Nanoscale patterning of carbon nanotubes: techniques, applications, and future. Adv. Sci. 8(1), 2001778 (2021). https://doi.org/10.1002/advs.202001778
- X. Cao, C. Lau, Y. Liu, F. Wu, H. Gui et al., Fully screen-printed, large-area, and flexible active-matrix electrochromic displays using carbon nanotube thin-film transistors. ACS Nano 10(11), 9816–9822 (2016). https://doi.org/10.1021/acsnano.6b05368
- N. Qaiser, F. Al-Modaf, S.M. Khan, S.F. Shaikh, N. El-Atab et al., A robust wearable point-of-care CNT-based strain sensor for wirelessly monitoring throat-related illnesses. Adv. Funct. Mater. 31(29), 2103375 (2021). https://doi.org/10.1002/adfm.202103375
- T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi et al., A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6(5), 296 (2011). https://doi.org/10.1038/nnano.2011.36
- E. Roh, B.U. Hwang, D. Kim, B.Y. Kim, N.E. Lee, Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9(6), 6252–6261 (2015). https://doi.org/10.1021/acsnano.5b01613
- C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31(9), 1801072 (2019). https://doi.org/10.1002/adma.201801072
- T. Zheng, P.P.S.S. Abadi, J. Seo, B.H. Cha, B. Miccoli et al., Biocompatible carbon nanotube-based hybrid microfiber for implantable electrochemical actuator and flexible electronic applications. ACS Appl. Mater. Interfaces 11(23), 20615–20627 (2019). https://doi.org/10.1021/acsami.9b02927
- Q. Feng, C. Zhang, R. Yin, A. Yin, Y. Chen et al., Self-powered multifunctional electronic skin based on carbon nanotubes/poly (dimethylsiloxane) for health monitoring. ACS Appl. Mater. Interfaces 14(18), 21406–21417 (2022). https://doi.org/10.1021/acsami.1c25077
- J. Dong, D. Wang, Y. Peng, C. Zhang, F. Lai et al., Ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring. Nano Energy 97, 107160 (2022). https://doi.org/10.1016/j.nanoen.2022.107160
- M. Chi, J. Zhao, Y. Dong, X. Wang, Flexible carbon nanotube-based polymer electrode for long-term electrocardiographic recording. Materials 12(6), 971 (2019). https://doi.org/10.3390/ma12060971
- X. Liang, S. Wang, X. Wei, L. Ding, Y. Zhu et al., Towards entire-carbon-nanotube circuits: the fabrication of single-walled-carbon-nanotube field-effect transistors with local multiwalled-carbon-nanotube interconnects. Adv. Mater. 21(13), 1339–1343 (2009). https://doi.org/10.1002/adma.200802758
- M. Yilmaz, S. Raina, S.H. Hsu, W.P. Kang, Growing micropatterned CNT arrays on aluminum substrates using hot-filament CVD process. Mater. Lett. 209, 376–378 (2017). https://doi.org/10.1016/j.matlet.2017.08.061
- H. Zhang, D. Liu, J.H. Lee, H. Chen, E. Kim et al., Anisotropic, wrinkled, and crack-bridging structure for ultrasensitive, highly selective multidirectional strain sensors. Nano-Micro Lett. 13, 122 (2021). https://doi.org/10.1007/s40820-021-00615-5
- S. Geier, T. Mahrholz, P. Wierach, M. Sinapius, Carbon nanotube array actuators. Smart Mater. Struct. 22(9), 094003 (2013). https://doi.org/10.1088/0964-1726/22/9/094003
- X. Zang, Y. Jiang, M. Sanghadasa, L. Lin, Chemical vapor deposition of 3D graphene/carbon nanotubes networks for hybrid supercapacitors. Sens. Actuator A Phys. 304, 111886 (2020). https://doi.org/10.1016/j.sna.2020.111886
- A. Santos, L. Amorim, J. Nunes, L. Rocha, A. Silva et al., Aligned carbon nanotube based sensors for strain sensing applications. Sens. Actuator A Phys. 289, 157–164 (2019). https://doi.org/10.1016/j.sna.2019.02.026
- D. Mai, J. Mo, S. Shan, Y. Lin, A. Zhang, Self-healing, self-adhesive strain sensors made with carbon nanotubes/polysiloxanes based on unsaturated carboxyl-amine ionic interactions. ACS Appl. Mater. Interfaces 13(41), 49266–49278 (2021). https://doi.org/10.1021/acsami.1c12438
- Q. Duan, B. Lan, Y. Lv, Highly dispersed, adhesive carbon nanotube ink for strain and pressure sensors. ACS Appl. Mater. Interfaces 14(1), 1973–1982 (2022). https://doi.org/10.1021/acsami.1c20133
- B. Zhao, V.S. Sivasankar, A. Dasgupta, S. Das, Ultrathin and ultrasensitive printed carbon nanotube-based temperature sensors capable of repeated uses on surfaces of widely varying curvatures and wettabilities. ACS Appl. Mater. Interfaces 13(8), 10257–10270 (2021). https://doi.org/10.1021/acsami.0c18095
- C. Wang, A. Badmaev, A. Jooyaie, M. Bao, K.L. Wang et al., Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes. ACS Nano 5(5), 4169–4176 (2011). https://doi.org/10.1021/nn200919v
- K. Narasimhamurthy, R.P. Palathinkal, Performance comparison of interdigitated thin-film field-effect transistors using different purity semiconducting carbon nanotubes. Adv. Mater. Res. 181, 343–348 (2011). https://doi.org/10.4028/www.scientific.net/AMR.181-182.343
- K. Otsuka, T. Inoue, Y. Shimomura, S. Chiashi, S. Maruyama, Water-assisted self-sustained burning of metallic single-walled carbon nanotubes for scalable transistor fabrication. Nano Res. 10(9), 3248–3260 (2017). https://doi.org/10.1007/s12274-017-1648-6
- N. Pimparkar, Q. Cao, J.A. Rogers, M.A. Alam, Theory and practice of “striping” for improved on/off ratio in carbon nanonet thin film transistors. Nano Res. 2(2), 167–175 (2009). https://doi.org/10.1007/s12274-009-9013-z
- S. Park, M. Vosguerichian, Z. Bao, A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5(5), 1727–1752 (2013). https://doi.org/10.1039/c3nr33560g
- C. Qiu, Z. Zhang, M. Xiao, Y. Yang, D. Zhong et al., Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355(6322), 271–276 (2017). https://doi.org/10.1126/science.aaj1628
- G. Hills, C. Lau, A. Wright, S. Fuller, M.D. Bishop et al., Modern microprocessor built from complementary carbon nanotube transistors. Nature 572(7771), 595–602 (2019). https://doi.org/10.1038/s41586-019-1493-8
- T.Y. Zhao, D.D. Zhang, T.Y. Qu, L.L. Fang, Q.B. Zhu et al., Flexible 64× 64 pixel AMOLED displays driven by uniform carbon nanotube thin-film transistors. ACS Appl. Mater. Interfaces 11(12), 11699–11705 (2019). https://doi.org/10.1021/acsami.8b17909
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- L. Banszerus, M. Schmitz, S. Engels, J. Dauber, M. Oellers et al., Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1(6), e1500222 (2015). https://doi.org/10.1126/sciadv.1500222
- C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996
- A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011). https://doi.org/10.1038/nmat3064
- K.S. Novoselov, A.K. Geim, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). https://doi.org/10.1038/nmat1849
- M. Yi, Z. Shen, A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3(22), 11700–11715 (2015). https://doi.org/10.1039/C5TA00252D
- J. Lin, Y. Huang, S. Wang, G. Chen, Microwave-assisted rapid exfoliation of graphite into graphene by using ammonium bicarbonate as the intercalation agent. Ind. Eng. Chem. Res. 56(33), 9341–9346 (2017). https://doi.org/10.1021/acs.iecr.7b01302
- X.Q. Guo, J. Huang, Y.K. Wang, L.M. Chen, X.X. Yu et al., Few-layer graphene nanosheets produced by ultrasonic exfoliation of secondary expanded graphite. J. Funct. Biomater. 44(12), 1800–1803 (2013). https://doi.org/10.3969/j.issn.1001-9731.2013.12.028
- Z.Y. Xia, S. Pezzini, E. Treossi, G. Giambastiani, F. Corticelli et al., The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: a nanoscale study. Adv. Funct. Mater. 23(37), 4684–4693 (2013). https://doi.org/10.1002/adfm.201370188
- M. Gómez-Mingot, A.C. Anbalagan, H. Randriamahazaka, J. Ghilane, Electrochemical synthesis and the functionalization of few layer graphene in ionic liquid and redox ionic liquid. Sci. China Chem. 61(5), 598–603 (2018). https://doi.org/10.1007/s11426-017-9184-0
- Y. Ma, Z. Li, J. Han, L. Li, M. Wang et al., Vertical graphene canal mesh for strain sensing with a supereminent resolution. ACS Appl. Mater. Interfaces 14(28), 32387–32394 (2022). https://doi.org/10.1021/acsami.2c07658
- S. Eigler, M. Enzelberger-Heim, S. Grimm, P. Hofmann, W. Kroener et al., Wet chemical synthesis of graphene. Adv. Mater. 25(26), 3583–3587 (2013). https://doi.org/10.1002/adma.201300155
- B. Kulyk, B.F. Silva, A.F. Carvalho, S. Silvestre, A.J. Fernandes et al., Laser-induced graphene from paper for mechanical sensing. ACS Appl. Mater. Interfaces 13(8), 10210–10221 (2021). https://doi.org/10.1021/acsami.0c20270
- M. Sun, Q. Fang, D. Xie, Y. Sun, L. Qian et al., Heterostructured graphene quantum dot/WSe2/Si photodetector with suppressed dark current and improved detectivity. Nano Res. 11(6), 3233–3243 (2018). https://doi.org/10.1007/s12274-017-1855-1
- H. Tian, X. Wang, H. Zhao, W. Mi, Y. Yang et al., A graphene-based filament transistor with sub-10 mVdec-1 subthreshold swing. Adv. Electron. Mater. 4(4), 1700608 (2018). https://doi.org/10.1002/aelm.201700608
- G. Jiang, H. Tian, X.F. Wang, T. Hirtz, F. Wu et al., An efficient flexible graphene-based light-emitting device. Nanoscale Adv. 1(12), 4745–4754 (2019). https://doi.org/10.1039/C9NA00550A
- T.Y. Zhang, H.M. Zhao, D.Y. Wang, Q. Wang, Y. Pang et al., A super flexible and custom-shaped graphene heater. Nanoscale 9(38), 14357–14363 (2017). https://doi.org/10.1039/C7NR02219K
- Q. Wang, Y.T. Li, T.Y. Zhang, D.Y. Wang, Y. Tian et al., Low-voltage, large-strain soft electrothermal actuators based on laser-reduced graphene oxide/Ag p composites. Appl. Phys. Lett. 112(13), 133902 (2018). https://doi.org/10.1063/1.5020918
- Y. Qiao, G. Gou, F. Wu, J. Jian, X. Li et al., Graphene-based thermoacoustic sound source. ACS Nano 14(4), 3779–3804 (2020). https://doi.org/10.1021/acsnano.9b10020
- Q. Li, T. Wu, W. Zhao, J. Ji, G. Wang, Laser-induced corrugated graphene films for integrated multimodal sensors. ACS Appl. Mater. Interfaces 13(31), 37433–37444 (2021). https://doi.org/10.1021/acsami.1c12686
- Y. Qiao, Y. Wang, J. Jian, M. Li, G. Jiang et al., Multifunctional and high-performance electronic skin based on silver nanowires bridging graphene. Carbon 156, 253–260 (2020). https://doi.org/10.1016/j.carbon.2019.08.032
- W. Wang, L. Lu, Z. Li, L. Lin, Z. Liang et al., Fingerprint-inspired strain sensor with balanced sensitivity and strain range using laser-induced graphene. ACS Appl. Mater. Interfaces 14(1), 1315–1325 (2021). https://doi.org/10.1021/acsami.1c16646
- J. Xu, T. Cui, T. Hirtz, Y. Qiao, X. Li et al., Highly transparent and sensitive graphene sensors for continuous and non-invasive intraocular pressure monitoring. ACS Appl. Mater. Interfaces 12(16), 18375–18384 (2020). https://doi.org/10.1021/acsami.0c02991
- C.W. Chiu, C.Y. Huang, J.W. Li, C.L. Li, Flexible hybrid electronics nanofiber electrodes with excellent stretchability and highly stable electrical conductivity for smart clothing. ACS Appl. Mater. Interfaces 14(37), 42441–42453 (2022). https://doi.org/10.1021/acsami.2c11724
- J.M. Jian, L. Fu, J. Ji, L. Lin, X. Guo et al., Electrochemically reduced graphene oxide/gold nanops composite modified screen-printed carbon electrode for effective electrocatalytic analysis of nitrite in foods. Sens. Actuators B Chem. 262, 125–136 (2018). https://doi.org/10.1016/j.snb.2018.01.164
- S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574 (2010). https://doi.org/10.1038/nnano.2010.132
- J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27(30), 1701264 (2017). https://doi.org/10.1002/adfm.201701264
- Y. Qiao, T. Hirtz, F. Wu, G. Deng, X. Li et al., Fabricating molybdenum disulfide memristors. ACS Appl. Electron. Mater. 2(2), 346–370 (2019). https://doi.org/10.1021/acsaelm.9b00655
- W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc et al., Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7(1), 791–797 (2013). https://doi.org/10.1021/nn305275h
- L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372 (2014). https://doi.org/10.1038/nnano.2014.35
- G. Cassabois, P. Valvin, B. Gil, Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photonics 10(4), 262–266 (2016). https://doi.org/10.1038/nphoton.2015.277
- A.A. Bessonov, M.N. Kirikova, D.I. Petukhov, M. Allen, T. Ryhänen et al., Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14(2), 199–204 (2015). https://doi.org/10.1038/nmat4135
- D. Son, S.I. Chae, M. Kim, M.K. Choi, J. Yang et al., Colloidal synthesis of uniform-sized molybdenum disulfide nanosheets for wafer-scale flexible nonvolatile memory. Adv. Mater. 28(42), 9326–9332 (2016). https://doi.org/10.1002/adma.201602391
- L.Q. Tao, H. Tian, Y. Liu, Z.Y. Ju, Y. Pang et al., An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat. Commun. 8, 14579 (2017). https://doi.org/10.1038/ncomms14579
- L.Q. Tao, K.N. Zhang, H. Tian, Y. Liu, D.Y. Wang et al., Graphene-paper pressure sensor for detecting human motions. ACS Nano 11(9), 8790–8795 (2017). https://doi.org/10.1021/acsnano.7b02826
- Z. Yang, Y. Pang, X. Han, Y. Yang, J. Ling et al., Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 12(9), 9134–9141 (2018). https://doi.org/10.1021/acsnano.8b03391
- Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju et al., Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 12(3), 2346–2354 (2018). https://doi.org/10.1021/acsnano.7b07613
- Z. Yang, D.Y. Wang, Y. Pang, Y.X. Li, Q. Wang et al., Simultaneously detecting subtle and intensive human motions based on a silver nanops bridged graphene strain sensor. ACS Appl. Mater. Interfaces 10(4), 3948–3954 (2018). https://doi.org/10.1021/acsami.7b16284
- L. Verger, C. Xu, V. Natu, H.M. Cheng, W. Ren et al., Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid State Mater. Sci. 23(3), 149–163 (2019). https://doi.org/10.1016/j.cossms.2019.02.001
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- M. Wu, B. Wang, Q. Hu, L. Wang, A. Zhou, The synthesis process and thermal stability of V2C MXene. Materials 11(11), 2112 (2018). https://doi.org/10.3390/ma11112112
- A. Feng, Y. Yu, Y. Wang, F. Jiang, Y. Yu et al., Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater. Des. 114, 161–166 (2017). https://doi.org/10.1016/j.matdes.2016.10.053
- M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488
- J. Luo, X. Tao, J. Zhang, Y. Xia, H. Huang et al., Sn4+ ion decorated highly conductive Ti3V2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10(2), 2491–2499 (2016). https://doi.org/10.1021/acsnano.5b07333
