Self-Assembly 3D Porous Crumpled MXene Spheres as Efficient Gas and Pressure Sensing Material for Transient All-MXene Sensors
Corresponding Author: Fangmeng Liu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 56
Abstract
Environmentally friendly degradable sensors with both hazardous gases and pressure efficient sensing capabilities are highly desired for various promising applications, including environmental pollution monitoring/prevention, wisdom medical, wearable smart devices, and artificial intelligence. However, the transient gas and pressure sensors based on only identical sensing material that concurrently meets the above detection needs have not been reported. Here, we present transient all-MXene NO2 and pressure sensors employing three-dimensional porous crumpled MXene spheres prepared by ultrasonic spray pyrolysis technology as the sensing layer, accompanied with water-soluble polyvinyl alcohol substrates embedded with patterned MXene electrodes. The gas sensor achieves a ppb-level of highly selective NO2 sensing, with a response of up to 12.11% at 5 ppm NO2 and a detection range of 50 ppb–5 ppm, while the pressure sensor has an extremely wide linear pressure detection range of 0.14–22.22 kPa and fast response time of 34 ms. In parallel, all-MXene NO2 and pressure sensors can be rapidly degraded in medical H2O2 within 6 h. This work provides a new avenue toward environmental monitoring, human physiological signal monitoring, and recyclable transient electronics.
Highlights:
1 3D porous crumpled MXene spheres were synthesized by ultrasonic spray pyrolysis technology.
2 All-MXene transient sensors utilizing porous crumpled MXene sphere as sensing material and MXene films as electrodes were developed, which achieved excellent gas/pressure sensing performance.
3 Both gas and pressure sensors can achieve rapid and controllable degradation in medical-grade H2O2 (2%) within 6 h.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Helbing, Globally networked risks and how to respond. Nature 497, 51–59 (2013). https://doi.org/10.1038/nature12047
- Y. Zhang, Q. Niu, X. Gu, N. Yang, G. Zhao, Recent progress on carbon nanomaterials for the electrochemical detection and removal of environmental pollutants. Nanoscale 11(25), 11992–12014 (2019). https://doi.org/10.1039/C9NR02935D
- K. Song, P. Xu, G. Wei, Y. Chen, Q. Wang, Health management decision of sensor system based on health reliability degree and grey group decision-making. Sensors 18(7), 2316 (2018). https://doi.org/10.3390/s18072316
- J. Lepawsky, Sources and streams of electronic waste. One Earth 3(1), 13–16 (2020). https://doi.org/10.1016/j.oneear.2020.07.001
- K. Zhang, J. Schnoor, E. Zeng, E-waste recycling: where does it go from here? Environ. Sci. Technol. 46(20), 10861–10867 (2012). https://doi.org/10.1021/es303166s
- X. Yu, W. Shou, B.K. Mahajan, X. Huang, H. Pan, Materials, processes, and facile manufacturing for bioresorbable electronics: a review. Adv. Mater. 30(28), e1707624 (2018). https://doi.org/10.1002/adma.201707624
- X. Zhuang, D. Zhang, X. Wang, X. Yu, J. Yu, Biocompatible and degradable gelatin dielectric based low-operating voltage organic transistors for ultra-high sensitivity NH3 detection. Appl. Phys. Lett. 113(26), 263301 (2018). https://doi.org/10.1063/1.5054026
- Y. Guo, S. Chen, L. Sun, L. Yang, L. Zhang et al., Degradable and fully recyclable dynamic thermoset elastomer for 3D-printed wearable electronics. Adv. Funct. Mater. 31(9), 2009799 (2020). https://doi.org/10.1002/adfm.202009799
- S. Zheng, R. Du, N. Wang, M. Cao, Y. Zhang et al., Construction of dual conductive network in paper-based composites towards flexible degradable dual-mode sensor. Compos. Part A Appl. Sci. Manuf. 151, 106649 (2021). https://doi.org/10.1016/j.compositesa.2021.106649
- X. Jin, L. Li, S. Zhao, X. Li, K. Jiang et al., Assessment of occlusal force and local gas release using degradable bacterial cellulose/Ti3C2Tx MXene bioaerogel for oral healthcare. ACS Nano 15(11), 18385–18393 (2021). https://doi.org/10.1021/acsnano.1c07891
- S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12(2), 986–993 (2018). https://doi.org/10.1021/acsnano.7b07460
- L. Li, X. Fu, S. Chen, S. Uzun, A.S. Levitt et al., Hydrophobic and stable MXene-polymer pressure sensors for wearable electronics. ACS Appl. Mater. Interfaces 12(13), 15362–915369 (2020). https://doi.org/10.1021/acsami.0c00255
- Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12(4), 3209–93216 (2018). https://doi.org/10.1021/acsnano.7b06909
- H.J. Lee, J.C. Yang, J. Choi, J. Kim, G.S. Lee et al., Hetero-dimensional 2D Ti3C2Tx MXene and 1D graphene nanoribbon hybrids for machine learning-assisted pressure sensors. ACS Nano 15(6), 10347–910356 (2021). https://doi.org/10.1021/acsnano.1c02567
- C. Zhang, L. McKeon, M. Kremer, S. Park, O. Ronan et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
