Ti3C2Tx Composite Aerogels Enable Pressure Sensors for Dialect Speech Recognition Assisted by Deep Learning
Corresponding Author: Fangmeng Liu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 101
Abstract
Wearable pressure sensors capable of adhering comfortably to the skin hold great promise in sound detection. However, current intelligent speech assistants based on pressure sensors can only recognize standard languages, which hampers effective communication for non-standard language people. Here, we prepare an ultralight Ti3C2Tx MXene/chitosan/polyvinylidene difluoride composite aerogel with a detection range of 6.25 Pa-1200 kPa, rapid response/recovery time, and low hysteresis (13.69%). The wearable aerogel pressure sensor can detect speech information through the throat muscle vibrations without any interference, allowing for accurate recognition of six dialects (96.2% accuracy) and seven different words (96.6% accuracy) with the assistance of convolutional neural networks. This work represents a significant step forward in silent speech recognition for human–machine interaction and physiological signal monitoring.
Highlights:
1 Emphasized the innovation in both the material design and methodology between the sensing performance and mechanical properties.
2 The composite aerogel pressure sensors exhibited low hysteresis (13.69%), wide detection range (6.25 Pa-1200 kPa), and cyclic stability to acquire stable and accurate pronunciation signals.
3 Over 6888 and 4158 pronunciation signals were collected by the pressure sensor and utilized for training the convolutional neural network model, allowing for accurate recognition of six dialects (96.2% accuracy) and seven words (96.6% accuracy).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.V. Shannon, F.G. Zeng, V. Ka, J. Wygonski, M. Ekelid, Speech recognition with primarily temporal cues. Science 270, 303–304 (1995). https://doi.org/10.1126/science.270.5234.303
- S.M.N. Woolley, T.E. Fremouw, A. Hsu, F.E. Theunissen, Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds. Nat. Neurosci. 8, 1371–1379 (2005). https://doi.org/10.1038/nn1536
- J. Makhoul, R. Schwartz, State of the art in continuous speech recognition. Proc. Natl. Acad. Sci. U.S.A. 92, 9956–9963 (1995). https://doi.org/10.1073/pnas.92.22.9956
- A. Löfqvist, T. Baer, N.S. McGarr, R.S. Story, The cricothyroid muscle in voicing control. J. Acoust. Soc. Am. 85, 1314–1321 (1989). https://doi.org/10.1121/1.397462
- Q. Yang, W. Jin, Q. Zhang, Y. Wei, Z. Guo et al., Mixed-modality speech recognition and interaction using a wearable artificial throat. Nat. Mach. Intell. 5, 169–180 (2023). https://doi.org/10.1038/s42256-023-00616-6
- D. Ravenscroft, I. Prattis, T. Kandukuri, Y.A. Samad, L.G. Occhipinti, A wearable graphene strain gauge sensor with haptic feedback for silent communications. 2021 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). June 20–23, 2021, Manchester, United Kingdom. IEEE, (2021). pp. 1–4.
- T.S. Le Dinh, J. An, Y. Huang, Q. Vo, J. Boonruangkan et al., Ultrasensitive anti-interference voice recognition by bio-inspired skin-attachable self-cleaning acoustic sensors. ACS Nano 13, 13293–13303 (2019). https://doi.org/10.1021/acsnano.9b06354
- T. Kim, Y. Shin, K. Kang, K. Kim, G. Kim et al., Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces. Nat. Commun. 13, 5815 (2022). https://doi.org/10.1038/s41467-022-33457-9
- Z. Zhou, K. Chen, X. Li, S. Zhang, Y. Wu et al., Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3, 571–578 (2020). https://doi.org/10.1038/s41928-020-0428-6
- G. Ge, Y. Zhang, J. Shao, W. Wang, W. Si et al., Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection. Adv. Funct. Mater. 28, 1802576 (2018). https://doi.org/10.1002/adfm.201802576
- Y.H. Jung, T.X. Pham, D. Issa, H.S. Wang, J.H. Lee et al., Deep learning-based noise robust flexible piezoelectric acoustic sensors for speech processing. Nano Energy 101, 107610 (2022). https://doi.org/10.1016/j.nanoen.2022.107610
- Y. Wei, Y. Qiao, G. Jiang, Y. Wang, F. Wang et al., A wearable skinlike ultra-sensitive artificial graphene throat. ACS Nano 13, 8639–8647 (2019). https://doi.org/10.1021/acsnano.9b03218
- S. Xu, J.-X. Yu, H. Guo, S. Tian, Y. Long et al., Force-induced ion generation in zwitterionic hydrogels for a sensitive silent-speech sensor. Nat. Commun. 14, 219 (2023). https://doi.org/10.1038/s41467-023-35893-7