- M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman et al., New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 135(43), 15966–15969 (2013). https://doi.org/10.1021/ja405735d
- C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo et al., Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14(11), 1135–1141 (2015). https://doi.org/10.1038/nmat4374
- J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.Q. Zhao et al., Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 26(18), 3118–3127 (2016). https://doi.org/10.1002/adfm.201505328
- V. Natu, M. Sokol, L. Verger, M.W. Barsoum, Effect of edge charges on stability and aggregation of Ti3C2Tz MXene colloidal suspensions. J. Phys. Chem. C 122(48), 27745–27753 (2018). https://doi.org/10.1021/acs.jpcc.8b08860
- C. Liu, Y. Bai, W. Li, F. Yang, G. Zhang et al., In situ growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors. Angew. Chem. Int. Ed. 134(11), e202116282 (2022). https://doi.org/10.1002/ange.202116282
- Y. Li, X. Tian, S.P. Gao, L. Jing, K. Li et al., Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 30(5), 1907451 (2020). https://doi.org/10.1002/adfm.201907451
- L. Wang, N. Li, Y. Zhang, P. Di, M. Li et al., Flexible multiresponse-actuated nacre-like MXene nanocomposite for wearable human-machine interfacing. Matter 5(10), 3417–3431 (2022). https://doi.org/10.1016/j.matt.2022.06.052
- G. Gao, A.P. O’Mullane, A. Du, 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 7(1), 494–500 (2017). https://doi.org/10.1021/acscatal.6b02754
- Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue et al., Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 14(2), 2145–2155 (2020). https://doi.org/10.1021/acsnano.9b08952
- H. Tan, Q. Tao, I. Pande, S. Majumdar, F. Liu et al., Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves. Nat. Commun. 11, 1369 (2020). https://doi.org/10.1038/s41467-020-15105-2
- H. Li, Z. Du, Preparation of a highly sensitive and stretchable strain sensor of MXene/silver nanocomposite-based yarn and wearable applications. ACS Appl. Mater. Interfaces 11(49), 45930–45938 (2019). https://doi.org/10.1021/acsami.9b19242
- Y. Lei, W. Zhao, Y. Zhang, Q. Jiang, J.H. He et al., A MXene-based wearable biosensor system for high-performance in vitro perspiration analysis. Small 15(19), 1901190 (2019). https://doi.org/10.1002/smll.201901190
- G.Y. Gou, M.L. Jin, B.J. Lee, H. Tian, F. Wu et al., Flexible two-dimensional Ti3C2 MXene films as thermoacoustic devices. ACS Nano 13(11), 12613–12620 (2019). https://doi.org/10.1021/acsnano.9b03889
- S. Sharma, A. Chhetry, M. Sharifuzzaman, H. Yoon, J.Y. Park, Wearable capacitive pressure sensor based on MXene composite nanofibrous scaffolds for reliable human physiological signal acquisition. ACS Appl. Mater. Interfaces 12(19), 22212–22224 (2020). https://doi.org/10.1021/acsami.0c05819
- X. Shi, X. Fan, Y. Zhu, Y. Liu, P. Wu et al., Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nat. Commun. 13, 1119 (2022). https://doi.org/10.1038/s41467-022-28760-4
- J. Liu, L. Mckeon, J. Garcia, S. Pinilla, S. Barwich et al., Additive manufacturing of Ti3C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 34(5), 2106253 (2022). https://doi.org/10.1002/adma.202106253
- D. Lei, N. Liu, T. Su, Q. Zhang, L. Wang et al., Roles of MXenes in pressure sensing: preparation, composite structure design and mechanism. Adv. Mater. 34(52), 2110608 (2022). https://doi.org/10.1002/adma.202110608
- Y. Lin, Q. Li, C. Ding, J. Wang, W. Yuan et al., High-resolution and large-size stretchable electrodes based on patterned silver nanowires composites. Nano Res. 15(5), 4590–4598 (2022). https://doi.org/10.1007/s12274-022-4088-x
- Y. Liu, X. Xu, Y. Wei, Y. Chen, M. Gao et al., Tailoring silver nanowire nanocomposite interfaces to achieve superior stretchability, durability, and stability in transparent conductors. Nano Lett. 22(9), 3784–3792 (2022). https://doi.org/10.1021/acs.nanolett.2c00876
- W. Li, H. Zhang, S. Shi, J. Xu, X. Qin et al., Recent progress in silver nanowire networks for flexible. Org. Electron. J. Mater. Chem. C 8(14), 4636–4674 (2020). https://doi.org/10.1039/C9TC06865A
- J.Y. Tseng, L. Lee, Y.C. Huang, J.H. Chang, T.Y. Su et al., Pressure welding of silver nanowires networks at room temperature as transparent electrodes for efficient organic light-emitting diodes. Small 14(38), 1800541 (2018). https://doi.org/10.1002/smll.201800541
- B. Li, X. Wen, R. Li, Z. Wang, P.G. Clem et al., Stress-induced phase transformation and optical coupling of silver nanop superlattices into mechanically stable nanowires. Nat. Commun. 5, 4179 (2014). https://doi.org/10.1038/ncomms5179
- D. Eisele, H. Berlepsch, C. Bottcher, K.J. Stevenson, D.A.V. Bout et al., Photoinitiated growth of sub-7 nm silver nanowires within a chemically active organic nanotubular template. J. Am. Chem. Soc. 132(7), 2104–2105 (2010). https://doi.org/10.1021/ja907373h
- M.B. Gebeyehu, T.F. Chala, S.Y. Chang, C.M. Wu, J.Y. Lee, Synthesis and highly effective purification of silver nanowires to enhance transmittance at low sheet resistance with simple polyol and scalable selective precipitation method. RSC Adv. 7(26), 16139–16148 (2017). https://doi.org/10.1039/C7RA00238F
- M. Ćwik, D. Buczyńska, K. Sulowska, E. Roźniecka, S. Mackowski et al., Optical properties of submillimeter silver nanowires synthesized using the hydrothermal method. Materials 12(5), 721 (2019). https://doi.org/10.3390/ma12050721
- S. Mukherjee, X. Li, F. Gao, Z. Gu, An efficient silver etchant for the fabrication of active nanowires using anodized aluminum oxide templates. Electrochem. Solid-State Lett. 13(7), D50 (2010). https://doi.org/10.1149/1.3418612
- N. Matsuhisa, S. Niu, S.J. O’Neill, J. Kang, Y. Ochiai et al., High-frequency and intrinsically stretchable polymer diodes. Nature 600(7888), 246–252 (2021). https://doi.org/10.1038/s41586-021-04053-6
- H.G. Park, G.S. Heo, S.G. Park, H.C. Jeong, J.H. Lee et al., Silver nanowire networks as transparent conducting films for liquid crystal displays. ECS Solid State Lett. 4(10), R50 (2015). https://doi.org/10.1149/2.0031510ssl
- P. Maisch, K.C. Tam, L. Lucera, H.J. Egelhaaf, H. Scheiber et al., Inkjet printed silver nanowire percolation networks as electrodes for highly efficient semitransparent organic solar cells. Org. Electron. 38, 139–143 (2016). https://doi.org/10.1016/j.orgel.2016.08.006
- S. Cho, S. Kang, A. Pandya, R. Shanker, Z. Khan et al., Large-area cross-aligned silver nanowire electrodes for flexible, transparent, and force-sensitive mechanochromic touch screens. ACS Nano 11(4), 4346–4357 (2017). https://doi.org/10.1021/acsnano.7b01714
- M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8(5), 5154–5163 (2014). https://doi.org/10.1021/nn501204t
- Q. Sun, L. Wang, G. Ren, L. Zhang, H. Sheng et al., Smart band-aid: multifunctional and wearable electronic device for self-powered motion monitoring and human-machine interaction. Nano Energy 92, 106840 (2022). https://doi.org/10.1016/j.nanoen.2021.106840
- G.A.R. Benatto, B. Roth, M. Corazza, R.R. Søndergaard, S.A. Gevorgyan et al., Roll-to-roll printed silver nanowires for increased stability of flexible ITO-free organic solar cell modules. Nanoscale 8(1), 318–326 (2016). https://doi.org/10.1039/C5NR07426F
- D.C. Choo, T.W. Kim, Degradation mechanisms of silver nanowire electrodes under ultraviolet irradiation and heat treatment. Sci. Rep. 7, 1696 (2017). https://doi.org/10.1038/s41598-017-01843-9
- E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor et al., Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11(3), 241–249 (2012). https://doi.org/10.1038/nmat3238
- T. Sannicolo, M. Lagrange, A. Cabos, C. Celle, J.P. Simonato et al., Metallic nanowire-based transparent electrodes for next generation flexible devices: a review. Small 12(44), 6052–6075 (2016). https://doi.org/10.1002/smll.201602581
- W. Gaynor, S. Hofmann, M.G. Christoforo, C. Sachse, S. Mehra et al., Color in the corners: ITO-free white OLEDs with angular color stability. Adv. Mater. 25(29), 4006–4013 (2013). https://doi.org/10.1002/adma.201300923
- A.G. Ricciardulli, S. Yang, G.J.A. Wetzelaer, X. Feng, P.W. Blom, Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics. Adv. Funct. Mater. 28(14), 1706010 (2018). https://doi.org/10.1002/adfm.201706010
- B. Lee, J.Y. Oh, H. Cho, C.W. Joo, H. Yoon et al., Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution. Nat. Commun. 11, 663 (2020). https://doi.org/10.1038/s41467-020-14485-9
- F. Guo, P. Kubis, T. Przybilla, E. Spiecker, A. Hollmann et al., Nanowire interconnects for printed large-area semitransparent organic photovoltaic modules. Adv. Energy Mater. 5(12), 1401779 (2015). https://doi.org/10.1002/aenm.201401779
- Y.F. Yang, L.Q. Tao, Y. Pang, H. Tian, Z.Y. Ju et al., An ultrasensitive strain sensor with a wide strain range based on graphene armour scales. Nanoscale 10(24), 11524–11530 (2018). https://doi.org/10.1039/C8NR02652A
- Y. Hong, Y. Chi, S. Wu, Y. Li, Y. Zhu et al., Boundary curvature guided programmable shape-morphing kirigami sheets. Nat. Commun. 13, 530 (2022). https://doi.org/10.1038/s41467-022-28187-x
- S. Lee, S. Shin, S. Lee, J. Seo, J. Lee et al., Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv. Funct. Mater. 25(21), 3114–3121 (2015). https://doi.org/10.1002/adfm.201500628
- J. Kim, M. Kim, M.S. Lee, K. Kim, S. Ji et al., Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 8, 14997 (2017). https://doi.org/10.1038/ncomms14997
- J. Liang, K. Tong, Q. Pei, A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv. Mater. 28(28), 5986–5996 (2016). https://doi.org/10.1002/adma.201600772
- B. Hwang, A. Lund, Y. Tian, S. Darabi, C. Müller, Machine washable conductive silk yarns with a composite coating of Ag nanowires and PEDOT:PSS. ACS Appl. Mater. Interfaces 12(24), 27537–27544 (2020). https://doi.org/10.1021/acsami.0c04316
- J. Jung, H. Lee, I. Ha, H. Cho, K.K. Kim et al., Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017). https://doi.org/10.1021/acsami.7b14626
- Q. Wang, H. Sheng, Y. Lv, J. Liang, Y. Liu et al., A skin-mountable hyperthermia patch based on metal nanofiber network with high transparency and low resistivity toward subcutaneous tumor treatment. Adv. Funct. Mater. 32(21), 2111228 (2022). https://doi.org/10.1002/adfm.202111228
- H. Hu, S. Wang, S. Wang, G. Liu, T. Cao et al., Aligned silver nanowires enabled highly stretchable and transparent electrodes with unusual conductive property. Adv. Funct. Mater. 29(33), 1902922 (2019). https://doi.org/10.1002/adfm.201902922
- B. Li, B. Jiang, W. Han, M. He, X. Li et al., Harnessing colloidal crack formation by flow-enabled self-assembly. Angew. Chem. Int. Ed. 56(16), 4554–4559 (2017). https://doi.org/10.1002/anie.201700457
- X. Wang, Z. Liu, T. Zhang, Flexible sensing electronics for wearable/attachable health monitoring. Small 13(25), 1602790 (2017). https://doi.org/10.1002/smll.201602790
- D. Jung, C. Lim, H.J. Shim, Y. Kim, C. Park et al., Highly conductive and elastic nanomembrane for skin electronics. Science 373(6558), 1022–1026 (2021). https://doi.org/10.1126/science.abh4357
- T. Yan, Z. Li, F. Cao, J. Chen, L. Wu et al., An all-organic self-powered photodetector with ultraflexible dual-polarity output for biosignal detection. Adv. Mater. 34(30), 2201303 (2022). https://doi.org/10.1002/adma.202201303
- P. Won, K.K. Kim, H. Kim, J.J. Park, I. Ha et al., Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv. Mater. 33(19), 2002397 (2021). https://doi.org/10.1002/adma.202002397
- S. Choi, S.I. Han, D. Jung, H.J. Hwang, C. Lim et al., Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13(11), 1048–1056 (2018). https://doi.org/10.1038/s41565-018-0226-8
- L. Liu, C. Wang, Z. Wu, Y. Xing, Ultralow-voltage-drivable artificial muscles based on a 3D structure MXene-PEDOT:PSS/AgNWs electrode. ACS Appl. Mater. Interfaces 14(16), 18150–18158 (2022). https://doi.org/10.1021/acsami.2c00760
- B. Lu, H. Yuk, S. Lin, N. Jian, K. Qu et al., Pure PEDOT:PSS hydrogels. Nat. Commun. 10, 1043 (2019). https://doi.org/10.1038/s41467-019-09003-5
- Q. Ding, Z. Wu, K. Tao, Y. Wei, W. Wang et al., Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications. Mater. Horizons 9(5), 1356–1386 (2022). https://doi.org/10.1039/D1MH01871J
- Z. Ma, C. Bourquard, Q. Gao, S. Jiang, T.D. Iure-Grimmel et al., Controlled tough bioadhesion mediated by ultrasound. Science 377(6607), 751–755 (2022). https://doi.org/10.1126/science.abn8699
- J. Ding, Z. Chen, X. Liu, Y. Tian, J. Jiang et al., A mechanically adaptive hydrogel neural interface based on silk fibroin for high-efficiency neural activity recording. Mater. Horizons 9(8), 2215–2225 (2022). https://doi.org/10.1039/D2MH00533F
- Y. Ohm, C. Pan, M.J. Ford, X. Huang, J. Liao et al., An electrically conductive silver-polyacrylamide-alginate hydrogel composite for soft electronics. Nat. Electron. 4(3), 185–192 (2021). https://doi.org/10.1038/s41928-021-00545-5
- H. Yuk, B. Lu, X. Zhao, Hydrogel bioelectronics. Chem. Soc. Rev. 48(6), 1642–1667 (2019). https://doi.org/10.1039/C8CS00595H
- Y.Z. Zhang, J.K. El-Demellawi, Q. Jiang, G. Ge, H. Liang et al., MXene hydrogels: fundamentals and applications. Chem. Soc. Rev. 49(20), 7229–7251 (2020). https://doi.org/10.1039/D0CS00022A
- C. Wang, X. Chen, L. Wang, M. Makihata, H.C. Liu et al., Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377(6605), 517–523 (2022). https://doi.org/10.1126/science.abo2542
- K. Zhang, X. Chen, Y. Xue, J. Lin, X. Liang et al., Tough hydrogel bioadhesives for sutureless wound sealing, hemostasis and biointerfaces. Adv. Funct. Mater. 32(15), 2111465 (2022). https://doi.org/10.1002/adfm.202111465
- H.Y. Yuen, H.P. Bei, X. Zhao, Underwater and wet adhesion strategies for hydrogels in biomedical applications. Chem. Eng. J. 431, 133372 (2021). https://doi.org/10.1016/j.cej.2021.133372