- S. Maiti, S. Kumar Karan, J. Lee, A. Kumar Mishra, B. Bhusan Khatua et al., Bio-waste onion skin as an innovative nature-driven piezoelectric material with high energy conversion efficiency. Nano Energy 42, 282–293 (2017). https://doi.org/10.1016/j.nanoen.2017.10.041
- S. Min, D.H. Kim, D.J. Joe, B.W. Kim, Y.H. Jung et al., Clinical validation of a wearable piezoelectric blood-pressure sensor for continuous health monitoring. Adv. Mater. 35, e2301627 (2023). https://doi.org/10.1002/adma.202301627
- J.H. Lee, K.H. Cho, K. Cho, Emerging trends in soft electronics: integrating machine intelligence with soft acoustic/vibration sensors. Adv. Mater. 35, e2209673 (2023). https://doi.org/10.1002/adma.202209673
- S. Qiu, H. Zhao, N. Jiang, Z. Wang, L. Liu et al., Multi-sensor information fusion based on machine learning for real applications in human activity recognition: state-of-the-art and research challenges. Inf. Fusion 80, 241–265 (2022). https://doi.org/10.1016/j.inffus.2021.11.006
- K. Zhou, C. Zhang, Z. Xiong, H.-Y. Chen, T. Li et al., Template-directed growth of hierarchical MOF hybrid arrays for tactile sensor. Adv. Funct. Mater. 30, 2001296 (2020). https://doi.org/10.1002/adfm.202001296
- S. Xu, A. Jayaraman, J.A. Rogers, Skin sensors are the future of health care. Nature 571, 319–321 (2019). https://doi.org/10.1038/d41586-019-02143-0
- Q. Zeng, F. Wang, R. Hu, X. Ding, Y. Lu et al., Debonding-on-demand polymeric wound patches for minimal adhesion and clinical communication. Adv. Sci. 9, e2202635 (2022). https://doi.org/10.1002/advs.202202635
- C. Liang, C. Jiao, H. Gou, H. Luo, Y. Diao et al., Facile construction of electrochemical and self-powered wearable pressure sensors based on metallic corrosion effects. Nano Energy 104, 107954 (2022). https://doi.org/10.1016/j.nanoen.2022.107954
- H. Yoo, E. Kim, J.W. Chung, H. Cho, S. Jeong et al., Silent speech recognition with strain sensors and deep learning analysis of directional facial muscle movement. ACS Appl. Mater. Interfaces 14, 54157 (2022). https://doi.org/10.1021/acsami.2c14918
- Q. Zeng, Q. Peng, F. Wang, G. Shi, H. Haick et al., Tailoring food biopolymers into biogels for regenerative wound healing and versatile skin bioelectronics. Nano-Micro Lett. 15, 153 (2023). https://doi.org/10.1007/s40820-023-01099-1
- E.S. Muckley, M. Naguib, H.-W. Wang, L. Vlcek, N.C. Osti et al., Multimodality of structural, electrical, and gravimetric responses of intercalated MXenes to water. ACS Nano 11, 11118–11126 (2017). https://doi.org/10.1021/acsnano.7b05264
- R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13, 66 (2021). https://doi.org/10.1007/s40820-021-00597-4
- E. Mostafavi, S. Iravani, MXene-graphene composites: a perspective on biomedical potentials. Nano-Micro Lett. 14, 130 (2022). https://doi.org/10.1007/s40820-022-00880-y
- M. Hilal, W. Yang, Y. Hwang, W. Xie, Tailoring MXene thickness and functionalization for enhanced room-temperature trace NO2 sensing. Nano-Micro Lett. 16, 84 (2024). https://doi.org/10.1007/s40820-023-01316-x
- W. Li, C. Teng, Y. Sun, L. Cai, J.-L. Xu et al., Sprayed, scalable, wearable, and portable NO2 sensor array using fully flexible AgNPs-all-carbon nanostructures. ACS Appl. Mater. Interfaces 10, 34485–34493 (2018). https://doi.org/10.1021/acsami.8b11254
- H. Ma, M. Fashandi, Z.B. Rejeb, X. Ming, Y. Liu et al., Efficient electromagnetic wave absorption and thermal infrared stealth in PVTMS@MWCNT nano-aerogel via abundant nano-sized cavities and attenuation interfaces. Nano-Micro Lett. 16, 20 (2023). https://doi.org/10.1007/s40820-023-01218-y
- F.-L. Gao, J. Liu, X.-P. Li, Q. Ma, T. Zhang et al., Ti3C2Tx MXene-based multifunctional tactile sensors for precisely detecting and distinguishing temperature and pressure stimuli. ACS Nano 17, 16036–16047 (2023). https://doi.org/10.1021/acsnano.3c04650
- Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14, 77 (2022). https://doi.org/10.1007/s40820-022-00819-3
- H.F. Lei, Z.Q. Zhang, B. Liu, Effect of fiber arrangement on mechanical properties of short fiber reinforced composites. Compos. Sci. Technol. 72, 506–514 (2012). https://doi.org/10.1016/j.compscitech.2011.12.011
- A. Godara, L. Mezzo, F. Luizi, A. Warrier, S.V. Lomov et al., Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites. Carbon 47, 2914–2923 (2009). https://doi.org/10.1016/j.carbon.2009.06.039
- Q. Zeng, X. Qi, G. Shi, M. Zhang, H. Haick, Wound dressing: from nanomaterials to diagnostic dressings and healing evaluations. ACS Nano 16, 1708–1733 (2022). https://doi.org/10.1021/acsnano.1c08411
- Q. Zeng, Y. Qian, Y. Huang, F. Ding, X. Qi et al., Polydopamine nanop-dotted food gum hydrogel with excellent antibacterial activity and rapid shape adaptability for accelerated bacteria-infected wound healing. Bioact. Mater. 6, 2647–2657 (2021). https://doi.org/10.1016/j.bioactmat.2021.01.035
- A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. MXenes. Jenny Stanford Publishing, (2023), pp 333–355 https://doi.org/10.1201/9781003306511-16
- S.-N. Li, Z.-R. Yu, B.-F. Guo, K.-Y. Guo, Y. Li et al., Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2TX MXene hydrogels for wide-temperature strain sensing. Nano Energy 90, 106502 (2021). https://doi.org/10.1016/j.nanoen.2021.106502
- C. Branca, G. D’Angelo, C. Crupi, K. Khouzami, S. Rifici et al., Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: a FTIR-ATR study on chitosan and chitosan/clay films. Polymer 99, 614–622 (2016). https://doi.org/10.1016/j.polymer.2016.07.086
- V. Natu, M. Benchakar, C. Canaff, A. Habrioux, S. Célérier et al., A critical analysis of the X-ray photoelectron spectra of Ti3C2Tz MXenes. Matter 4, 1224–1251 (2021). https://doi.org/10.1016/j.matt.2021.01.015
- J. Ren, Z. Wang, P. Xu, C. Wang, F. Gao et al., Porous Co2VO4 nanodisk as a high-energy and fast-charging anode for lithium-ion batteries. Nano-Micro Lett. 14, 5 (2021). https://doi.org/10.1007/s40820-021-00758-5
- K. Zou, P. Cai, B. Wang, C. Liu, J. Li et al., Insights into enhanced capacitive behavior of carbon cathode for lithium ion capacitors: the coupling of pore size and graphitization engineering. Nano-Micro Lett. 12, 121 (2020). https://doi.org/10.1007/s40820-020-00458-6
- Y. Qin, M. Long, B. Tan, B. Zhou, RhB adsorption performance of magnetic adsorbent Fe3O4/RGO composite and its regeneration through A Fenton-like reaction. Nano-Micro Lett. 6, 125–135 (2014). https://doi.org/10.1007/BF03353776
- L. Zhao, H. Li, J. Meng, A.C. Wang, P. Tan et al., Reversible conversion between Schottky and ohmic contacts for highly sensitive, multifunctional biosensors. Adv. Funct. Mater. 30, 1907999 (2020). https://doi.org/10.1002/adfm.201907999
- H. Zhi, X. Zhang, F. Wang, P. Wan, L. Feng, Flexible Ti3C2Tx MXene/PANI/bacterial cellulose aerogel for e-skins and gas sensing. ACS Appl. Mater. Interfaces 13, 45987 (2021). https://doi.org/10.1021/acsami.1c12991
- X. Wu, Z. Li, Y. Zhu, J. Wang, S. Yang, Ultralight GO-hybridized CNTs aerogels with enhanced electronic and mechanical properties for piezoresistive sensors. ACS Appl. Mater. Interfaces 13, 26352–26361 (2021). https://doi.org/10.1021/acsami.1c04080
- Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12, 3209–3216 (2018). https://doi.org/10.1021/acsnano.7b06909
- R. Liu, J. Li, M. Li, Q. Zhang, G. Shi et al., MXene-coated air-permeable pressure-sensing fabric for smart wear. ACS Appl. Mater. Interfaces 12, 46446 (2020). https://doi.org/10.1021/acsami.0c11715
- Q. Yu, C. Su, S. Bi, Y. Huang, J. Li et al., Ti3C2Tx@nonwoven fabric composite: promising MXene-coated fabric for wearable piezoresistive pressure sensors. ACS Appl. Mater. Interfaces 14, 9632 (2022). https://doi.org/10.1021/acsami.2c00980
- W. Shi, S. Chen, Y. Lin, G. Zhang, Z. Peng et al., Piezoresistive fibers with record high sensitivity via the synergic optimization of porous microstructure and elastic modulus. Chem. Eng. J. 441, 136046 (2022). https://doi.org/10.1016/j.cej.2022.136046
- W. Du, Z. Li, Y. Zhao, X. Zhang, L. Pang et al., Biocompatible and breathable all-fiber-based piezoresistive sensor with high sensitivity for human physiological movements monitoring. Chem. Eng. J. 446, 137268 (2022). https://doi.org/10.1016/j.cej.2022.137268
- J. Huang, D. Li, M. Zhao, H. Ke, A. Mensah et al., Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors. Chem. Eng. J. 373, 1357–1366 (2019). https://doi.org/10.1016/j.cej.2019.05.136
- D.-J. Yao, Z. Tang, L. Zhang, Z.-G. Liu, Q.-J. Sun et al., A highly sensitive, foldable and wearable pressure sensor based on MXene-coated airlaid paper for electronic skin. J. Mater. Chem. C 9, 12642–12649 (2021). https://doi.org/10.1039/D1TC02458B
- S. Wang, W. Deng, T. Yang, Y. Ao, H. Zhang et al., Bioinspired MXene-based piezoresistive sensor with two-stage enhancement for motion capture. Adv. Funct. Mater. 33, 2214503 (2023). https://doi.org/10.1002/adfm.202214503
- X. Cao, J. Zhang, S. Chen, R.J. Varley, K. Pan, 1D/2D nanomaterials synergistic, compressible, and response rapidly 3D graphene aerogel for piezoresistive sensor. Adv. Funct. Mater. 30, 2003618 (2020). https://doi.org/10.1002/adfm.202003618