- Z. Shen, Z. Zhang, N. Zhang, J. Li, P. Zhou et al., High-stretchability, ultralow-hysteresis conducting polymer hydrogel strain sensors for soft machines. Adv. Mater. 34(32), 2203650 (2022). https://doi.org/10.1002/adma.202203650
- H. Fu, B. Wang, J. Li, J. Xu, J. Li et al., A self-healing, recyclable and conductive gelatin/nanofibrillated cellulose/Fe3+ hydrogel based on multi-dynamic interactions for a multifunctional strain sensor. Mater. Horizons 9(5), 1412–1421 (2022). https://doi.org/10.1039/D2MH00028H
- P. Tan, H. Wang, F. Xiao, X. Lu, W. Shang et al., Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat. Commun. 13, 358 (2022). https://doi.org/10.1038/s41467-022-28027-y
- L. Pan, P. Cai, L. Mei, Y. Cheng, Y. Zeng et al., A compliant ionic adhesive electrode with ultralow bioelectronic impedance. Adv. Mater. 32(38), 2003723 (2020). https://doi.org/10.1002/adma.202003723
- Y. Qiao, G. Gou, H. Shuai, F. Han, H. Liu et al., Electromyogram-strain synergetic intelligent artificial throat. Chem. Eng. J. 449, 137741 (2022). https://doi.org/10.1016/j.cej.2022.137741
- Y. Qiao, X. Li, J. Wang, S. Ji, T. Hirtz et al., Intelligent and multifunctional graphene nanomesh electronic skin with high comfort. Small 18(7), 2104810 (2022). https://doi.org/10.1002/smll.202104810
- R. Matsukawa, A. Miyamoto, T. Yokota, T. Someya, Skin impedance measurements with nanomesh electrodes for monitoring skin hydration. Adv. Healthc. Mater. 9(22), 2001322 (2020). https://doi.org/10.1002/adhm.202001322
- A. Miyamoto, H. Kawasaki, S. Lee, T. Yokota, M. Amagai et al., Highly precise, continuous, long-term monitoring of skin electrical resistance by nanomesh electrodes. Adv. Healthc. Mater. 11(10), 2102425 (2022). https://doi.org/10.1002/adhm.202102425
- Y. Wang, S. Lee, T. Yokota, H. Wang, Z. Jiang et al., A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Sci. Adv. 6(33), eabb7043 (2020). https://doi.org/10.1126/sciadv.abb7043
- C.F. Guo, T. Sun, Q. Liu, Z. Suo, Z. Ren, Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat. Commun. 5, 3121 (2014). https://doi.org/10.1038/ncomms4121
- C. Wang, X. Li, E. Gao, M. Jian, K. Xia et al., Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater. 28(31), 6640–6648 (2016). https://doi.org/10.1002/adma.201601572
- X.C. Tan, J.M. Jian, Y.C. Qiao, T. Hirtz, G.H. Dun et al., Skin-mimicking, stretchable photodetector for skin-customized ultraviolet dosimetry. Adv. Mater. Technol. 7(8), 2101348 (2022). https://doi.org/10.1002/admt.202101348
- W. Wang, Y. Ma, T. Wang, K. Ding, W. Zhao et al., Double-layered conductive network design of flexible strain sensors for high sensitivity and wide working range. ACS Appl. Mater. Interfaces 14(32), 36611–36621 (2022). https://doi.org/10.1021/acsami.2c08285
- Z. Jia, Z. Li, S. Ma, W. Zhang, Y. Chen et al., Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor. J. Colloid Interface Sci. 584, 1–10 (2021). https://doi.org/10.1016/j.jcis.2020.09.035
- Y. Wang, W. Li, C. Li, B. Zhou, Y. Zhou et al., Fabrication of ultra-high working range strain sensor using carboxyl CNTs coated electrospun TPU assisted with dopamine. Appl. Surf. Sci. 566, 150705 (2021). https://doi.org/10.1016/j.apsusc.2021.150705
- W. Wang, M.O.G. Nayeem, H. Wang, C. Wang, J.J. Kim et al., Gas-permeable highly sensitive nanomesh humidity sensor for continuous measurement of skin humidity. Adv. Mater. Technol. 7(12), 2200479 (2022). https://doi.org/10.1002/admt.202200479
- S.M. Taromsari, H.H. Shi, Z. Saadatnia, C.B. Park, H.E. Naguib, Design and development of ultra-sensitive, dynamically stable, multi-modal GnP@MXene nanohybrid electrospun strain sensors. Chem. Eng. J. 442, 136138 (2022). https://doi.org/10.1016/j.cej.2022.136138
- B. Zhou, Z. Liu, C. Li, M. Liu, L. Jiang et al., A highly stretchable and sensitive strain sensor based on dopamine modified electrospun SEBS fibers and MWCNTs with carboxylation. Adv. Electron. Mater. 7(8), 2100233 (2021). https://doi.org/10.1002/aelm.202100233
- G. Yang, X. Tang, G. Zhao, Y. Li, C. Ma et al., Highly sensitive, direction-aware, and transparent strain sensor based on oriented electrospun nanofibers for wearable electronic applications. Chem. Eng. J. 435, 135004 (2022). https://doi.org/10.1016/j.cej.2022.135004
- Y. Jia, X. Yue, Y. Wang, C. Yan, G. Zheng et al., Multifunctional stretchable strain sensor based on polydopamine/reduced graphene oxide/electrospun thermoplastic polyurethane fibrous mats for human motion detection and environment monitoring. Compos. B Eng. 183, 107696 (2020). https://doi.org/10.1016/j.compositesb.2019.107696
- J. Gao, B. Li, X. Huang, L. Wang, L. Lin et al., Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring. Chem. Eng. J. 373, 298–306 (2019). https://doi.org/10.1016/j.cej.2019.05.045
- W. Zhai, C. Wang, S. Wang, J. Li, Y. Zhao et al., Ultra-stretchable and multifunctional wearable electronics for superior electromagnetic interference shielding, electrical therapy and biomotion monitoring. J. Mater. Chem. A 9(11), 7238–7247 (2021). https://doi.org/10.1039/D0TA10991F
- Y. Li, J. Jia, H. Yu, S. Wang, Z.Y. Jin et al., Macromolecule relaxation directed 3D nanofiber architecture in stretchable fibrous mats for wearable multifunctional sensors. ACS Appl. Mater. Interfaces 14(13), 15678–15686 (2022). https://doi.org/10.1021/acsami.2c02090
- K. Yang, F. Yin, D. Xia, H. Peng, J. Yang et al., A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. Nanoscale 11(20), 9949–9957 (2019). https://doi.org/10.1039/C9NR00488B
- Y. Li, S. Wang, Z. Xiao, Y. Yang, B. Deng et al., Flexible TPU strain sensors with tunable sensitivity and stretchability by coupling AgNWs with rGO. J. Mater. Chem. C 8(12), 4040–4048 (2020). https://doi.org/10.1039/D0TC00029A
- Y. Zhou, P. Zhan, M. Ren, G. Zheng, K. Dai et al., Significant stretchability enhancement of a crack-based strain sensor combined with high sensitivity and superior durability for motion monitoring. ACS Appl. Mater. Interfaces 11(7), 7405–7414 (2019). https://doi.org/10.1021/acsami.8b20768
- Y. Li, Y. Chen, Y. Yang, J.D. Gu, K. Ke et al., Aligned wave-like elastomer fibers with robust conductive layers via electroless deposition for stretchable electrode applications. J. Mater. Chem. B 9(42), 8801–8808 (2021). https://doi.org/10.1039/D1TB01441B
- J. Huang, D. Li, M. Zhao, A. Mensah, P. Lv et al., Highly sensitive and stretchable CNT-bridged AgNP strain sensor based on TPU electrospun membrane for human motion detection. Adv. Electron. Mater. 5(6), 1900241 (2019). https://doi.org/10.1002/aelm.201900241
- S. Cheng, Z. Wu, Microfluidic stretchable RF electronics. Lab Chip 10(23), 3227–3234 (2010). https://doi.org/10.1039/c005159d
- S. Cheng, Z. Wu, A microfluidic, reversibly stretchable, large-area wireless strain sensor. Adv. Funct. Mater. 21(12), 2282–2290 (2011). https://doi.org/10.1002/adfm.201002508
- S.H. Jeong, S. Chen, J. Huo, E.K. Gamstedt, J. Liu et al., Mechanically stretchable and electrically insulating thermal elastomer composite by liquid alloy droplet embedment. Sci. Rep. 5, 18257 (2015). https://doi.org/10.1038/srep18257
- B. Wang, J. Gao, J. Jiang, Z. Hu, K. Hjort et al., Liquid metal microscale deposition enabled high resolution and density epidermal microheater for localized ectopic expression in drosophila. Adv. Mater. Technol. 7(3), 2100903 (2022). https://doi.org/10.1002/admt.202100903
- B. Wang, K. Wu, K. Hjort, C. Guo, Z. Wu, High-performance liquid alloy patterning of epidermal strain sensors for local fine skin movement monitoring. Soft Robot. 6(3), 414–421 (2019). https://doi.org/10.1089/soro.2018.0008
- E.J. Markvicka, M.D. Bartlett, X. Huang, C. Majidi, An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 17(7), 618–624 (2018). https://doi.org/10.1038/s41563-018-0084-7
- D. Liu, L. Su, J. Liao, B. Reeja-Jayan, C. Majidi, Rechargeable soft-matter EGaIn-MnO2 battery for stretchable electronics. Adv. Energy Mater. 9(46), 1902798 (2019). https://doi.org/10.1002/aenm.201902798
- M. Kim, D.K. Brown, O. Brand, Nanofabrication for all-soft and high-density electronic devices based on liquid metal. Nat. Commun. 11, 1002 (2020). https://doi.org/10.1038/s41467-020-14814-y
- Z.J. Farrell, C. Tabor, Control of gallium oxide growth on liquid metal eutectic gallium/indium nanops via thiolation. Langmuir 34(1), 234–240 (2018). https://doi.org/10.1021/acs.langmuir.7b03384
- S.H. Jeong, K. Hjort, Z. Wu, Tape transfer atomization patterning of liquid alloys for microfluidic stretchable wireless power transfer. Sci. Rep. 5, 8419 (2015). https://doi.org/10.1038/srep08419
- H.J. Kim, C. Son, B. Ziaie, A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels. Appl. Phys. Lett. 92(1), 011904 (2008). https://doi.org/10.1063/1.2829595
- M. Tavakoli, M.H. Malakooti, H. Paisana, Y. Ohm, D.G. Marques et al., EGaIn-assisted room-temperature sintering of silver nanops for stretchable, inkjet-printed, thin-film electronics. Adv. Mater. 30(29), 1801852 (2018). https://doi.org/10.1002/adma.201801852
- C. Ladd, J.H. So, J. Muth, M.D. Dickey, 3D printing of free standing liquid metal microstructures. Adv. Mater. 25(36), 5081–5085 (2013). https://doi.org/10.1002/adma.201301400
- R.K. Kramer, C. Majidi, R.J. Wood, Masked deposition of gallium-indium alloys for liquid-embedded elastomer conductors. Adv. Funct. Mater. 23(42), 5292–5296 (2013). https://doi.org/10.1002/adfm.201203589
- Q. Wang, Y. Yu, J. Yang, J. Liu, Fast fabrication of flexible functional circuits based on liquid metal dual-trans printing. Adv. Mater. 27(44), 7109–7116 (2015). https://doi.org/10.1002/adma.201502200
- S. Zhang, B. Wang, J. Jiang, K. Wu, C.F. Guo et al., High-fidelity conformal printing of 3D liquid alloy circuits for soft electronics. ACS Appl. Mater. Interfaces 11(7), 7148–7156 (2019). https://doi.org/10.1021/acsami.8b20595
- R. Zhao, R. Guo, X. Xu, J. Liu, A fast and cost-effective transfer printing of liquid metal inks for three-dimensional wiring in flexible electronics. ACS Appl. Mater. Interfaces 12(32), 36723–36730 (2020). https://doi.org/10.1021/acsami.0c08931
- P.U. Unschuld, H. Tessenow, Huang Di Nei Jing Su Wen. (Univ. California Press, 2011). https://doi.org/10.1525/9780520948181
- L. Xu, Z. Huang, Z. Deng, Z. Du, T.L. Sun et al., A transparent, highly stretchable, solvent-resistant, recyclable multifunctional ionogel with underwater self-healing and adhesion for reliable strain sensors. Adv. Mater. 33(51), 2105306 (2021). https://doi.org/10.1002/adma.202105306
- Y. Su, C. Chen, H. Pan, Y. Yang, G. Chen et al., Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring. Adv. Funct. Mater. 31(19), 2010962 (2021). https://doi.org/10.1002/adfm.202010962
- Q. Wu, Y. Qiao, R. Guo, S. Naveed, T. Hirtz et al., Triode-mimicking graphene pressure sensor with positive resistance variation for physiology and motion monitoring. ACS Nano 14(8), 10104–10114 (2020). https://doi.org/10.1021/acsnano.0c03294
- J. Chen, H. Liu, W. Wang, N. Nabulsi, W. Zhao et al., High durable, biocompatible, and flexible piezoelectric pulse sensor using single-crystalline III-N thin film. Adv. Funct. Mater. 29(37), 1903162 (2019). https://doi.org/10.1002/adfm.201903162
- C.M. Boutry, L. Beker, Y. Kaizawa, C. Vassos, H. Tran et al., Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3(1), 47–57 (2019). https://doi.org/10.1038/s41551-018-0336-5
- D.Y. Park, D.J. Joe, D.H. Kim, H. Park, J.H. Han et al., Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv. Mater. 29(37), 1702308 (2017). https://doi.org/10.1002/adma.201702308
- Z. He, W. Chen, B. Liang, C. Liu, L. Yang et al., Capacitive pressure sensor with high sensitivity and fast response to dynamic interaction based on graphene and porous nylon networks. ACS Appl. Mater. Interfaces 10(15), 12816–12823 (2018). https://doi.org/10.1021/acsami.8b01050
- H. Kim, G. Kim, T. Kim, S. Lee, D. Kang et al., Transparent, flexible, conformal capacitive pressure sensors with nanops. Small 14(8), 1703432 (2018). https://doi.org/10.1002/smll.201703432
- Y. Ming, Y. Yang, R.P. Fu, C. Lu, L. Zhao et al., IPMC sensor integrated smart glove for pulse diagnosis, braille recognition, and human-computer interaction. Adv. Mater. Technol. 3(12), 1800257 (2018). https://doi.org/10.1002/admt.201800257
- Y. Qiao, Y. Wang, H. Tian, M. Li, J. Jian et al., Multilayer graphene epidermal electronic skin. ACS Nano 12(9), 8839–8846 (2018). https://doi.org/10.1021/acsnano.8b02162
- Y.H. Kwak, W. Kim, K.B. Park, K. Kim, S. Seo, Flexible heartbeat sensor for wearable device. Biosens. Bioelectron. 94, 250–255 (2017). https://doi.org/10.1016/j.bios.2017.03.016
- Y.R. Jeong, H. Park, S.W. Jin, S.Y. Hong, S.S. Lee et al., Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv. Funct. Mater. 25(27), 4228–4236 (2015). https://doi.org/10.1002/adfm.201501000
- Y. Pang, Z. Yang, X. Han, J. Jian, Y. Li et al., Multifunctional mechanical sensors for versatile physiological signal detection. ACS Appl. Mater. Interfaces 10(50), 44173–44182 (2018). https://doi.org/10.1021/acsami.8b16237
- Y. Liu, L. Zhao, R. Avila, C. Yiu, T. Wong et al., Epidermal electronics for respiration monitoring via thermo-sensitive measuring. Mater. Today Phys. 13, 100199 (2020). https://doi.org/10.1016/j.mtphys.2020.100199
- S. Wang, Y. Jiang, H. Tai, B. Liu, Z. Duan et al., An integrated flexible self-powered wearable respiration sensor. Nano Energy 63, 103829 (2019). https://doi.org/10.1016/j.nanoen.2019.06.025
- X. Huang, B. Li, L. Wang, X. Lai, H. Xue et al., Superhydrophilic, underwater superoleophobic, and highly stretchable humidity and chemical vapor sensors for human breath detection. ACS Appl. Mater. Interfaces 11(27), 24533–24543 (2019). https://doi.org/10.1021/acsami.9b04304
- L. Chen, M. Lu, H. Yang, J.R.S. Avila, B. Shi et al., Textile based capacitive sensor for physical rehabilitation via surface topological modification. ACS Nano 14(7), 8191–8201 (2020). https://doi.org/10.1021/acsnano.0c01643
- B. Li, G. Xiao, F. Liu, Y. Qiao, C.M. Li et al., A flexible humidity sensor based on silk fabrics for human respiration monitoring. J. Mater. Chem. C 6(16), 4549–4554 (2018). https://doi.org/10.1039/C8TC00238J