- D. Liao, Y. Wang, P. Xie, C. Zhang, M. Li et al., A resilient and lightweight cellulose/graphene oxide/polymer-derived multifunctional carbon aerogel generated from Pickering emulsion toward a wearable pressure sensor. J. Colloid Interface Sci. 628, 574–587 (2022). https://doi.org/10.1016/j.jcis.2022.07.188
- L. Li, X. Fu, S. Chen, S. Uzun, A.S. Levitt et al., Hydrophobic and stable MXene-polymer pressure sensors for wearable electronics. ACS Appl. Mater. Interfaces 12, 15362 (2020). https://doi.org/10.1021/acsami.0c00255
- Z. Yang, H. Li, S. Zhang, X. Lai, X. Zeng, Superhydrophobic MXene@carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor. Chem. Eng. J. 425, 130462 (2021). https://doi.org/10.1016/j.cej.2021.130462
- X. Chen, H. Liu, Y. Zheng, Y. Zhai, X. Liu et al., Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor. ACS Appl. Mater. Interfaces 11, 42594 (2019). https://doi.org/10.1021/acsami.9b14688
- L. Wang, M. Zhang, B. Yang, J. Tan, X. Ding, Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 14, 10633–10647 (2020). https://doi.org/10.1021/acsnano.0c04888
- X. Shi, X. Fan, Y. Zhu, Y. Liu, P. Wu et al., Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nat. Commun. 13, 1119 (2022). https://doi.org/10.1038/s41467-022-28760-4
- S. Han, Q. Wu, J. Zhu, J. Zhang, A. Chen et al., Multifunctional, superelastic, and environmentally stable sodium alginate/mxene/polydimethylsiloxane aerogels for piezoresistive sensor. Chem. Eng. J. 471, 144551 (2023). https://doi.org/10.1016/j.cej.2023.144551
- Z. Deng, C. Gao, S. Feng, H. Zhang, Y. Liu et al., Highly compressible, light-weight and robust nitrogen-doped graphene composite aerogel for sensitive pressure sensors. Chem. Eng. J. 471, 144790 (2023). https://doi.org/10.1016/j.cej.2023.144790
- Y. Hu, H. Zhuo, Q. Luo, Y. Wu, R. Wen et al., Biomass polymer-assisted fabrication of aerogels from MXenes with ultrahigh compression elasticity and pressure sensitivity. J. Mater. Chem. A 7, 10273–10281 (2019). https://doi.org/10.1039/C9TA01448A
- Z. Qin, Y. Lv, X. Fang, B. Zhao, F. Niu et al., Ultralight polypyrrole crosslinked nanofiber aerogel for highly sensitive piezoresistive sensor. Chem. Eng. J. 427, 131650 (2022). https://doi.org/10.1016/j.cej.2021.131650
- Z. Chen, H. Zhuo, Y. Hu, H. Lai, L. Liu et al., Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage. Adv. Funct. Mater. 30, 1910292 (2020). https://doi.org/10.1002/adfm.201910292
- J. Zhou, Y.-L. Hsieh, Conductive polymer protonated nanocellulose aerogels for tunable and linearly responsive strain sensors. ACS Appl. Mater. Interfaces 10, 27902–27910 (2018). https://doi.org/10.1021/acsami.8b10239
- S. Long, Y. Feng, F. He, S. He, H. Hong et al., An ultralight, supercompressible, superhydrophobic and multifunctional carbon aerogel with a specially designed structure. Carbon 158, 137–145 (2020). https://doi.org/10.1016/j.carbon.2019.11.065
- M. Xie, G. Qian, Y. Yu, C. Chen, H. Li et al., High-performance flexible reduced graphene oxide/polyimide nanocomposite aerogels fabricated by double crosslinking strategy for piezoresistive sensor application. Chem. Eng. J. 480, 148203 (2024). https://doi.org/10.1016/j.cej.2023.148203
- W. Jiang, C. Yao, W. Chen, D. Li, L. Zhong et al., A super-resilient and highly sensitive graphene oxide/cellulose-derived carbon aerogel. J. Mater. Chem. A 8, 18376–18384 (2020). https://doi.org/10.1039/D0TA05310D
- W. Ma, Z. Jiang, T. Lu, R. Xiong, C. Huang, Lightweight, elastic and superhydrophobic multifunctional nanofibrous aerogel for self-cleaning, oil/water separation and pressure sensing. Chem. Eng. J. 430, 132989 (2022). https://doi.org/10.1016/j.cej.2021.132989
- Z. Wang, Y. Wang, Y. Chen, M. Yousaf, H. Wu et al., Reticulate dual-nanowire aerogel for multifunctional applications: a high-performance strain sensor and a high areal capacity rechargeable anode. Adv. Funct. Mater. 29, 1807467 (2019). https://doi.org/10.1002/adfm.201807467
- T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15, 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
- M. Touron, C. Celle, L. Orgéas, J.-P. Simonato, Hybrid silver nanowire-CMC aerogels: from 1D nanomaterials to 3D electrically conductive and mechanically resistant lightweight architectures. ACS Nano 16, 14188–14197 (2022). https://doi.org/10.1021/acsnano.2c04288