- H. Xue, Q. Yang, D. Wang, W. Luo, W. Wang et al., A wearable pyroelectric nanogenerator and self-powered breathing sensor. Nano Energy 38, 147–154 (2017). https://doi.org/10.1016/j.nanoen.2017.05.056
- S. Wang, H. Tai, B. Liu, Z. Duan, Z. Yuan et al., A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoring. Nano Energy 58, 312–321 (2019). https://doi.org/10.1016/j.nanoen.2019.01.042
- M. Capecci, C. Serpicelli, L. Fiorentini, G. Censi, M. Ferretti et al., Postural rehabilitation and kinesio taping for axial postural disorders in Parkinson’s disease. Arch. Phys. Med. Rehabil. 95(6), 1067–1075 (2014). https://doi.org/10.1016/j.apmr.2014.01.020
- L. Wang, Y. Wang, S. Yang, X. Tao, Y. Zi et al., Solvent-free adhesive ionic elastomer for multifunctional stretchable electronics. Nano Energy 91, 106611 (2022). https://doi.org/10.1016/j.nanoen.2021.106611
- S. Xu, Z. Fan, S. Yang, Y. Zhao, L. Pan, Flexible, self-powered and multi-functional strain sensors comprising a hybrid of carbon nanocoils and conducting polymers. Chem. Eng. J. 404, 126064 (2021). https://doi.org/10.1016/j.cej.2020.126064
- Y. Cao, Y. Guo, Z. Chen, W. Yang, K. Li et al., Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless human motion detection. Nano Energy 92, 106689 (2022). https://doi.org/10.1016/j.nanoen.2021.106689
- Y. Tian, D.Y. Wang, Y.T. Li, H. Tian, Y. Yang et al., Highly sensitive, wide-range, and flexible pressure sensor based on honeycomb-like graphene network. IEEE Trans. Electron Devices 67(5), 2153–2156 (2020). https://doi.org/10.1109/TED.2020.2982998
- A.M. Tahir, M.E. Chowdhury, A. Khandakar, S. Al-Hamouz, M. Abdalla et al., A systematic approach to the design and characterization of a smart insole for detecting vertical ground reaction force (VGRF) in gait analysis. Sensors 20(4), 957 (2020). https://doi.org/10.3390/s20040957
- W. Tao, T. Liu, R. Zheng, H. Feng, Gait analysis using wearable sensors. Sensors 12(2), 2255–2283 (2012). https://doi.org/10.3390/s120202255
- G. Fang, X. Yang, Q. Wang, A. Zhang, B. Tang, Hydrogels-based ophthalmic drug delivery systems for treatment of ocular diseases. Mater. Sci. Eng. C 127, 112212 (2021). https://doi.org/10.1016/j.msec.2021.112212
- X. Zhao, X. Chen, H. Yuk, S. Lin, X. Liu et al., Soft materials by design: unconventional polymer networks give extreme properties. Chem. Rev. 121(8), 4309–4372 (2021). https://doi.org/10.1021/acs.chemrev.0c01088
- N.M. Farandos, A.K. Yetisen, M.J. Monteiro, C.R. Lowe, S.H. Yun, Contact lens sensors in ocular diagnostics. Adv. Healthc. Mater. 4(6), 792–810 (2015). https://doi.org/10.1002/adhm.201400504
- J. Kim, J. Kim, M. Ku, E. Cha, S. Ju et al., Intraocular pressure monitoring following islet transplantation to the anterior chamber of the eye. Nano Lett. 20(3), 1517–1525 (2019). https://doi.org/10.1021/acs.nanolett.9b03605
- H. An, L. Chen, X. Liu, B. Zhao, H. Zhang et al., Microfluidic contact lenses for unpowered, continuous and non-invasive intraocular pressure monitoring. Sens. Actuators A 295, 177–187 (2019). https://doi.org/10.1016/j.sna.2019.04.050
- Y. Wei, Y. Qiao, G. Jiang, Y. Wang, F. Wang et al., A wearable skinlike ultra-sensitive artificial graphene throat. ACS Nano 13(8), 8639–8647 (2019). https://doi.org/10.1021/acsnano.9b03218
- Q. Liu, J. Chen, Y. Li, G. Shi, High-performance strain sensors with fish-scale-like graphene-sensing layers for full-range detection of human motions. ACS Nano 10(8), 7901–7906 (2016). https://doi.org/10.1021/acsnano.6b03813
- W. Tang, R. Liu, Y. Shi, C. Hu, S. Bai et al., From finger friction to brain activation: tactile perception of the roughness of gratings. J. Adv. Res. 21, 129–139 (2020). https://doi.org/10.1016/j.jare.2019.11.001
- S.N. Flesher, J.E. Downey, J.M. Weiss, C.L. Hughes, A.J. Herrera et al., A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 372(6544), 831–836 (2021). https://doi.org/10.1126/science.abd0380
- S. Chun, J.S. Kim, Y. Yoo, Y. Choi, S.J. Jung et al., An artificial neural tactile sensing system. Nat. Electron. 4(6), 429–438 (2021). https://doi.org/10.1038/s41928-021-00585-x
- Z. Song, J. Yin, Z. Wang, C. Lu, Z. Yang et al., A flexible triboelectric tactile sensor for simultaneous material and texture recognition. Nano Energy 93, 106798 (2022). https://doi.org/10.1016/j.nanoen.2021.106798
- Y.W. Cai, X.N. Zhang, G.G. Wang, G.Z. Li, D.Q. Zhao et al., A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for e-skin. Nano Energy 81, 105663 (2021). https://doi.org/10.1016/j.nanoen.2020.105663
- M. Zhu, M. Lou, J. Yu, Z. Li, B. Ding, Energy autonomous hybrid electronic skin with multi-modal sensing capabilities. Nano Energy 78, 105208 (2020). https://doi.org/10.1016/j.nanoen.2020.105208
- W. Lin, B. Wang, G. Peng, Y. Shan, H. Hu et al., Skin-inspired piezoelectric tactile sensor array with crosstalk-free row+column electrodes for spatiotemporally distinguishing diverse stimuli. Adv. Sci. 8(3), 2002817 (2021). https://doi.org/10.1002/advs.202002817
- K. Kim, M. Sim, S.H. Lim, D. Kim, D. Lee et al., Tactile avatar: tactile sensing system mimicking human tactile cognition. Adv. Sci. 8(7), 2002362 (2021). https://doi.org/10.1002/advs.202002362
- H. Wang, Y. Cen, X. Zeng, Highly sensitive flexible tactile sensor mimicking the microstructure perception behavior of human skin. ACS Appl. Mater. Interfaces 13(24), 28538–28545 (2021). https://doi.org/10.1021/acsami.1c04079
- S. Luo, X. Zhou, X. Tang, J. Li, D. Wei et al., Microconformal electrode-dielectric integration for flexible ultrasensitive robotic tactile sensing. Nano Energy 80, 105580 (2021). https://doi.org/10.1016/j.nanoen.2020.105580
- S.H. Lee, Y.S. Kim, W.H. Yeo, Advances in microsensors and wearable bioelectronics for digital stethoscopes in health monitoring and disease diagnosis. Adv. Healthc. Mater. 10(22), 2101400 (2021). https://doi.org/10.1002/adhm.202101400
- T.R. Reed, N.E. Reed, P. Fritzson, Heart sound analysis for symptom detection and computer-aided diagnosis. Simul. Model Pract. Theory 12(2), 129–146 (2004). https://doi.org/10.1016/j.simpat.2003.11.005
- M. Wang, B. Guo, Y. Hu, Z. Zhao, C. Liu et al., Transfer learning models for detecting six categories of phonocardiogram recordings. J. Cardiovasc. Dev. Dis. 9(3), 86 (2022). https://doi.org/10.3390/jcdd9030086
- S. Mangione, L.Z. Nieman, Cardiac auscultatory skills of internal medicine and family practice trainees: a comparison of diagnostic proficiency. JAMA 278(9), 717–722 (1997). https://doi.org/10.1001/jama.1997.03550090041030
- Y. Hu, Y. Xu, An ultra-sensitive wearable accelerometer for continuous heart and lung sound monitoring. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, pp 694–697 (2012). https://doi.org/10.1109/EMBC.2012.6346026
- H. Chen, S. Yu, H. Liu, J. Liu, Y. Xiao et al., A two-stage amplified PZT sensor for monitoring lung and heart sounds in discharged pneumonia patients. Microsyst. Nanoeng. 7, 55 (2021). https://doi.org/10.1038/s41378-021-00274-x
- Y. Cotur, M. Kasimatis, M. Kaisti, S. Olenik, C. Georgiou et al., Stretchable composite acoustic transducer for wearable monitoring of vital signs. Adv. Funct. Mater. 30(16), 1910288 (2020). https://doi.org/10.1002/adfm.201910288
- E. Andreozzi, G.D. Gargiulo, D. Esposito, P. Bifulco, A novel broadband forcecardiography sensor for simultaneous monitoring of respiration, infrasonic cardiac vibrations and heart sounds. Front. Physiol. 12, 725716 (2021). https://doi.org/10.3389/fphys.2021.725716
- P. Gupta, M.J. Moghimi, Y. Jeong, D. Gupta, O.T. Inan et al., Precision wearable accelerometer contact microphones for longitudinal monitoring of mechano-acoustic cardiopulmonary signals. NPJ Digit. Med. 3, 19 (2020). https://doi.org/10.1038/s41746-020-0225-7
- M.O.G. Nayeem, S. Lee, H. Jin, N. Matsuhisa, H. Jinno et al., All-nanofiber-based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-term heart monitoring. Proc. Natl. Acad. Sci. 117(13), 7063–7070 (2020). https://doi.org/10.1073/pnas.1920911117
- S.J. Jung, H.S. Shin, W.Y. Chung, Driver fatigue and drowsiness monitoring system with embedded electrocardiogram sensor on steering wheel. IET Intell. Transp. Syst. 8(1), 43–50 (2014). https://doi.org/10.1049/iet-its.2012.0032
- I.P. Martins, M. Westerfield, M. Lopes, C. Maruta, R. Gil-da-Costa, Brain state monitoring for the future prediction of migraine attacks. Cephalalgia 40(3), 255–265 (2020). https://doi.org/10.1177/0333102419877660
- T.B. Alakus, M. Gonen, I. Turkoglu, Database for an emotion recognition system based on EEG signals and various computer games-GAMEEMO. Biomed. Signal Process. Control 60, 101951 (2020). https://doi.org/10.1016/j.bspc.2020.101951
- J. Jeppesen, A. Fuglsang-Frederiksen, P. Johansen, J. Christensen, S. Wüstenhagen et al., Seizure detection based on heart rate variability using a wearable electrocardiography device. Epilepsia 60(10), 2105–2113 (2019). https://doi.org/10.1111/epi.16343
- R. Asif, S. Saleem, S.A. Hassan, S.A. Alharbi, A.M. Kamboh, Epileptic seizure detection with a reduced montage: a way forward for ambulatory EEG devices. IEEE Access 8, 65880–65890 (2020). https://doi.org/10.1109/ACCESS.2020.2983917
- Z. Cao, C.T. Lin, W. Ding, M.H. Chen, C.T. Li et al., Identifying ketamine responses in treatment-resistant depression using a wearable forehead EEG. IEEE Trans. Biomed. Eng. 66(6), 1668–1679 (2018). https://doi.org/10.1109/TBME.2018.2877651
- M.L.B. Freitas, J.J.A. Mendes, D.P. Campos, S.L. Stevan, Hand gestures classification using multichannel sEMG armband. XXVI Brazilian Congress on Biomedical Engineering, 239–246 (2019). https://doi.org/10.1007/978-981-13-2517-5_37
- S. Maragliulo, P.F.A. Lopes, L.B. Osório, A.T. Almeida, M. Tavakoli, Foot gesture recognition through dual channel wearable EMG system. IEEE Sens. J. 19(22), 10187–10197 (2019). https://doi.org/10.1109/JSEN.2019.2931715
- H. Liu, W. Dong, Y. Li, F. Li, J. Geng et al., An epidermal sEMG tattoo-like patch as a new human-machine interface for patients with loss of voice. Microsyst. Nanoeng. 6, 16 (2020). https://doi.org/10.1038/s41378-019-0127-5
- J.W. Jeong, W.H. Yeo, A. Akhtar, J.J. Norton, Y.J. Kwack et al., Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 25(47), 6839–6846 (2013). https://doi.org/10.1002/adma.201301921
- B. Xu, A. Akhtar, Y. Liu, H. Chen, W.H. Yeo et al., An epidermal s
References
S. Niu, N. Matsuhisa, L. Beker, J. Li, S. Wang et al., A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2(8), 361–368 (2019). https://doi.org/10.1038/s41928-019-0286-2
X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang et al., Large-area display textiles integrated with functional systems. Nature 591(7849), 240–245 (2021). https://doi.org/10.1038/s41586-021-03295-8
M.S. White, M. Kaltenbrunner, E.D. Głowacki, K. Gutnichenko, G. Kettlgruber et al., Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics 7(10), 811–816 (2013). https://doi.org/10.1038/nphoton.2013.188
J.R. Sempionatto, M. Lin, L. Yin, K. Pei, T. Sonsa-ard et al., An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5(7), 737–748 (2021). https://doi.org/10.1038/s41551-021-00685-1
S. Park, S.W. Heo, W. Lee, D. Inoue, Z. Jiang et al., Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 561(7724), 516–521 (2018). https://doi.org/10.1038/s41586-018-0536-x
T.Y. Wang, J.L. Meng, L. Chen, H. Zhu, Q.Q. Sun et al., Flexible 3D memristor array for binary storage and multi-states neuromorphic computing applications. InfoMat 3(2), 212–221 (2021). https://doi.org/10.1002/inf2.12158
Z. Chen, J.W. To, C. Wang, Z. Lu, N. Liu et al., A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery electrodes. Adv. Energy Mater. 4(12), 1400207 (2014). https://doi.org/10.1002/aenm.201400207
T.R. Ray, J. Choi, A.J. Bandodkar, S. Krishnan, P. Gutruf et al., Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119(8), 5461–5533 (2019). https://doi.org/10.1021/acs.chemrev.8b00573
A. Fitzgerald, R. Iyer, R. Dauskardt, T. Kenny, Subcritical crack growth in single-crystal silicon using micromachined specimens. J. Mater. Res. 17(3), 683–692 (2002). https://doi.org/10.1557/JMR.2002.0097
R.C. Webb, A.P. Bonifas, A. Behnaz, Y. Zhang, K.J. Yu et al., Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12(10), 938–944 (2013). https://doi.org/10.1038/nmat3755
A. Miyamoto, S. Lee, N.F. Cooray, S. Lee, M. Mori et al., Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12(9), 907 (2017). https://doi.org/10.1038/nnano.2017.125
S. Lee, D. Sasaki, D. Kim, M. Mori, T. Yokota et al., Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nat. Nanotechnol. 14(2), 156–160 (2019). https://doi.org/10.1038/s41565-018-0331-8
W.M. Choi, J. Song, D.Y. Khang, H. Jiang, Y.Y. Huang et al., Biaxially stretchable “wavy” silicon nanomembranes. Nano Lett. 7(6), 1655–1663 (2007). https://doi.org/10.1021/nl0706244
Y. Qiao, X. Li, T. Hirtz, G. Deng, Y. Wei et al., Graphene-based wearable sensors. Nanoscale 11(41), 18923–18945 (2019). https://doi.org/10.1039/C9NR05532K
J. Shi, X. Li, H. Cheng, Z. Liu, L. Zhao et al., Graphene reinforced carbon nanotube networks for wearable strain sensors. Adv. Funct. Mater. 26(13), 2078–2084 (2016). https://doi.org/10.1002/adfm.201504804
T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa et al., Ultraflexible organic photonic skin. Sci. Adv. 2(4), e1501856 (2016). https://doi.org/10.1126/sciadv.1501856
H. Lee, T.K. Choi, Y.B. Lee, H.R. Cho, R. Ghaffari et al., A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11(6), 566–572 (2016). https://doi.org/10.1038/nnano.2016.38
C. Wang, D. Hwang, Z. Yu, K. Takei, J. Park et al., User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 12(10), 899–904 (2013). https://doi.org/10.1038/nmat3711
T. Someya, M. Amagai, Toward a new generation of smart skins. Nat. Biotechnol. 37(4), 382–388 (2019). https://doi.org/10.1038/s41587-019-0079-1
Y. Chu, J. Zhong, H. Liu, Y. Ma, N. Liu et al., Human pulse diagnosis for medical assessments using a wearable piezoelectret sensing system. Adv. Funct. Mater. 28(40), 1803413 (2018). https://doi.org/10.1002/adfm.201803413