- D. Yang, X. Dong, L. Jiang, F. Liu, S. Ma et al., A universal biomacromolecule-enabled assembly strategy for constructing multifunctional aerogels with 90% inorganic mass loading from inert nano-building blocks. Small 20, e2402334 (2024). https://doi.org/10.1002/smll.202402334
- H. Wang, Y. Jiang, Z. Ma, Y. Shi, Y. Zhu et al., Hyperelastic, robust, fire-safe multifunctional MXene aerogels with unprecedented electromagnetic interference shielding efficiency. Adv. Funct. Mater. 33, 2306884 (2023). https://doi.org/10.1002/adfm.202306884
- L. Zhuang, D. Lu, J. Zhang, P. Guo, L. Su et al., Highly cross-linked carbon tube aerogels with enhanced elasticity and fatigue resistance. Nat. Commun. 14, 3178 (2023). https://doi.org/10.1038/s41467-023-38664-6
- J. Xu, H. Chang, B. Zhao, R. Li, T. Cui et al., Highly stretchable and conformal electromagnetic interference shielding armor with strain sensing ability. Chem. Eng. J. 431, 133908 (2022). https://doi.org/10.1016/j.cej.2021.133908
References
R.V. Shannon, F.G. Zeng, V. Ka, J. Wygonski, M. Ekelid, Speech recognition with primarily temporal cues. Science 270, 303–304 (1995). https://doi.org/10.1126/science.270.5234.303
S.M.N. Woolley, T.E. Fremouw, A. Hsu, F.E. Theunissen, Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds. Nat. Neurosci. 8, 1371–1379 (2005). https://doi.org/10.1038/nn1536
J. Makhoul, R. Schwartz, State of the art in continuous speech recognition. Proc. Natl. Acad. Sci. U.S.A. 92, 9956–9963 (1995). https://doi.org/10.1073/pnas.92.22.9956
A. Löfqvist, T. Baer, N.S. McGarr, R.S. Story, The cricothyroid muscle in voicing control. J. Acoust. Soc. Am. 85, 1314–1321 (1989). https://doi.org/10.1121/1.397462
Q. Yang, W. Jin, Q. Zhang, Y. Wei, Z. Guo et al., Mixed-modality speech recognition and interaction using a wearable artificial throat. Nat. Mach. Intell. 5, 169–180 (2023). https://doi.org/10.1038/s42256-023-00616-6
D. Ravenscroft, I. Prattis, T. Kandukuri, Y.A. Samad, L.G. Occhipinti, A wearable graphene strain gauge sensor with haptic feedback for silent communications. 2021 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). June 20–23, 2021, Manchester, United Kingdom. IEEE, (2021). pp. 1–4.
T.S. Le Dinh, J. An, Y. Huang, Q. Vo, J. Boonruangkan et al., Ultrasensitive anti-interference voice recognition by bio-inspired skin-attachable self-cleaning acoustic sensors. ACS Nano 13, 13293–13303 (2019). https://doi.org/10.1021/acsnano.9b06354
T. Kim, Y. Shin, K. Kang, K. Kim, G. Kim et al., Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces. Nat. Commun. 13, 5815 (2022). https://doi.org/10.1038/s41467-022-33457-9
Z. Zhou, K. Chen, X. Li, S. Zhang, Y. Wu et al., Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3, 571–578 (2020). https://doi.org/10.1038/s41928-020-0428-6
G. Ge, Y. Zhang, J. Shao, W. Wang, W. Si et al., Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection. Adv. Funct. Mater. 28, 1802576 (2018). https://doi.org/10.1002/adfm.201802576
Y.H. Jung, T.X. Pham, D. Issa, H.S. Wang, J.H. Lee et al., Deep learning-based noise robust flexible piezoelectric acoustic sensors for speech processing. Nano Energy 101, 107610 (2022). https://doi.org/10.1016/j.nanoen.2022.107610
Y. Wei, Y. Qiao, G. Jiang, Y. Wang, F. Wang et al., A wearable skinlike ultra-sensitive artificial graphene throat. ACS Nano 13, 8639–8647 (2019). https://doi.org/10.1021/acsnano.9b03218
S. Xu, J.-X. Yu, H. Guo, S. Tian, Y. Long et al., Force-induced ion generation in zwitterionic hydrogels for a sensitive silent-speech sensor. Nat. Commun. 14, 219 (2023). https://doi.org/10.1038/s41467-023-35893-7
S. Maiti, S. Kumar Karan, J. Lee, A. Kumar Mishra, B. Bhusan Khatua et al., Bio-waste onion skin as an innovative nature-driven piezoelectric material with high energy conversion efficiency. Nano Energy 42, 282–293 (2017). https://doi.org/10.1016/j.nanoen.2017.10.041
S. Min, D.H. Kim, D.J. Joe, B.W. Kim, Y.H. Jung et al., Clinical validation of a wearable piezoelectric blood-pressure sensor for continuous health monitoring. Adv. Mater. 35, e2301627 (2023). https://doi.org/10.1002/adma.202301627
J.H. Lee, K.H. Cho, K. Cho, Emerging trends in soft electronics: integrating machine intelligence with soft acoustic/vibration sensors. Adv. Mater. 35, e2209673 (2023). https://doi.org/10.1002/adma.202209673
S. Qiu, H. Zhao, N. Jiang, Z. Wang, L. Liu et al., Multi-sensor information fusion based on machine learning for real applications in human activity recognition: state-of-the-art and research challenges. Inf. Fusion 80, 241–265 (2022). https://doi.org/10.1016/j.inffus.2021.11.006