Y. Pang, J. Jian, T. Tu, Z. Yang, J. Ling et al., Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosens. Bioelectron. 116, 123–129 (2018). https://doi.org/10.1016/j.bios.2018.05.038
J. Laguarta, F. Hueto, B. Subirana, Covid-19 artificial intelligence diagnosis using only cough recordings. IEEE Open J. Eng. Med. Biol. 1, 275–281 (2020). https://doi.org/10.1109/OJEMB.2020.3026928
Y. Pang, Y. Li, X. Wang, C. Qi, Y. Yang et al., A contact lens promising for non-invasive continuous intraocular pressure monitoring. RSC Adv. 9(9), 5076–5082 (2019). https://doi.org/10.1039/C8RA10257K
A. Boehm, X. Yu, W. Neu, S. Leonhardt, D. Teichmann, A novel 12-lead ECG T-shirt with active electrodes. Electronics 5(4), 75 (2016). https://doi.org/10.3390/electronics5040075
J.H. Lee, J.Y. Hwang, J. Zhu, H.R. Hwang, S.M. Lee et al., Flexible conductive composite integrated with personal earphone for wireless, real-time monitoring of electrophysiological signs. ACS Appl. Mater. Interfaces 10(25), 21184–21190 (2018). https://doi.org/10.1021/acsami.8b06484
G.Y. Gou, X.S. Li, J.M. Jian, H. Tian, F. Wu et al., Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum. Sci. Adv. 8(13), eabn2156 (2022). https://doi.org/10.1126/sciadv.abn2156
Y. Liu, J.J. Norton, R. Qazi, Z. Zou, K.R. Ammann et al., Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Sci. Adv. 2(11), e1601185 (2016). https://doi.org/10.1126/sciadv.1601185
S. Mishra, Y.S. Kim, J. Intarasirisawat, Y.T. Kwon, Y. Lee et al., Soft, wireless periocular wearable electronics for real-time detection of eye vergence in a virtual reality toward mobile eye therapies. Sci. Adv. 6(11), eaay1729 (2020). https://doi.org/10.1126/sciadv.aay1729
S.H. Lee, Y.S. Kim, M.K. Yeo, M. Mahmood, N. Zavanelli et al., Fully portable continuous real-time auscultation with a soft wearable stethoscope designed for automated disease diagnosis. Sci. Adv. 8(21), eabo5867 (2022). https://doi.org/10.1126/sciadv.abo5867
Y.T. Kwon, Y.S. Kim, S. Kwon, M. Mahmood, H.R. Lim et al., All-printed nanomembrane wireless bioelectronics using a biocompatible solderable graphene for multimodal human-machine interfaces. Nat. Commun. 11, 3450 (2020). https://doi.org/10.1038/s41467-020-17288-0
Z. Zhou, K. Chen, X. Li, S. Zhang, Y. Wu et al., Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3(9), 571–578 (2020). https://doi.org/10.1038/s41928-020-0428-6
M. Mahmood, D. Mzurikwao, Y.S. Kim, Y. Lee, S. Mishra et al., Fully portable and wireless universal brain-machine interfaces enabled by flexible scalp electronics and deep learning algorithm. Nat. Mach. Intell. 1(9), 412–422 (2019). https://doi.org/10.1038/s42256-019-0091-7
Y. Luo, Y. Li, P. Sharma, W. Shou, K. Wu et al., Learning human-environment interactions using conformal tactile textiles. Nat. Electron. 4(3), 193–201 (2021). https://doi.org/10.1038/s41928-021-00558-0
J. Hughes, A. Spielberg, M. Chounlakone, G. Chang, W. Matusik et al., A simple, inexpensive, wearable glove with hybrid resistive-pressure sensors for computational sensing, proprioception, and task identification. Adv. Intell. Syst. 2(6), 2000002 (2020). https://doi.org/10.1002/aisy.202000002
L. Xiang, H. Zhang, Y. Hu, L.M. Peng, Carbon nanotube-based flexible electronics. J. Mater. Chem. C 6(29), 7714–7727 (2018). https://doi.org/10.1039/C8TC02280A
L. Cai, C. Wang, Carbon nanotube flexible and stretchable electronics. Nanoscale Res. Lett. 10, 320 (2015). https://doi.org/10.1186/s11671-015-1013-1
C. Zhu, A. Chortos, Y. Wang, R. Pfattner, T. Lei et al., Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron. 1(3), 183–190 (2018). https://doi.org/10.1038/s41928-018-0041-0
M. Rother, S.P. Schießl, Y. Zakharko, F. Gannott, J. Zaumseil, Understanding charge transport in mixed networks of semiconducting carbon nanotubes. ACS Appl. Mater. Interfaces 8(8), 5571–5579 (2016). https://doi.org/10.1021/acsami.6b00074
L.M. Peng, A new stage for flexible nanotube devices. Nat. Electron. 1(3), 158–159 (2018). https://doi.org/10.1038/s41928-018-0045-9
Y. Wu, X. Zhao, Y. Shang, S. Chang, L. Dai et al., Application-driven carbon nanotube functional materials. ACS Nano 15(5), 7946–7974 (2021). https://doi.org/10.1021/acsnano.0c10662
A. Corletto, J.G. Shapter, Nanoscale patterning of carbon nanotubes: techniques, applications, and future. Adv. Sci. 8(1), 2001778 (2021). https://doi.org/10.1002/advs.202001778
X. Cao, C. Lau, Y. Liu, F. Wu, H. Gui et al., Fully screen-printed, large-area, and flexible active-matrix electrochromic displays using carbon nanotube thin-film transistors. ACS Nano 10(11), 9816–9822 (2016). https://doi.org/10.1021/acsnano.6b05368
N. Qaiser, F. Al-Modaf, S.M. Khan, S.F. Shaikh, N. El-Atab et al., A robust wearable point-of-care CNT-based strain sensor for wirelessly monitoring throat-related illnesses. Adv. Funct. Mater. 31(29), 2103375 (2021). https://doi.org/10.1002/adfm.202103375
T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi et al., A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6(5), 296 (2011). https://doi.org/10.1038/nnano.2011.36
E. Roh, B.U. Hwang, D. Kim, B.Y. Kim, N.E. Lee, Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9(6), 6252–6261 (2015). https://doi.org/10.1021/acsnano.5b01613
C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31(9), 1801072 (2019). https://doi.org/10.1002/adma.201801072
T. Zheng, P.P.S.S. Abadi, J. Seo, B.H. Cha, B. Miccoli et al., Biocompatible carbon nanotube-based hybrid microfiber for implantable electrochemical actuator and flexible electronic applications. ACS Appl. Mater. Interfaces 11(23), 20615–20627 (2019). https://doi.org/10.1021/acsami.9b02927
Q. Feng, C. Zhang, R. Yin, A. Yin, Y. Chen et al., Self-powered multifunctional electronic skin based on carbon nanotubes/poly (dimethylsiloxane) for health monitoring. ACS Appl. Mater. Interfaces 14(18), 21406–21417 (2022). https://doi.org/10.1021/acsami.1c25077
J. Dong, D. Wang, Y. Peng, C. Zhang, F. Lai et al., Ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring. Nano Energy 97, 107160 (2022). https://doi.org/10.1016/j.nanoen.2022.107160
M. Chi, J. Zhao, Y. Dong, X. Wang, Flexible carbon nanotube-based polymer electrode for long-term electrocardiographic recording. Materials 12(6), 971 (2019). https://doi.org/10.3390/ma12060971
X. Liang, S. Wang, X. Wei, L. Ding, Y. Zhu et al., Towards entire-carbon-nanotube circuits: the fabrication of single-walled-carbon-nanotube field-effect transistors with local multiwalled-carbon-nanotube interconnects. Adv. Mater. 21(13), 1339–1343 (2009). https://doi.org/10.1002/adma.200802758
M. Yilmaz, S. Raina, S.H. Hsu, W.P. Kang, Growing micropatterned CNT arrays on aluminum substrates using hot-filament CVD process. Mater. Lett. 209, 376–378 (2017). https://doi.org/10.1016/j.matlet.2017.08.061
H. Zhang, D. Liu, J.H. Lee, H. Chen, E. Kim et al., Anisotropic, wrinkled, and crack-bridging structure for ultrasensitive, highly selective multidirectional strain sensors. Nano-Micro Lett. 13, 122 (2021). https://doi.org/10.1007/s40820-021-00615-5
S. Geier, T. Mahrholz, P. Wierach, M. Sinapius, Carbon nanotube array actuators. Smart Mater. Struct. 22(9), 094003 (2013). https://doi.org/10.1088/0964-1726/22/9/094003
X. Zang, Y. Jiang, M. Sanghadasa, L. Lin, Chemical vapor deposition of 3D graphene/carbon nanotubes networks for hybrid supercapacitors. Sens. Actuator A Phys. 304, 111886 (2020). https://doi.org/10.1016/j.sna.2020.111886
A. Santos, L. Amorim, J. Nunes, L. Rocha, A. Silva et al., Aligned carbon nanotube based sensors for strain sensing applications. Sens. Actuator A Phys. 289, 157–164 (2019). https://doi.org/10.1016/j.sna.2019.02.026
D. Mai, J. Mo, S. Shan, Y. Lin, A. Zhang, Self-healing, self-adhesive strain sensors made with carbon nanotubes/polysiloxanes based on unsaturated carboxyl-amine ionic interactions. ACS Appl. Mater. Interfaces 13(41), 49266–49278 (2021). https://doi.org/10.1021/acsami.1c12438
Q. Duan, B. Lan, Y. Lv, Highly dispersed, adhesive carbon nanotube ink for strain and pressure sensors. ACS Appl. Mater. Interfaces 14(1), 1973–1982 (2022). https://doi.org/10.1021/acsami.1c20133
B. Zhao, V.S. Sivasankar, A. Dasgupta, S. Das, Ultrathin and ultrasensitive printed carbon nanotube-based temperature sensors capable of repeated uses on surfaces of widely varying curvatures and wettabilities. ACS Appl. Mater. Interfaces 13(8), 10257–10270 (2021). https://doi.org/10.1021/acsami.0c18095
C. Wang, A. Badmaev, A. Jooyaie, M. Bao, K.L. Wang et al., Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes. ACS Nano 5(5), 4169–4176 (2011). https://doi.org/10.1021/nn200919v
K. Narasimhamurthy, R.P. Palathinkal, Performance comparison of interdigitated thin-film field-effect transistors using different purity semiconducting carbon nanotubes. Adv. Mater. Res. 181, 343–348 (2011). https://doi.org/10.4028/www.scientific.net/AMR.181-182.343
K. Otsuka, T. Inoue, Y. Shimomura, S. Chiashi, S. Maruyama, Water-assisted self-sustained burning of metallic single-walled carbon nanotubes for scalable transistor fabrication. Nano Res. 10(9), 3248–3260 (2017). https://doi.org/10.1007/s12274-017-1648-6
N. Pimparkar, Q. Cao, J.A. Rogers, M.A. Alam, Theory and practice of “striping” for improved on/off ratio in carbon nanonet thin film transistors. Nano Res. 2(2), 167–175 (2009). https://doi.org/10.1007/s12274-009-9013-z
S. Park, M. Vosguerichian, Z. Bao, A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5(5), 1727–1752 (2013). https://doi.org/10.1039/c3nr33560g
C. Qiu, Z. Zhang, M. Xiao, Y. Yang, D. Zhong et al., Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355(6322), 271–276 (2017). https://doi.org/10.1126/science.aaj1628
G. Hills, C. Lau, A. Wright, S. Fuller, M.D. Bishop et al., Modern microprocessor built from complementary carbon nanotube transistors. Nature 572(7771), 595–602 (2019). https://doi.org/10.1038/s41586-019-1493-8
T.Y. Zhao, D.D. Zhang, T.Y. Qu, L.L. Fang, Q.B. Zhu et al., Flexible 64× 64 pixel AMOLED displays driven by uniform carbon nanotube thin-film transistors. ACS Appl. Mater. Interfaces 11(12), 11699–11705 (2019). https://doi.org/10.1021/acsami.8b17909
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
L. Banszerus, M. Schmitz, S. Engels, J. Dauber, M. Oellers et al., Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1(6), e1500222 (2015). https://doi.org/10.1126/sciadv.1500222
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996
A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011). https://doi.org/10.1038/nmat3064
K.S. Novoselov, A.K. Geim, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). https://doi.org/10.1038/nmat1849
M. Yi, Z. Shen, A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3(22), 11700–11715 (2015). https://doi.org/10.1039/C5TA00252D
J. Lin, Y. Huang, S. Wang, G. Chen, Microwave-assisted rapid exfoliation of graphite into graphene by using ammonium bicarbonate as the intercalation agent. Ind. Eng. Chem. Res. 56(33), 9341–9346 (2017). https://doi.org/10.1021/acs.iecr.7b01302
X.Q. Guo, J. Huang, Y.K. Wang, L.M. Chen, X.X. Yu et al., Few-layer graphene nanosheets produced by ultrasonic exfoliation of secondary expanded graphite. J. Funct. Biomater. 44(12), 1800–1803 (2013). https://doi.org/10.3969/j.issn.1001-9731.2013.12.028
Z.Y. Xia, S. Pezzini, E. Treossi, G. Giambastiani, F. Corticelli et al., The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: a nanoscale study. Adv. Funct. Mater. 23(37), 4684–4693 (2013). https://doi.org/10.1002/adfm.201370188
M. Gómez-Mingot, A.C. Anbalagan, H. Randriamahazaka, J. Ghilane, Electrochemical synthesis and the functionalization of few layer graphene in ionic liquid and redox ionic liquid. Sci. China Chem. 61(5), 598–603 (2018). https://doi.org/10.1007/s11426-017-9184-0
Y. Ma, Z. Li, J. Han, L. Li, M. Wang et al., Vertical graphene canal mesh for strain sensing with a supereminent resolution. ACS Appl. Mater. Interfaces 14(28), 32387–32394 (2022). https://doi.org/10.1021/acsami.2c07658
S. Eigler, M. Enzelberger-Heim, S. Grimm, P. Hofmann, W. Kroener et al., Wet chemical synthesis of graphene. Adv. Mater. 25(26), 3583–3587 (2013). https://doi.org/10.1002/adma.201300155
B. Kulyk, B.F. Silva, A.F. Carvalho, S. Silvestre, A.J. Fernandes et al., Laser-induced graphene from paper for mechanical sensing. ACS Appl. Mater. Interfaces 13(8), 10210–10221 (2021). https://doi.org/10.1021/acsami.0c20270
M. Sun, Q. Fang, D. Xie, Y. Sun, L. Qian et al., Heterostructured graphene quantum dot/WSe2/Si photodetector with suppressed dark current and improved detectivity. Nano Res. 11(6), 3233–3243 (2018). https://doi.org/10.1007/s12274-017-1855-1
H. Tian, X. Wang, H. Zhao, W. Mi, Y. Yang et al., A graphene-based filament transistor with sub-10 mVdec-1 subthreshold swing. Adv. Electron. Mater. 4(4), 1700608 (2018). https://doi.org/10.1002/aelm.201700608
G. Jiang, H. Tian, X.F. Wang, T. Hirtz, F. Wu et al., An efficient flexible graphene-based light-emitting device. Nanoscale Adv. 1(12), 4745–4754 (2019). https://doi.org/10.1039/C9NA00550A
T.Y. Zhang, H.M. Zhao, D.Y. Wang, Q. Wang, Y. Pang et al., A super flexible and custom-shaped graphene heater. Nanoscale 9(38), 14357–14363 (2017). https://doi.org/10.1039/C7NR02219K
Q. Wang, Y.T. Li, T.Y. Zhang, D.Y. Wang, Y. Tian et al., Low-voltage, large-strain soft electrothermal actuators based on laser-reduced graphene oxide/Ag p composites. Appl. Phys. Lett. 112(13), 133902 (2018). https://doi.org/10.1063/1.5020918
Y. Qiao, G. Gou, F. Wu, J. Jian, X. Li et al., Graphene-based thermoacoustic sound source. ACS Nano 14(4), 3779–3804 (2020). https://doi.org/10.1021/acsnano.9b10020
Q. Li, T. Wu, W. Zhao, J. Ji, G. Wang, Laser-induced corrugated graphene films for integrated multimodal sensors. ACS Appl. Mater. Interfaces 13(31), 37433–37444 (2021). https://doi.org/10.1021/acsami.1c12686
Y. Qiao, Y. Wang, J. Jian, M. Li, G. Jiang et al., Multifunctional and high-performance electronic skin based on silver nanowires bridging graphene. Carbon 156, 253–260 (2020). https://doi.org/10.1016/j.carbon.2019.08.032