K. Zhou, C. Zhang, Z. Xiong, H.-Y. Chen, T. Li et al., Template-directed growth of hierarchical MOF hybrid arrays for tactile sensor. Adv. Funct. Mater. 30, 2001296 (2020). https://doi.org/10.1002/adfm.202001296
S. Xu, A. Jayaraman, J.A. Rogers, Skin sensors are the future of health care. Nature 571, 319–321 (2019). https://doi.org/10.1038/d41586-019-02143-0
Q. Zeng, F. Wang, R. Hu, X. Ding, Y. Lu et al., Debonding-on-demand polymeric wound patches for minimal adhesion and clinical communication. Adv. Sci. 9, e2202635 (2022). https://doi.org/10.1002/advs.202202635
C. Liang, C. Jiao, H. Gou, H. Luo, Y. Diao et al., Facile construction of electrochemical and self-powered wearable pressure sensors based on metallic corrosion effects. Nano Energy 104, 107954 (2022). https://doi.org/10.1016/j.nanoen.2022.107954
H. Yoo, E. Kim, J.W. Chung, H. Cho, S. Jeong et al., Silent speech recognition with strain sensors and deep learning analysis of directional facial muscle movement. ACS Appl. Mater. Interfaces 14, 54157 (2022). https://doi.org/10.1021/acsami.2c14918
Q. Zeng, Q. Peng, F. Wang, G. Shi, H. Haick et al., Tailoring food biopolymers into biogels for regenerative wound healing and versatile skin bioelectronics. Nano-Micro Lett. 15, 153 (2023). https://doi.org/10.1007/s40820-023-01099-1
E.S. Muckley, M. Naguib, H.-W. Wang, L. Vlcek, N.C. Osti et al., Multimodality of structural, electrical, and gravimetric responses of intercalated MXenes to water. ACS Nano 11, 11118–11126 (2017). https://doi.org/10.1021/acsnano.7b05264
R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13, 66 (2021). https://doi.org/10.1007/s40820-021-00597-4
E. Mostafavi, S. Iravani, MXene-graphene composites: a perspective on biomedical potentials. Nano-Micro Lett. 14, 130 (2022). https://doi.org/10.1007/s40820-022-00880-y
M. Hilal, W. Yang, Y. Hwang, W. Xie, Tailoring MXene thickness and functionalization for enhanced room-temperature trace NO2 sensing. Nano-Micro Lett. 16, 84 (2024). https://doi.org/10.1007/s40820-023-01316-x
W. Li, C. Teng, Y. Sun, L. Cai, J.-L. Xu et al., Sprayed, scalable, wearable, and portable NO2 sensor array using fully flexible AgNPs-all-carbon nanostructures. ACS Appl. Mater. Interfaces 10, 34485–34493 (2018). https://doi.org/10.1021/acsami.8b11254
H. Ma, M. Fashandi, Z.B. Rejeb, X. Ming, Y. Liu et al., Efficient electromagnetic wave absorption and thermal infrared stealth in PVTMS@MWCNT nano-aerogel via abundant nano-sized cavities and attenuation interfaces. Nano-Micro Lett. 16, 20 (2023). https://doi.org/10.1007/s40820-023-01218-y
F.-L. Gao, J. Liu, X.-P. Li, Q. Ma, T. Zhang et al., Ti3C2Tx MXene-based multifunctional tactile sensors for precisely detecting and distinguishing temperature and pressure stimuli. ACS Nano 17, 16036–16047 (2023). https://doi.org/10.1021/acsnano.3c04650
Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14, 77 (2022). https://doi.org/10.1007/s40820-022-00819-3
H.F. Lei, Z.Q. Zhang, B. Liu, Effect of fiber arrangement on mechanical properties of short fiber reinforced composites. Compos. Sci. Technol. 72, 506–514 (2012). https://doi.org/10.1016/j.compscitech.2011.12.011
A. Godara, L. Mezzo, F. Luizi, A. Warrier, S.V. Lomov et al., Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites. Carbon 47, 2914–2923 (2009). https://doi.org/10.1016/j.carbon.2009.06.039
Q. Zeng, X. Qi, G. Shi, M. Zhang, H. Haick, Wound dressing: from nanomaterials to diagnostic dressings and healing evaluations. ACS Nano 16, 1708–1733 (2022). https://doi.org/10.1021/acsnano.1c08411
Q. Zeng, Y. Qian, Y. Huang, F. Ding, X. Qi et al., Polydopamine nanop-dotted food gum hydrogel with excellent antibacterial activity and rapid shape adaptability for accelerated bacteria-infected wound healing. Bioact. Mater. 6, 2647–2657 (2021). https://doi.org/10.1016/j.bioactmat.2021.01.035
A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. MXenes. Jenny Stanford Publishing, (2023), pp 333–355 https://doi.org/10.1201/9781003306511-16
S.-N. Li, Z.-R. Yu, B.-F. Guo, K.-Y. Guo, Y. Li et al., Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2TX MXene hydrogels for wide-temperature strain sensing. Nano Energy 90, 106502 (2021). https://doi.org/10.1016/j.nanoen.2021.106502
C. Branca, G. D’Angelo, C. Crupi, K. Khouzami, S. Rifici et al., Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: a FTIR-ATR study on chitosan and chitosan/clay films. Polymer 99, 614–622 (2016). https://doi.org/10.1016/j.polymer.2016.07.086