W. Wang, L. Lu, Z. Li, L. Lin, Z. Liang et al., Fingerprint-inspired strain sensor with balanced sensitivity and strain range using laser-induced graphene. ACS Appl. Mater. Interfaces 14(1), 1315–1325 (2021). https://doi.org/10.1021/acsami.1c16646
J. Xu, T. Cui, T. Hirtz, Y. Qiao, X. Li et al., Highly transparent and sensitive graphene sensors for continuous and non-invasive intraocular pressure monitoring. ACS Appl. Mater. Interfaces 12(16), 18375–18384 (2020). https://doi.org/10.1021/acsami.0c02991
C.W. Chiu, C.Y. Huang, J.W. Li, C.L. Li, Flexible hybrid electronics nanofiber electrodes with excellent stretchability and highly stable electrical conductivity for smart clothing. ACS Appl. Mater. Interfaces 14(37), 42441–42453 (2022). https://doi.org/10.1021/acsami.2c11724
J.M. Jian, L. Fu, J. Ji, L. Lin, X. Guo et al., Electrochemically reduced graphene oxide/gold nanops composite modified screen-printed carbon electrode for effective electrocatalytic analysis of nitrite in foods. Sens. Actuators B Chem. 262, 125–136 (2018). https://doi.org/10.1016/j.snb.2018.01.164
S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574 (2010). https://doi.org/10.1038/nnano.2010.132
J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27(30), 1701264 (2017). https://doi.org/10.1002/adfm.201701264
Y. Qiao, T. Hirtz, F. Wu, G. Deng, X. Li et al., Fabricating molybdenum disulfide memristors. ACS Appl. Electron. Mater. 2(2), 346–370 (2019). https://doi.org/10.1021/acsaelm.9b00655
W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc et al., Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7(1), 791–797 (2013). https://doi.org/10.1021/nn305275h
L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372 (2014). https://doi.org/10.1038/nnano.2014.35
G. Cassabois, P. Valvin, B. Gil, Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photonics 10(4), 262–266 (2016). https://doi.org/10.1038/nphoton.2015.277
A.A. Bessonov, M.N. Kirikova, D.I. Petukhov, M. Allen, T. Ryhänen et al., Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14(2), 199–204 (2015). https://doi.org/10.1038/nmat4135
D. Son, S.I. Chae, M. Kim, M.K. Choi, J. Yang et al., Colloidal synthesis of uniform-sized molybdenum disulfide nanosheets for wafer-scale flexible nonvolatile memory. Adv. Mater. 28(42), 9326–9332 (2016). https://doi.org/10.1002/adma.201602391
L.Q. Tao, H. Tian, Y. Liu, Z.Y. Ju, Y. Pang et al., An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat. Commun. 8, 14579 (2017). https://doi.org/10.1038/ncomms14579
L.Q. Tao, K.N. Zhang, H. Tian, Y. Liu, D.Y. Wang et al., Graphene-paper pressure sensor for detecting human motions. ACS Nano 11(9), 8790–8795 (2017). https://doi.org/10.1021/acsnano.7b02826
Z. Yang, Y. Pang, X. Han, Y. Yang, J. Ling et al., Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 12(9), 9134–9141 (2018). https://doi.org/10.1021/acsnano.8b03391
Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju et al., Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 12(3), 2346–2354 (2018). https://doi.org/10.1021/acsnano.7b07613
Z. Yang, D.Y. Wang, Y. Pang, Y.X. Li, Q. Wang et al., Simultaneously detecting subtle and intensive human motions based on a silver nanops bridged graphene strain sensor. ACS Appl. Mater. Interfaces 10(4), 3948–3954 (2018). https://doi.org/10.1021/acsami.7b16284
L. Verger, C. Xu, V. Natu, H.M. Cheng, W. Ren et al., Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid State Mater. Sci. 23(3), 149–163 (2019). https://doi.org/10.1016/j.cossms.2019.02.001
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
M. Wu, B. Wang, Q. Hu, L. Wang, A. Zhou, The synthesis process and thermal stability of V2C MXene. Materials 11(11), 2112 (2018). https://doi.org/10.3390/ma11112112
A. Feng, Y. Yu, Y. Wang, F. Jiang, Y. Yu et al., Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater. Des. 114, 161–166 (2017). https://doi.org/10.1016/j.matdes.2016.10.053
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488
J. Luo, X. Tao, J. Zhang, Y. Xia, H. Huang et al., Sn4+ ion decorated highly conductive Ti3V2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10(2), 2491–2499 (2016). https://doi.org/10.1021/acsnano.5b07333
M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman et al., New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 135(43), 15966–15969 (2013). https://doi.org/10.1021/ja405735d
C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo et al., Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14(11), 1135–1141 (2015). https://doi.org/10.1038/nmat4374
J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.Q. Zhao et al., Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 26(18), 3118–3127 (2016). https://doi.org/10.1002/adfm.201505328
V. Natu, M. Sokol, L. Verger, M.W. Barsoum, Effect of edge charges on stability and aggregation of Ti3C2Tz MXene colloidal suspensions. J. Phys. Chem. C 122(48), 27745–27753 (2018). https://doi.org/10.1021/acs.jpcc.8b08860
C. Liu, Y. Bai, W. Li, F. Yang, G. Zhang et al., In situ growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors. Angew. Chem. Int. Ed. 134(11), e202116282 (2022). https://doi.org/10.1002/ange.202116282
Y. Li, X. Tian, S.P. Gao, L. Jing, K. Li et al., Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 30(5), 1907451 (2020). https://doi.org/10.1002/adfm.201907451
L. Wang, N. Li, Y. Zhang, P. Di, M. Li et al., Flexible multiresponse-actuated nacre-like MXene nanocomposite for wearable human-machine interfacing. Matter 5(10), 3417–3431 (2022). https://doi.org/10.1016/j.matt.2022.06.052
G. Gao, A.P. O’Mullane, A. Du, 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 7(1), 494–500 (2017). https://doi.org/10.1021/acscatal.6b02754
Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue et al., Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 14(2), 2145–2155 (2020). https://doi.org/10.1021/acsnano.9b08952
H. Tan, Q. Tao, I. Pande, S. Majumdar, F. Liu et al., Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves. Nat. Commun. 11, 1369 (2020). https://doi.org/10.1038/s41467-020-15105-2
H. Li, Z. Du, Preparation of a highly sensitive and stretchable strain sensor of MXene/silver nanocomposite-based yarn and wearable applications. ACS Appl. Mater. Interfaces 11(49), 45930–45938 (2019). https://doi.org/10.1021/acsami.9b19242
Y. Lei, W. Zhao, Y. Zhang, Q. Jiang, J.H. He et al., A MXene-based wearable biosensor system for high-performance in vitro perspiration analysis. Small 15(19), 1901190 (2019). https://doi.org/10.1002/smll.201901190
G.Y. Gou, M.L. Jin, B.J. Lee, H. Tian, F. Wu et al., Flexible two-dimensional Ti3C2 MXene films as thermoacoustic devices. ACS Nano 13(11), 12613–12620 (2019). https://doi.org/10.1021/acsnano.9b03889
S. Sharma, A. Chhetry, M. Sharifuzzaman, H. Yoon, J.Y. Park, Wearable capacitive pressure sensor based on MXene composite nanofibrous scaffolds for reliable human physiological signal acquisition. ACS Appl. Mater. Interfaces 12(19), 22212–22224 (2020). https://doi.org/10.1021/acsami.0c05819
X. Shi, X. Fan, Y. Zhu, Y. Liu, P. Wu et al., Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nat. Commun. 13, 1119 (2022). https://doi.org/10.1038/s41467-022-28760-4
J. Liu, L. Mckeon, J. Garcia, S. Pinilla, S. Barwich et al., Additive manufacturing of Ti3C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 34(5), 2106253 (2022). https://doi.org/10.1002/adma.202106253
D. Lei, N. Liu, T. Su, Q. Zhang, L. Wang et al., Roles of MXenes in pressure sensing: preparation, composite structure design and mechanism. Adv. Mater. 34(52), 2110608 (2022). https://doi.org/10.1002/adma.202110608
Y. Lin, Q. Li, C. Ding, J. Wang, W. Yuan et al., High-resolution and large-size stretchable electrodes based on patterned silver nanowires composites. Nano Res. 15(5), 4590–4598 (2022). https://doi.org/10.1007/s12274-022-4088-x
Y. Liu, X. Xu, Y. Wei, Y. Chen, M. Gao et al., Tailoring silver nanowire nanocomposite interfaces to achieve superior stretchability, durability, and stability in transparent conductors. Nano Lett. 22(9), 3784–3792 (2022). https://doi.org/10.1021/acs.nanolett.2c00876
W. Li, H. Zhang, S. Shi, J. Xu, X. Qin et al., Recent progress in silver nanowire networks for flexible. Org. Electron. J. Mater. Chem. C 8(14), 4636–4674 (2020). https://doi.org/10.1039/C9TC06865A
J.Y. Tseng, L. Lee, Y.C. Huang, J.H. Chang, T.Y. Su et al., Pressure welding of silver nanowires networks at room temperature as transparent electrodes for efficient organic light-emitting diodes. Small 14(38), 1800541 (2018). https://doi.org/10.1002/smll.201800541
B. Li, X. Wen, R. Li, Z. Wang, P.G. Clem et al., Stress-induced phase transformation and optical coupling of silver nanop superlattices into mechanically stable nanowires. Nat. Commun. 5, 4179 (2014). https://doi.org/10.1038/ncomms5179
D. Eisele, H. Berlepsch, C. Bottcher, K.J. Stevenson, D.A.V. Bout et al., Photoinitiated growth of sub-7 nm silver nanowires within a chemically active organic nanotubular template. J. Am. Chem. Soc. 132(7), 2104–2105 (2010). https://doi.org/10.1021/ja907373h
M.B. Gebeyehu, T.F. Chala, S.Y. Chang, C.M. Wu, J.Y. Lee, Synthesis and highly effective purification of silver nanowires to enhance transmittance at low sheet resistance with simple polyol and scalable selective precipitation method. RSC Adv. 7(26), 16139–16148 (2017). https://doi.org/10.1039/C7RA00238F
M. Ćwik, D. Buczyńska, K. Sulowska, E. Roźniecka, S. Mackowski et al., Optical properties of submillimeter silver nanowires synthesized using the hydrothermal method. Materials 12(5), 721 (2019). https://doi.org/10.3390/ma12050721
S. Mukherjee, X. Li, F. Gao, Z. Gu, An efficient silver etchant for the fabrication of active nanowires using anodized aluminum oxide templates. Electrochem. Solid-State Lett. 13(7), D50 (2010). https://doi.org/10.1149/1.3418612
N. Matsuhisa, S. Niu, S.J. O’Neill, J. Kang, Y. Ochiai et al., High-frequency and intrinsically stretchable polymer diodes. Nature 600(7888), 246–252 (2021). https://doi.org/10.1038/s41586-021-04053-6
H.G. Park, G.S. Heo, S.G. Park, H.C. Jeong, J.H. Lee et al., Silver nanowire networks as transparent conducting films for liquid crystal displays. ECS Solid State Lett. 4(10), R50 (2015). https://doi.org/10.1149/2.0031510ssl
P. Maisch, K.C. Tam, L. Lucera, H.J. Egelhaaf, H. Scheiber et al., Inkjet printed silver nanowire percolation networks as electrodes for highly efficient semitransparent organic solar cells. Org. Electron. 38, 139–143 (2016). https://doi.org/10.1016/j.orgel.2016.08.006
S. Cho, S. Kang, A. Pandya, R. Shanker, Z. Khan et al., Large-area cross-aligned silver nanowire electrodes for flexible, transparent, and force-sensitive mechanochromic touch screens. ACS Nano 11(4), 4346–4357 (2017). https://doi.org/10.1021/acsnano.7b01714
M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8(5), 5154–5163 (2014). https://doi.org/10.1021/nn501204t
Q. Sun, L. Wang, G. Ren, L. Zhang, H. Sheng et al., Smart band-aid: multifunctional and wearable electronic device for self-powered motion monitoring and human-machine interaction. Nano Energy 92, 106840 (2022). https://doi.org/10.1016/j.nanoen.2021.106840
G.A.R. Benatto, B. Roth, M. Corazza, R.R. Søndergaard, S.A. Gevorgyan et al., Roll-to-roll printed silver nanowires for increased stability of flexible ITO-free organic solar cell modules. Nanoscale 8(1), 318–326 (2016). https://doi.org/10.1039/C5NR07426F
D.C. Choo, T.W. Kim, Degradation mechanisms of silver nanowire electrodes under ultraviolet irradiation and heat treatment. Sci. Rep. 7, 1696 (2017). https://doi.org/10.1038/s41598-017-01843-9
E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor et al., Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11(3), 241–249 (2012). https://doi.org/10.1038/nmat3238
T. Sannicolo, M. Lagrange, A. Cabos, C. Celle, J.P. Simonato et al., Metallic nanowire-based transparent electrodes for next generation flexible devices: a review. Small 12(44), 6052–6075 (2016). https://doi.org/10.1002/smll.201602581
W. Gaynor, S. Hofmann, M.G. Christoforo, C. Sachse, S. Mehra et al., Color in the corners: ITO-free white OLEDs with angular color stability. Adv. Mater. 25(29), 4006–4013 (2013). https://doi.org/10.1002/adma.201300923
A.G. Ricciardulli, S. Yang, G.J.A. Wetzelaer, X. Feng, P.W. Blom, Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics. Adv. Funct. Mater. 28(14), 1706010 (2018). https://doi.org/10.1002/adfm.201706010
B. Lee, J.Y. Oh, H. Cho, C.W. Joo, H. Yoon et al., Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution. Nat. Commun. 11, 663 (2020). https://doi.org/10.1038/s41467-020-14485-9
F. Guo, P. Kubis, T. Przybilla, E. Spiecker, A. Hollmann et al., Nanowire interconnects for printed large-area semitransparent organic photovoltaic modules. Adv. Energy Mater. 5(12), 1401779 (2015). https://doi.org/10.1002/aenm.201401779
Y.F. Yang, L.Q. Tao, Y. Pang, H. Tian, Z.Y. Ju et al., An ultrasensitive strain sensor with a wide strain range based on graphene armour scales. Nanoscale 10(24), 11524–11530 (2018). https://doi.org/10.1039/C8NR02652A
Y. Hong, Y. Chi, S. Wu, Y. Li, Y. Zhu et al., Boundary curvature guided programmable shape-morphing kirigami sheets. Nat. Commun. 13, 530 (2022). https://doi.org/10.1038/s41467-022-28187-x
S. Lee, S. Shin, S. Lee, J. Seo, J. Lee et al., Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv. Funct. Mater. 25(21), 3114–3121 (2015). https://doi.org/10.1002/adfm.201500628
J. Kim, M. Kim, M.S. Lee, K. Kim, S. Ji et al., Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 8, 14997 (2017). https://doi.org/10.1038/ncomms14997
J. Liang, K. Tong, Q. Pei, A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv. Mater. 28(28), 5986–5996 (2016). https://doi.org/10.1002/adma.201600772
B. Hwang, A. Lund, Y. Tian, S. Darabi, C. Müller, Machine washable conductive silk yarns with a composite coating of Ag nanowires and PEDOT:PSS. ACS Appl. Mater. Interfaces 12(24), 27537–27544 (2020). https://doi.org/10.1021/acsami.0c04316
J. Jung, H. Lee, I. Ha, H. Cho, K.K. Kim et al., Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017). https://doi.org/10.1021/acsami.7b14626
Q. Wang, H. Sheng, Y. Lv, J. Liang, Y. Liu et al., A skin-mountable hyperthermia patch based on metal nanofiber network with high transparency and low resistivity toward subcutaneous tumor treatment. Adv. Funct. Mater. 32(21), 2111228 (2022). https://doi.org/10.1002/adfm.202111228
H. Hu, S. Wang, S. Wang, G. Liu, T. Cao et al., Aligned silver nanowires enabled highly stretchable and transparent electrodes with unusual conductive property. Adv. Funct. Mater. 29(33), 1902922 (2019). https://doi.org/10.1002/adfm.201902922
B. Li, B. Jiang, W. Han, M. He, X. Li et al., Harnessing colloidal crack formation by flow-enabled self-assembly. Angew. Chem. Int. Ed. 56(16), 4554–4559 (2017). https://doi.org/10.1002/anie.201700457
X. Wang, Z. Liu, T. Zhang, Flexible sensing electronics for wearable/attachable health monitoring. Small 13(25), 1602790 (2017). https://doi.org/10.1002/smll.201602790
D. Jung, C. Lim, H.J. Shim, Y. Kim, C. Park et al., Highly conductive and elastic nanomembrane for skin electronics. Science 373(6558), 1022–1026 (2021). https://doi.org/10.1126/science.abh4357
T. Yan, Z. Li, F. Cao, J. Chen, L. Wu et al., An all-organic self-powered photodetector with ultraflexible dual-polarity output for biosignal detection. Adv. Mater. 34(30), 2201303 (2022). https://doi.org/10.1002/adma.202201303
P. Won, K.K. Kim, H. Kim, J.J. Park, I. Ha et al., Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv. Mater. 33(19), 2002397 (2021). https://doi.org/10.1002/adma.202002397
S. Choi, S.I. Han, D. Jung, H.J. Hwang, C. Lim et al., Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13(11), 1048–1056 (2018). https://doi.org/10.1038/s41565-018-0226-8
L. Liu, C. Wang, Z. Wu, Y. Xing, Ultralow-voltage-drivable artificial muscles based on a 3D structure MXene-PEDOT:PSS/AgNWs electrode. ACS Appl. Mater. Interfaces 14(16), 18150–18158 (2022). https://doi.org/10.1021/acsami.2c00760
B. Lu, H. Yuk, S. Lin, N. Jian, K. Qu et al., Pure PEDOT:PSS hydrogels. Nat. Commun. 10, 1043 (2019). https://doi.org/10.1038/s41467-019-09003-5
Q. Ding, Z. Wu, K. Tao, Y. Wei, W. Wang et al., Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications. Mater. Horizons 9(5), 1356–1386 (2022). https://doi.org/10.1039/D1MH01871J
Z. Ma, C. Bourquard, Q. Gao, S. Jiang, T.D. Iure-Grimmel et al., Controlled tough bioadhesion mediated by ultrasound. Science 377(6607), 751–755 (2022). https://doi.org/10.1126/science.abn8699
J. Ding, Z. Chen, X. Liu, Y. Tian, J. Jiang et al., A mechanically adaptive hydrogel neural interface based on silk fibroin for high-efficiency neural activity recording. Mater. Horizons 9(8), 2215–2225 (2022). https://doi.org/10.1039/D2MH00533F
Y. Ohm, C. Pan, M.J. Ford, X. Huang, J. Liao et al., An electrically conductive silver-polyacrylamide-alginate hydrogel composite for soft electronics. Nat. Electron. 4(3), 185–192 (2021). https://doi.org/10.1038/s41928-021-00545-5
H. Yuk, B. Lu, X. Zhao, Hydrogel bioelectronics. Chem. Soc. Rev. 48(6), 1642–1667 (2019). https://doi.org/10.1039/C8CS00595H
Y.Z. Zhang, J.K. El-Demellawi, Q. Jiang, G. Ge, H. Liang et al., MXene hydrogels: fundamentals and applications. Chem. Soc. Rev. 49(20), 7229–7251 (2020). https://doi.org/10.1039/D0CS00022A
C. Wang, X. Chen, L. Wang, M. Makihata, H.C. Liu et al., Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377(6605), 517–523 (2022). https://doi.org/10.1126/science.abo2542
K. Zhang, X. Chen, Y. Xue, J. Lin, X. Liang et al., Tough hydrogel bioadhesives for sutureless wound sealing, hemostasis and biointerfaces. Adv. Funct. Mater. 32(15), 2111465 (2022). https://doi.org/10.1002/adfm.202111465
H.Y. Yuen, H.P. Bei, X. Zhao, Underwater and wet adhesion strategies for hydrogels in biomedical applications. Chem. Eng. J. 431, 133372 (2021). https://doi.org/10.1016/j.cej.2021.133372
Z. Shen, Z. Zhang, N. Zhang, J. Li, P. Zhou et al., High-stretchability, ultralow-hysteresis conducting polymer hydrogel strain sensors for soft machines. Adv. Mater. 34(32), 2203650 (2022). https://doi.org/10.1002/adma.202203650
H. Fu, B. Wang, J. Li, J. Xu, J. Li et al., A self-healing, recyclable and conductive gelatin/nanofibrillated cellulose/Fe3+ hydrogel based on multi-dynamic interactions for a multifunctional strain sensor. Mater. Horizons 9(5), 1412–1421 (2022). https://doi.org/10.1039/D2MH00028H
P. Tan, H. Wang, F. Xiao, X. Lu, W. Shang et al., Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat. Commun. 13, 358 (2022). https://doi.org/10.1038/s41467-022-28027-y
L. Pan, P. Cai, L. Mei, Y. Cheng, Y. Zeng et al., A compliant ionic adhesive electrode with ultralow bioelectronic impedance. Adv. Mater. 32(38), 2003723 (2020). https://doi.org/10.1002/adma.202003723
Y. Qiao, G. Gou, H. Shuai, F. Han, H. Liu et al., Electromyogram-strain synergetic intelligent artificial throat. Chem. Eng. J. 449, 137741 (2022). https://doi.org/10.1016/j.cej.2022.137741
Y. Qiao, X. Li, J. Wang, S. Ji, T. Hirtz et al., Intelligent and multifunctional graphene nanomesh electronic skin with high comfort. Small 18(7), 2104810 (2022). https://doi.org/10.1002/smll.202104810
R. Matsukawa, A. Miyamoto, T. Yokota, T. Someya, Skin impedance measurements with nanomesh electrodes for monitoring skin hydration. Adv. Healthc. Mater. 9(22), 2001322 (2020). https://doi.org/10.1002/adhm.202001322
A. Miyamoto, H. Kawasaki, S. Lee, T. Yokota, M. Amagai et al., Highly precise, continuous, long-term monitoring of skin electrical resistance by nanomesh electrodes. Adv. Healthc. Mater. 11(10), 2102425 (2022). https://doi.org/10.1002/adhm.202102425
Y. Wang, S. Lee, T. Yokota, H. Wang, Z. Jiang et al., A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Sci. Adv. 6(33), eabb7043 (2020). https://doi.org/10.1126/sciadv.abb7043
C.F. Guo, T. Sun, Q. Liu, Z. Suo, Z. Ren, Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat. Commun. 5, 3121 (2014). https://doi.org/10.1038/ncomms4121
C. Wang, X. Li, E. Gao, M. Jian, K. Xia et al., Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater. 28(31), 6640–6648 (2016). https://doi.org/10.1002/adma.201601572
X.C. Tan, J.M. Jian, Y.C. Qiao, T. Hirtz, G.H. Dun et al., Skin-mimicking, stretchable photodetector for skin-customized ultraviolet dosimetry. Adv. Mater. Technol. 7(8), 2101348 (2022). https://doi.org/10.1002/admt.202101348
W. Wang, Y. Ma, T. Wang, K. Ding, W. Zhao et al., Double-layered conductive network design of flexible strain sensors for high sensitivity and wide working range. ACS Appl. Mater. Interfaces 14(32), 36611–36621 (2022). https://doi.org/10.1021/acsami.2c08285
Z. Jia, Z. Li, S. Ma, W. Zhang, Y. Chen et al., Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor. J. Colloid Interface Sci. 584, 1–10 (2021). https://doi.org/10.1016/j.jcis.2020.09.035
Y. Wang, W. Li, C. Li, B. Zhou, Y. Zhou et al., Fabrication of ultra-high working range strain sensor using carboxyl CNTs coated electrospun TPU assisted with dopamine. Appl. Surf. Sci. 566, 150705 (2021). https://doi.org/10.1016/j.apsusc.2021.150705
W. Wang, M.O.G. Nayeem, H. Wang, C. Wang, J.J. Kim et al., Gas-permeable highly sensitive nanomesh humidity sensor for continuous measurement of skin humidity. Adv. Mater. Technol. 7(12), 2200479 (2022). https://doi.org/10.1002/admt.202200479
S.M. Taromsari, H.H. Shi, Z. Saadatnia, C.B. Park, H.E. Naguib, Design and development of ultra-sensitive, dynamically stable, multi-modal GnP@MXene nanohybrid electrospun strain sensors. Chem. Eng. J. 442, 136138 (2022). https://doi.org/10.1016/j.cej.2022.136138
B. Zhou, Z. Liu, C. Li, M. Liu, L. Jiang et al., A highly stretchable and sensitive strain sensor based on dopamine modified electrospun SEBS fibers and MWCNTs with carboxylation. Adv. Electron. Mater. 7(8), 2100233 (2021). https://doi.org/10.1002/aelm.202100233
G. Yang, X. Tang, G. Zhao, Y. Li, C. Ma et al., Highly sensitive, direction-aware, and transparent strain sensor based on oriented electrospun nanofibers for wearable electronic applications. Chem. Eng. J. 435, 135004 (2022). https://doi.org/10.1016/j.cej.2022.135004
Y. Jia, X. Yue, Y. Wang, C. Yan, G. Zheng et al., Multifunctional stretchable strain sensor based on polydopamine/reduced graphene oxide/electrospun thermoplastic polyurethane fibrous mats for human motion detection and environment monitoring. Compos. B Eng. 183, 107696 (2020). https://doi.org/10.1016/j.compositesb.2019.107696
J. Gao, B. Li, X. Huang, L. Wang, L. Lin et al., Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring. Chem. Eng. J. 373, 298–306 (2019). https://doi.org/10.1016/j.cej.2019.05.045
W. Zhai, C. Wang, S. Wang, J. Li, Y. Zhao et al., Ultra-stretchable and multifunctional wearable electronics for superior electromagnetic interference shielding, electrical therapy and biomotion monitoring. J. Mater. Chem. A 9(11), 7238–7247 (2021). https://doi.org/10.1039/D0TA10991F
Y. Li, J. Jia, H. Yu, S. Wang, Z.Y. Jin et al., Macromolecule relaxation directed 3D nanofiber architecture in stretchable fibrous mats for wearable multifunctional sensors. ACS Appl. Mater. Interfaces 14(13), 15678–15686 (2022). https://doi.org/10.1021/acsami.2c02090
K. Yang, F. Yin, D. Xia, H. Peng, J. Yang et al., A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. Nanoscale 11(20), 9949–9957 (2019). https://doi.org/10.1039/C9NR00488B
Y. Li, S. Wang, Z. Xiao, Y. Yang, B. Deng et al., Flexible TPU strain sensors with tunable sensitivity and stretchability by coupling AgNWs with rGO. J. Mater. Chem. C 8(12), 4040–4048 (2020). https://doi.org/10.1039/D0TC00029A
Y. Zhou, P. Zhan, M. Ren, G. Zheng, K. Dai et al., Significant stretchability enhancement of a crack-based strain sensor combined with high sensitivity and superior durability for motion monitoring. ACS Appl. Mater. Interfaces 11(7), 7405–7414 (2019). https://doi.org/10.1021/acsami.8b20768
Y. Li, Y. Chen, Y. Yang, J.D. Gu, K. Ke et al., Aligned wave-like elastomer fibers with robust conductive layers via electroless deposition for stretchable electrode applications. J. Mater. Chem. B 9(42), 8801–8808 (2021). https://doi.org/10.1039/D1TB01441B
J. Huang, D. Li, M. Zhao, A. Mensah, P. Lv et al., Highly sensitive and stretchable CNT-bridged AgNP strain sensor based on TPU electrospun membrane for human motion detection. Adv. Electron. Mater. 5(6), 1900241 (2019). https://doi.org/10.1002/aelm.201900241
S. Cheng, Z. Wu, Microfluidic stretchable RF electronics. Lab Chip 10(23), 3227–3234 (2010). https://doi.org/10.1039/c005159d
S. Cheng, Z. Wu, A microfluidic, reversibly stretchable, large-area wireless strain sensor. Adv. Funct. Mater. 21(12), 2282–2290 (2011). https://doi.org/10.1002/adfm.201002508
S.H. Jeong, S. Chen, J. Huo, E.K. Gamstedt, J. Liu et al., Mechanically stretchable and electrically insulating thermal elastomer composite by liquid alloy droplet embedment. Sci. Rep. 5, 18257 (2015). https://doi.org/10.1038/srep18257
B. Wang, J. Gao, J. Jiang, Z. Hu, K. Hjort et al., Liquid metal microscale deposition enabled high resolution and density epidermal microheater for localized ectopic expression in drosophila. Adv. Mater. Technol. 7(3), 2100903 (2022). https://doi.org/10.1002/admt.202100903
B. Wang, K. Wu, K. Hjort, C. Guo, Z. Wu, High-performance liquid alloy patterning of epidermal strain sensors for local fine skin movement monitoring. Soft Robot. 6(3), 414–421 (2019). https://doi.org/10.1089/soro.2018.0008
E.J. Markvicka, M.D. Bartlett, X. Huang, C. Majidi, An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 17(7), 618–624 (2018). https://doi.org/10.1038/s41563-018-0084-7
D. Liu, L. Su, J. Liao, B. Reeja-Jayan, C. Majidi, Rechargeable soft-matter EGaIn-MnO2 battery for stretchable electronics. Adv. Energy Mater. 9(46), 1902798 (2019). https://doi.org/10.1002/aenm.201902798
M. Kim, D.K. Brown, O. Brand, Nanofabrication for all-soft and high-density electronic devices based on liquid metal. Nat. Commun. 11, 1002 (2020). https://doi.org/10.1038/s41467-020-14814-y
Z.J. Farrell, C. Tabor, Control of gallium oxide growth on liquid metal eutectic gallium/indium nanops via thiolation. Langmuir 34(1), 234–240 (2018). https://doi.org/10.1021/acs.langmuir.7b03384
S.H. Jeong, K. Hjort, Z. Wu, Tape transfer atomization patterning of liquid alloys for microfluidic stretchable wireless power transfer. Sci. Rep. 5, 8419 (2015). https://doi.org/10.1038/srep08419
H.J. Kim, C. Son, B. Ziaie, A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels. Appl. Phys. Lett. 92(1), 011904 (2008). https://doi.org/10.1063/1.2829595
M. Tavakoli, M.H. Malakooti, H. Paisana, Y. Ohm, D.G. Marques et al., EGaIn-assisted room-temperature sintering of silver nanops for stretchable, inkjet-printed, thin-film electronics. Adv. Mater. 30(29), 1801852 (2018). https://doi.org/10.1002/adma.201801852
C. Ladd, J.H. So, J. Muth, M.D. Dickey, 3D printing of free standing liquid metal microstructures. Adv. Mater. 25(36), 5081–5085 (2013). https://doi.org/10.1002/adma.201301400
R.K. Kramer, C. Majidi, R.J. Wood, Masked deposition of gallium-indium alloys for liquid-embedded elastomer conductors. Adv. Funct. Mater. 23(42), 5292–5296 (2013). https://doi.org/10.1002/adfm.201203589
Q. Wang, Y. Yu, J. Yang, J. Liu, Fast fabrication of flexible functional circuits based on liquid metal dual-trans printing. Adv. Mater. 27(44), 7109–7116 (2015). https://doi.org/10.1002/adma.201502200
S. Zhang, B. Wang, J. Jiang, K. Wu, C.F. Guo et al., High-fidelity conformal printing of 3D liquid alloy circuits for soft electronics. ACS Appl. Mater. Interfaces 11(7), 7148–7156 (2019). https://doi.org/10.1021/acsami.8b20595
R. Zhao, R. Guo, X. Xu, J. Liu, A fast and cost-effective transfer printing of liquid metal inks for three-dimensional wiring in flexible electronics. ACS Appl. Mater. Interfaces 12(32), 36723–36730 (2020). https://doi.org/10.1021/acsami.0c08931
P.U. Unschuld, H. Tessenow, Huang Di Nei Jing Su Wen. (Univ. California Press, 2011). https://doi.org/10.1525/9780520948181