V. Natu, M. Benchakar, C. Canaff, A. Habrioux, S. Célérier et al., A critical analysis of the X-ray photoelectron spectra of Ti3C2Tz MXenes. Matter 4, 1224–1251 (2021). https://doi.org/10.1016/j.matt.2021.01.015
J. Ren, Z. Wang, P. Xu, C. Wang, F. Gao et al., Porous Co2VO4 nanodisk as a high-energy and fast-charging anode for lithium-ion batteries. Nano-Micro Lett. 14, 5 (2021). https://doi.org/10.1007/s40820-021-00758-5
K. Zou, P. Cai, B. Wang, C. Liu, J. Li et al., Insights into enhanced capacitive behavior of carbon cathode for lithium ion capacitors: the coupling of pore size and graphitization engineering. Nano-Micro Lett. 12, 121 (2020). https://doi.org/10.1007/s40820-020-00458-6
Y. Qin, M. Long, B. Tan, B. Zhou, RhB adsorption performance of magnetic adsorbent Fe3O4/RGO composite and its regeneration through A Fenton-like reaction. Nano-Micro Lett. 6, 125–135 (2014). https://doi.org/10.1007/BF03353776
L. Zhao, H. Li, J. Meng, A.C. Wang, P. Tan et al., Reversible conversion between Schottky and ohmic contacts for highly sensitive, multifunctional biosensors. Adv. Funct. Mater. 30, 1907999 (2020). https://doi.org/10.1002/adfm.201907999
H. Zhi, X. Zhang, F. Wang, P. Wan, L. Feng, Flexible Ti3C2Tx MXene/PANI/bacterial cellulose aerogel for e-skins and gas sensing. ACS Appl. Mater. Interfaces 13, 45987 (2021). https://doi.org/10.1021/acsami.1c12991
X. Wu, Z. Li, Y. Zhu, J. Wang, S. Yang, Ultralight GO-hybridized CNTs aerogels with enhanced electronic and mechanical properties for piezoresistive sensors. ACS Appl. Mater. Interfaces 13, 26352–26361 (2021). https://doi.org/10.1021/acsami.1c04080
Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12, 3209–3216 (2018). https://doi.org/10.1021/acsnano.7b06909
R. Liu, J. Li, M. Li, Q. Zhang, G. Shi et al., MXene-coated air-permeable pressure-sensing fabric for smart wear. ACS Appl. Mater. Interfaces 12, 46446 (2020). https://doi.org/10.1021/acsami.0c11715
Q. Yu, C. Su, S. Bi, Y. Huang, J. Li et al., Ti3C2Tx@nonwoven fabric composite: promising MXene-coated fabric for wearable piezoresistive pressure sensors. ACS Appl. Mater. Interfaces 14, 9632 (2022). https://doi.org/10.1021/acsami.2c00980
W. Shi, S. Chen, Y. Lin, G. Zhang, Z. Peng et al., Piezoresistive fibers with record high sensitivity via the synergic optimization of porous microstructure and elastic modulus. Chem. Eng. J. 441, 136046 (2022). https://doi.org/10.1016/j.cej.2022.136046
W. Du, Z. Li, Y. Zhao, X. Zhang, L. Pang et al., Biocompatible and breathable all-fiber-based piezoresistive sensor with high sensitivity for human physiological movements monitoring. Chem. Eng. J. 446, 137268 (2022). https://doi.org/10.1016/j.cej.2022.137268
J. Huang, D. Li, M. Zhao, H. Ke, A. Mensah et al., Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors. Chem. Eng. J. 373, 1357–1366 (2019). https://doi.org/10.1016/j.cej.2019.05.136
D.-J. Yao, Z. Tang, L. Zhang, Z.-G. Liu, Q.-J. Sun et al., A highly sensitive, foldable and wearable pressure sensor based on MXene-coated airlaid paper for electronic skin. J. Mater. Chem. C 9, 12642–12649 (2021). https://doi.org/10.1039/D1TC02458B
S. Wang, W. Deng, T. Yang, Y. Ao, H. Zhang et al., Bioinspired MXene-based piezoresistive sensor with two-stage enhancement for motion capture. Adv. Funct. Mater. 33, 2214503 (2023). https://doi.org/10.1002/adfm.202214503
X. Cao, J. Zhang, S. Chen, R.J. Varley, K. Pan, 1D/2D nanomaterials synergistic, compressible, and response rapidly 3D graphene aerogel for piezoresistive sensor. Adv. Funct. Mater. 30, 2003618 (2020). https://doi.org/10.1002/adfm.202003618
D. Liao, Y. Wang, P. Xie, C. Zhang, M. Li et al., A resilient and lightweight cellulose/graphene oxide/polymer-derived multifunctional carbon aerogel generated from Pickering emulsion toward a wearable pressure sensor. J. Colloid Interface Sci. 628, 574–587 (2022). https://doi.org/10.1016/j.jcis.2022.07.188
L. Li, X. Fu, S. Chen, S. Uzun, A.S. Levitt et al., Hydrophobic and stable MXene-polymer pressure sensors for wearable electronics. ACS Appl. Mater. Interfaces 12, 15362 (2020). https://doi.org/10.1021/acsami.0c00255
Z. Yang, H. Li, S. Zhang, X. Lai, X. Zeng, Superhydrophobic MXene@carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor. Chem. Eng. J. 425, 130462 (2021). https://doi.org/10.1016/j.cej.2021.130462