L. Xu, Z. Huang, Z. Deng, Z. Du, T.L. Sun et al., A transparent, highly stretchable, solvent-resistant, recyclable multifunctional ionogel with underwater self-healing and adhesion for reliable strain sensors. Adv. Mater. 33(51), 2105306 (2021). https://doi.org/10.1002/adma.202105306
Y. Su, C. Chen, H. Pan, Y. Yang, G. Chen et al., Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring. Adv. Funct. Mater. 31(19), 2010962 (2021). https://doi.org/10.1002/adfm.202010962
Q. Wu, Y. Qiao, R. Guo, S. Naveed, T. Hirtz et al., Triode-mimicking graphene pressure sensor with positive resistance variation for physiology and motion monitoring. ACS Nano 14(8), 10104–10114 (2020). https://doi.org/10.1021/acsnano.0c03294
J. Chen, H. Liu, W. Wang, N. Nabulsi, W. Zhao et al., High durable, biocompatible, and flexible piezoelectric pulse sensor using single-crystalline III-N thin film. Adv. Funct. Mater. 29(37), 1903162 (2019). https://doi.org/10.1002/adfm.201903162
C.M. Boutry, L. Beker, Y. Kaizawa, C. Vassos, H. Tran et al., Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3(1), 47–57 (2019). https://doi.org/10.1038/s41551-018-0336-5
D.Y. Park, D.J. Joe, D.H. Kim, H. Park, J.H. Han et al., Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv. Mater. 29(37), 1702308 (2017). https://doi.org/10.1002/adma.201702308
Z. He, W. Chen, B. Liang, C. Liu, L. Yang et al., Capacitive pressure sensor with high sensitivity and fast response to dynamic interaction based on graphene and porous nylon networks. ACS Appl. Mater. Interfaces 10(15), 12816–12823 (2018). https://doi.org/10.1021/acsami.8b01050
H. Kim, G. Kim, T. Kim, S. Lee, D. Kang et al., Transparent, flexible, conformal capacitive pressure sensors with nanops. Small 14(8), 1703432 (2018). https://doi.org/10.1002/smll.201703432
Y. Ming, Y. Yang, R.P. Fu, C. Lu, L. Zhao et al., IPMC sensor integrated smart glove for pulse diagnosis, braille recognition, and human-computer interaction. Adv. Mater. Technol. 3(12), 1800257 (2018). https://doi.org/10.1002/admt.201800257
Y. Qiao, Y. Wang, H. Tian, M. Li, J. Jian et al., Multilayer graphene epidermal electronic skin. ACS Nano 12(9), 8839–8846 (2018). https://doi.org/10.1021/acsnano.8b02162
Y.H. Kwak, W. Kim, K.B. Park, K. Kim, S. Seo, Flexible heartbeat sensor for wearable device. Biosens. Bioelectron. 94, 250–255 (2017). https://doi.org/10.1016/j.bios.2017.03.016
Y.R. Jeong, H. Park, S.W. Jin, S.Y. Hong, S.S. Lee et al., Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv. Funct. Mater. 25(27), 4228–4236 (2015). https://doi.org/10.1002/adfm.201501000
Y. Pang, Z. Yang, X. Han, J. Jian, Y. Li et al., Multifunctional mechanical sensors for versatile physiological signal detection. ACS Appl. Mater. Interfaces 10(50), 44173–44182 (2018). https://doi.org/10.1021/acsami.8b16237
Y. Liu, L. Zhao, R. Avila, C. Yiu, T. Wong et al., Epidermal electronics for respiration monitoring via thermo-sensitive measuring. Mater. Today Phys. 13, 100199 (2020). https://doi.org/10.1016/j.mtphys.2020.100199
S. Wang, Y. Jiang, H. Tai, B. Liu, Z. Duan et al., An integrated flexible self-powered wearable respiration sensor. Nano Energy 63, 103829 (2019). https://doi.org/10.1016/j.nanoen.2019.06.025
X. Huang, B. Li, L. Wang, X. Lai, H. Xue et al., Superhydrophilic, underwater superoleophobic, and highly stretchable humidity and chemical vapor sensors for human breath detection. ACS Appl. Mater. Interfaces 11(27), 24533–24543 (2019). https://doi.org/10.1021/acsami.9b04304
L. Chen, M. Lu, H. Yang, J.R.S. Avila, B. Shi et al., Textile based capacitive sensor for physical rehabilitation via surface topological modification. ACS Nano 14(7), 8191–8201 (2020). https://doi.org/10.1021/acsnano.0c01643
B. Li, G. Xiao, F. Liu, Y. Qiao, C.M. Li et al., A flexible humidity sensor based on silk fabrics for human respiration monitoring. J. Mater. Chem. C 6(16), 4549–4554 (2018). https://doi.org/10.1039/C8TC00238J
H. Xue, Q. Yang, D. Wang, W. Luo, W. Wang et al., A wearable pyroelectric nanogenerator and self-powered breathing sensor. Nano Energy 38, 147–154 (2017). https://doi.org/10.1016/j.nanoen.2017.05.056
S. Wang, H. Tai, B. Liu, Z. Duan, Z. Yuan et al., A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoring. Nano Energy 58, 312–321 (2019). https://doi.org/10.1016/j.nanoen.2019.01.042
M. Capecci, C. Serpicelli, L. Fiorentini, G. Censi, M. Ferretti et al., Postural rehabilitation and kinesio taping for axial postural disorders in Parkinson’s disease. Arch. Phys. Med. Rehabil. 95(6), 1067–1075 (2014). https://doi.org/10.1016/j.apmr.2014.01.020
L. Wang, Y. Wang, S. Yang, X. Tao, Y. Zi et al., Solvent-free adhesive ionic elastomer for multifunctional stretchable electronics. Nano Energy 91, 106611 (2022). https://doi.org/10.1016/j.nanoen.2021.106611
S. Xu, Z. Fan, S. Yang, Y. Zhao, L. Pan, Flexible, self-powered and multi-functional strain sensors comprising a hybrid of carbon nanocoils and conducting polymers. Chem. Eng. J. 404, 126064 (2021). https://doi.org/10.1016/j.cej.2020.126064
Y. Cao, Y. Guo, Z. Chen, W. Yang, K. Li et al., Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless human motion detection. Nano Energy 92, 106689 (2022). https://doi.org/10.1016/j.nanoen.2021.106689
Y. Tian, D.Y. Wang, Y.T. Li, H. Tian, Y. Yang et al., Highly sensitive, wide-range, and flexible pressure sensor based on honeycomb-like graphene network. IEEE Trans. Electron Devices 67(5), 2153–2156 (2020). https://doi.org/10.1109/TED.2020.2982998
A.M. Tahir, M.E. Chowdhury, A. Khandakar, S. Al-Hamouz, M. Abdalla et al., A systematic approach to the design and characterization of a smart insole for detecting vertical ground reaction force (VGRF) in gait analysis. Sensors 20(4), 957 (2020). https://doi.org/10.3390/s20040957
W. Tao, T. Liu, R. Zheng, H. Feng, Gait analysis using wearable sensors. Sensors 12(2), 2255–2283 (2012). https://doi.org/10.3390/s120202255
G. Fang, X. Yang, Q. Wang, A. Zhang, B. Tang, Hydrogels-based ophthalmic drug delivery systems for treatment of ocular diseases. Mater. Sci. Eng. C 127, 112212 (2021). https://doi.org/10.1016/j.msec.2021.112212
X. Zhao, X. Chen, H. Yuk, S. Lin, X. Liu et al., Soft materials by design: unconventional polymer networks give extreme properties. Chem. Rev. 121(8), 4309–4372 (2021). https://doi.org/10.1021/acs.chemrev.0c01088
N.M. Farandos, A.K. Yetisen, M.J. Monteiro, C.R. Lowe, S.H. Yun, Contact lens sensors in ocular diagnostics. Adv. Healthc. Mater. 4(6), 792–810 (2015). https://doi.org/10.1002/adhm.201400504
J. Kim, J. Kim, M. Ku, E. Cha, S. Ju et al., Intraocular pressure monitoring following islet transplantation to the anterior chamber of the eye. Nano Lett. 20(3), 1517–1525 (2019). https://doi.org/10.1021/acs.nanolett.9b03605
H. An, L. Chen, X. Liu, B. Zhao, H. Zhang et al., Microfluidic contact lenses for unpowered, continuous and non-invasive intraocular pressure monitoring. Sens. Actuators A 295, 177–187 (2019). https://doi.org/10.1016/j.sna.2019.04.050
Y. Wei, Y. Qiao, G. Jiang, Y. Wang, F. Wang et al., A wearable skinlike ultra-sensitive artificial graphene throat. ACS Nano 13(8), 8639–8647 (2019). https://doi.org/10.1021/acsnano.9b03218
Q. Liu, J. Chen, Y. Li, G. Shi, High-performance strain sensors with fish-scale-like graphene-sensing layers for full-range detection of human motions. ACS Nano 10(8), 7901–7906 (2016). https://doi.org/10.1021/acsnano.6b03813
W. Tang, R. Liu, Y. Shi, C. Hu, S. Bai et al., From finger friction to brain activation: tactile perception of the roughness of gratings. J. Adv. Res. 21, 129–139 (2020). https://doi.org/10.1016/j.jare.2019.11.001
S.N. Flesher, J.E. Downey, J.M. Weiss, C.L. Hughes, A.J. Herrera et al., A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 372(6544), 831–836 (2021). https://doi.org/10.1126/science.abd0380
S. Chun, J.S. Kim, Y. Yoo, Y. Choi, S.J. Jung et al., An artificial neural tactile sensing system. Nat. Electron. 4(6), 429–438 (2021). https://doi.org/10.1038/s41928-021-00585-x
Z. Song, J. Yin, Z. Wang, C. Lu, Z. Yang et al., A flexible triboelectric tactile sensor for simultaneous material and texture recognition. Nano Energy 93, 106798 (2022). https://doi.org/10.1016/j.nanoen.2021.106798
Y.W. Cai, X.N. Zhang, G.G. Wang, G.Z. Li, D.Q. Zhao et al., A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for e-skin. Nano Energy 81, 105663 (2021). https://doi.org/10.1016/j.nanoen.2020.105663
M. Zhu, M. Lou, J. Yu, Z. Li, B. Ding, Energy autonomous hybrid electronic skin with multi-modal sensing capabilities. Nano Energy 78, 105208 (2020). https://doi.org/10.1016/j.nanoen.2020.105208
W. Lin, B. Wang, G. Peng, Y. Shan, H. Hu et al., Skin-inspired piezoelectric tactile sensor array with crosstalk-free row+column electrodes for spatiotemporally distinguishing diverse stimuli. Adv. Sci. 8(3), 2002817 (2021). https://doi.org/10.1002/advs.202002817
K. Kim, M. Sim, S.H. Lim, D. Kim, D. Lee et al., Tactile avatar: tactile sensing system mimicking human tactile cognition. Adv. Sci. 8(7), 2002362 (2021). https://doi.org/10.1002/advs.202002362
H. Wang, Y. Cen, X. Zeng, Highly sensitive flexible tactile sensor mimicking the microstructure perception behavior of human skin. ACS Appl. Mater. Interfaces 13(24), 28538–28545 (2021). https://doi.org/10.1021/acsami.1c04079
S. Luo, X. Zhou, X. Tang, J. Li, D. Wei et al., Microconformal electrode-dielectric integration for flexible ultrasensitive robotic tactile sensing. Nano Energy 80, 105580 (2021). https://doi.org/10.1016/j.nanoen.2020.105580
S.H. Lee, Y.S. Kim, W.H. Yeo, Advances in microsensors and wearable bioelectronics for digital stethoscopes in health monitoring and disease diagnosis. Adv. Healthc. Mater. 10(22), 2101400 (2021). https://doi.org/10.1002/adhm.202101400
T.R. Reed, N.E. Reed, P. Fritzson, Heart sound analysis for symptom detection and computer-aided diagnosis. Simul. Model Pract. Theory 12(2), 129–146 (2004). https://doi.org/10.1016/j.simpat.2003.11.005
M. Wang, B. Guo, Y. Hu, Z. Zhao, C. Liu et al., Transfer learning models for detecting six categories of phonocardiogram recordings. J. Cardiovasc. Dev. Dis. 9(3), 86 (2022). https://doi.org/10.3390/jcdd9030086
S. Mangione, L.Z. Nieman, Cardiac auscultatory skills of internal medicine and family practice trainees: a comparison of diagnostic proficiency. JAMA 278(9), 717–722 (1997). https://doi.org/10.1001/jama.1997.03550090041030
Y. Hu, Y. Xu, An ultra-sensitive wearable accelerometer for continuous heart and lung sound monitoring. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, pp 694–697 (2012). https://doi.org/10.1109/EMBC.2012.6346026
H. Chen, S. Yu, H. Liu, J. Liu, Y. Xiao et al., A two-stage amplified PZT sensor for monitoring lung and heart sounds in discharged pneumonia patients. Microsyst. Nanoeng. 7, 55 (2021). https://doi.org/10.1038/s41378-021-00274-x
Y. Cotur, M. Kasimatis, M. Kaisti, S. Olenik, C. Georgiou et al., Stretchable composite acoustic transducer for wearable monitoring of vital signs. Adv. Funct. Mater. 30(16), 1910288 (2020). https://doi.org/10.1002/adfm.201910288
E. Andreozzi, G.D. Gargiulo, D. Esposito, P. Bifulco, A novel broadband forcecardiography sensor for simultaneous monitoring of respiration, infrasonic cardiac vibrations and heart sounds. Front. Physiol. 12, 725716 (2021). https://doi.org/10.3389/fphys.2021.725716
P. Gupta, M.J. Moghimi, Y. Jeong, D. Gupta, O.T. Inan et al., Precision wearable accelerometer contact microphones for longitudinal monitoring of mechano-acoustic cardiopulmonary signals. NPJ Digit. Med. 3, 19 (2020). https://doi.org/10.1038/s41746-020-0225-7
M.O.G. Nayeem, S. Lee, H. Jin, N. Matsuhisa, H. Jinno et al., All-nanofiber-based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-term heart monitoring. Proc. Natl. Acad. Sci. 117(13), 7063–7070 (2020). https://doi.org/10.1073/pnas.1920911117
S.J. Jung, H.S. Shin, W.Y. Chung, Driver fatigue and drowsiness monitoring system with embedded electrocardiogram sensor on steering wheel. IET Intell. Transp. Syst. 8(1), 43–50 (2014). https://doi.org/10.1049/iet-its.2012.0032
I.P. Martins, M. Westerfield, M. Lopes, C. Maruta, R. Gil-da-Costa, Brain state monitoring for the future prediction of migraine attacks. Cephalalgia 40(3), 255–265 (2020). https://doi.org/10.1177/0333102419877660
T.B. Alakus, M. Gonen, I. Turkoglu, Database for an emotion recognition system based on EEG signals and various computer games-GAMEEMO. Biomed. Signal Process. Control 60, 101951 (2020). https://doi.org/10.1016/j.bspc.2020.101951
J. Jeppesen, A. Fuglsang-Frederiksen, P. Johansen, J. Christensen, S. Wüstenhagen et al., Seizure detection based on heart rate variability using a wearable electrocardiography device. Epilepsia 60(10), 2105–2113 (2019). https://doi.org/10.1111/epi.16343
R. Asif, S. Saleem, S.A. Hassan, S.A. Alharbi, A.M. Kamboh, Epileptic seizure detection with a reduced montage: a way forward for ambulatory EEG devices. IEEE Access 8, 65880–65890 (2020). https://doi.org/10.1109/ACCESS.2020.2983917
Z. Cao, C.T. Lin, W. Ding, M.H. Chen, C.T. Li et al., Identifying ketamine responses in treatment-resistant depression using a wearable forehead EEG. IEEE Trans. Biomed. Eng. 66(6), 1668–1679 (2018). https://doi.org/10.1109/TBME.2018.2877651
M.L.B. Freitas, J.J.A. Mendes, D.P. Campos, S.L. Stevan, Hand gestures classification using multichannel sEMG armband. XXVI Brazilian Congress on Biomedical Engineering, 239–246 (2019). https://doi.org/10.1007/978-981-13-2517-5_37
S. Maragliulo, P.F.A. Lopes, L.B. Osório, A.T. Almeida, M. Tavakoli, Foot gesture recognition through dual channel wearable EMG system. IEEE Sens. J. 19(22), 10187–10197 (2019). https://doi.org/10.1109/JSEN.2019.2931715
H. Liu, W. Dong, Y. Li, F. Li, J. Geng et al., An epidermal sEMG tattoo-like patch as a new human-machine interface for patients with loss of voice. Microsyst. Nanoeng. 6, 16 (2020). https://doi.org/10.1038/s41378-019-0127-5
J.W. Jeong, W.H. Yeo, A. Akhtar, J.J. Norton, Y.J. Kwack et al., Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 25(47), 6839–6846 (2013). https://doi.org/10.1002/adma.201301921
B. Xu, A. Akhtar, Y. Liu, H. Chen, W.H. Yeo et al., An epidermal s