X. Chen, H. Liu, Y. Zheng, Y. Zhai, X. Liu et al., Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor. ACS Appl. Mater. Interfaces 11, 42594 (2019). https://doi.org/10.1021/acsami.9b14688
L. Wang, M. Zhang, B. Yang, J. Tan, X. Ding, Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 14, 10633–10647 (2020). https://doi.org/10.1021/acsnano.0c04888
X. Shi, X. Fan, Y. Zhu, Y. Liu, P. Wu et al., Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nat. Commun. 13, 1119 (2022). https://doi.org/10.1038/s41467-022-28760-4
S. Han, Q. Wu, J. Zhu, J. Zhang, A. Chen et al., Multifunctional, superelastic, and environmentally stable sodium alginate/mxene/polydimethylsiloxane aerogels for piezoresistive sensor. Chem. Eng. J. 471, 144551 (2023). https://doi.org/10.1016/j.cej.2023.144551
Z. Deng, C. Gao, S. Feng, H. Zhang, Y. Liu et al., Highly compressible, light-weight and robust nitrogen-doped graphene composite aerogel for sensitive pressure sensors. Chem. Eng. J. 471, 144790 (2023). https://doi.org/10.1016/j.cej.2023.144790
Y. Hu, H. Zhuo, Q. Luo, Y. Wu, R. Wen et al., Biomass polymer-assisted fabrication of aerogels from MXenes with ultrahigh compression elasticity and pressure sensitivity. J. Mater. Chem. A 7, 10273–10281 (2019). https://doi.org/10.1039/C9TA01448A
Z. Qin, Y. Lv, X. Fang, B. Zhao, F. Niu et al., Ultralight polypyrrole crosslinked nanofiber aerogel for highly sensitive piezoresistive sensor. Chem. Eng. J. 427, 131650 (2022). https://doi.org/10.1016/j.cej.2021.131650
Z. Chen, H. Zhuo, Y. Hu, H. Lai, L. Liu et al., Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage. Adv. Funct. Mater. 30, 1910292 (2020). https://doi.org/10.1002/adfm.201910292
J. Zhou, Y.-L. Hsieh, Conductive polymer protonated nanocellulose aerogels for tunable and linearly responsive strain sensors. ACS Appl. Mater. Interfaces 10, 27902–27910 (2018). https://doi.org/10.1021/acsami.8b10239
S. Long, Y. Feng, F. He, S. He, H. Hong et al., An ultralight, supercompressible, superhydrophobic and multifunctional carbon aerogel with a specially designed structure. Carbon 158, 137–145 (2020). https://doi.org/10.1016/j.carbon.2019.11.065
M. Xie, G. Qian, Y. Yu, C. Chen, H. Li et al., High-performance flexible reduced graphene oxide/polyimide nanocomposite aerogels fabricated by double crosslinking strategy for piezoresistive sensor application. Chem. Eng. J. 480, 148203 (2024). https://doi.org/10.1016/j.cej.2023.148203
W. Jiang, C. Yao, W. Chen, D. Li, L. Zhong et al., A super-resilient and highly sensitive graphene oxide/cellulose-derived carbon aerogel. J. Mater. Chem. A 8, 18376–18384 (2020). https://doi.org/10.1039/D0TA05310D
W. Ma, Z. Jiang, T. Lu, R. Xiong, C. Huang, Lightweight, elastic and superhydrophobic multifunctional nanofibrous aerogel for self-cleaning, oil/water separation and pressure sensing. Chem. Eng. J. 430, 132989 (2022). https://doi.org/10.1016/j.cej.2021.132989
Z. Wang, Y. Wang, Y. Chen, M. Yousaf, H. Wu et al., Reticulate dual-nanowire aerogel for multifunctional applications: a high-performance strain sensor and a high areal capacity rechargeable anode. Adv. Funct. Mater. 29, 1807467 (2019). https://doi.org/10.1002/adfm.201807467
T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15, 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
M. Touron, C. Celle, L. Orgéas, J.-P. Simonato, Hybrid silver nanowire-CMC aerogels: from 1D nanomaterials to 3D electrically conductive and mechanically resistant lightweight architectures. ACS Nano 16, 14188–14197 (2022). https://doi.org/10.1021/acsnano.2c04288
D. Yang, X. Dong, L. Jiang, F. Liu, S. Ma et al., A universal biomacromolecule-enabled assembly strategy for constructing multifunctional aerogels with 90% inorganic mass loading from inert nano-building blocks. Small 20, e2402334 (2024). https://doi.org/10.1002/smll.202402334
H. Wang, Y. Jiang, Z. Ma, Y. Shi, Y. Zhu et al., Hyperelastic, robust, fire-safe multifunctional MXene aerogels with unprecedented electromagnetic interference shielding efficiency. Adv. Funct. Mater. 33, 2306884 (2023). https://doi.org/10.1002/adfm.202306884
L. Zhuang, D. Lu, J. Zhang, P. Guo, L. Su et al., Highly cross-linked carbon tube aerogels with enhanced elasticity and fatigue resistance. Nat. Commun. 14, 3178 (2023). https://doi.org/10.1038/s41467-023-38664-6
J. Xu, H. Chang, B. Zhao, R. Li, T. Cui et al., Highly stretchable and conformal electromagnetic interference shielding armor with strain sensing ability. Chem. Eng. J. 431, 133908 (2022). https://doi.org/10.1016/j.cej.2021.133908