- S. Abdolhosseinzadeh, R. Schneider, A. Verma, J. Heier, F. Nuesch et al., Turning trash into treasure: additive free MXene sediment inks for screen-printed micro-supercapacitors. Adv. Mater. 32(17), 2000716 (2020). https://doi.org/10.1002/adma.202000716
- X. Wu, T. Tu, Y. Dai, P. Tang, Y. Zhang et al., Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nano-Micro Lett. 13, 148 (2021). https://doi.org/10.1007/s40820-021-00665-9
- R. Kumar, X. Liu, J. Zhang, M. Kumar, Room-temperature gas sensors under photoactivation: from metal oxides to 2D materials. Nano-Micro Lett. 12, 164 (2020). https://doi.org/10.1007/s40820-020-00503-4
- Y. Guo, M. Zhong, Z. Fang, P. Wan, G. Yu, A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 19(2), 1143–1150 (2019). https://doi.org/10.1021/acs.nanolett.8b04514
- Q. Yang, Z. Huang, X. Li, Z. Liu, H. Li et al., A wholly degradable, rechargeable Zn-Ti3C2 MXene capacitor with superior anti-self-discharge function. ACS Nano 13(7), 8275–8283 (2019). https://doi.org/10.1021/acsnano.9b03650
- W. Chen, S. Lai, C. Yen, X. Jiang, D. Peroulis et al., Surface functionalization of Ti3C2Tx MXene with highly reliable superhydrophobic protection for volatile organic compounds sensing. ACS Nano 14(9), 11490–11501 (2020). https://doi.org/10.1021/acsnano.0c03896
- Z. Yang, A. Liu, C. Wang, F. Liu, J. He et al., Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment. ACS Sens. 4(5), 1261–1269 (2019). https://doi.org/10.1021/acssensors.9b00127
- Z. Yang, L. Jiang, J. Wang, F. Liu, J. He et al., Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx/ZnO spheres for room temperature application. Sens. Actuators B Chem. 326, 128828 (2021). https://doi.org/10.1016/j.snb.2020.128828
- W.Y. Chen, X. Jiang, S.N. Lai, D. Peroulis, L. Stanciu, Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun. 11, 1302 (2020). https://doi.org/10.1038/s41467-020-15092-4
- D. Wang, L. Wang, Z. Lou, Y. Zheng, K. Wang et al., Biomimetic, biocompatible and robust silk fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors. Nano Energy 78, 105252 (2020). https://doi.org/10.1016/j.nanoen.2020.105252
- S. Sharma, A. Chhetry, S. Zhang, H. Yoon, C. Park et al., Hydrogen-bond-triggered hybrid nanofibrous membrane-based wearable pressure sensor with ultrahigh sensitivity over a broad pressure range. ACS Nano 15(3), 4380–4393 (2021). https://doi.org/10.1021/acsnano.0c07847
- Y. Yue, N. Liu, W. Liu, M. Li, Y. Ma et al., 3D hybrid porous MXene-sponge network and its application in piezoresistive sensor. Nano Energy 50, 79–87 (2018). https://doi.org/10.1016/j.nanoen.2018.05.020
- K. Wang, Z. Lou, L. Wang, L. Zhao, S. Zhao et al., Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 13(8), 9139–9147 (2019). https://doi.org/10.1021/acsnano.9b03454
- Y. Lv, W. Zhan, Y. He, Y. Wang, X. Kong et al., MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas-sensing properties. ACS Appl. Mater. Interfaces 6(6), 4186–4195 (2014). https://doi.org/10.1021/am405858v
- Y. Zhai, Y. Yu, K. Zhou, Z. Yun, W. Huang et al., Flexible and wearable carbon black/thermoplastic polyurethane foam with a pinnate-veined aligned porous structure for multi-functional piezoresistive sensors. Chem. Eng. J. 382, 1222985 (2020). https://doi.org/10.1016/j.cej.2019.122985
- L. Xiu, Z. Wang, M. Yu, X. Wu, J. Qiu, Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano 12(8), 8017–8028 (2018). https://doi.org/10.1021/acsnano.8b02849
- J. Yoon, S.H. Choi, J. Kim, H.W. Jang, Y.C. Kang et al., Trimodally porous SnO2 nanospheres with three-dimensional interconnectivity and size tunability: a one-pot synthetic route and potential application as an extremely sensitive ethanol detector. NPG Asia Mater. 8, e244 (2016). https://doi.org/10.1038/am.2016.16
- N. Joshi, L.F. Silva, H.S. Jadhavd, F.M. Shimizua, P.H. Sumane et al., Yolk-shelled ZnCo2O4 microspheres: surface properties and gas sensing application. Sens. Actuators B Chem. 257, 906–915 (2018). https://doi.org/10.1016/j.snb.2017.11.041
- R.K. Mishra, G.J. Choi, Y. Sohn, S.H. Lee, J.S. Gwag, A novel RGO/N-RGO supercapacitor architecture for a wide voltage window, high energy density and long-life via voltage holding tests. Chem. Commun. 56(19), 2893–2896 (2020). https://doi.org/10.1039/D0CC00249F
- R. Wang, Y. Lin, P. Chen, H. Chen, W. Chiu, Anomalous output performance enhancement of RGO-based triboelectric nanogenerators by Cu-bonding. Nano Energy 86, 106126 (2021). https://doi.org/10.1016/j.nanoen.2021.106126
- W. Yuan, K. Yang, H. Peng, F. Li, F. Yin, A flexible VOCs sensor based on a 3D Mxene framework with a high sensing performance. J. Mater. Chem. A 6(37), 18116–18124 (2018). https://doi.org/10.1039/C8TA06928J
- Y. Jian, D. Qu, L. Guo, Y. Zhu, C. Su et al., The prior rules of designing Ti3C2Tx MXene-based gas sensors. Front. Chem. Sci. Eng. 15, 505–517 (2021). https://doi.org/10.1007/s11705-020-2013-y
- K.H. Kim, S.K. Hong, N.S. Jang, S.H. Ha, H.W. Lee et al., Wearable resistive pressure sensor based on highly flexible carbon composite conductors with irregular surface morphology. ACS Appl. Mater. Interfaces 9(20), 17499–17507 (2017). https://doi.org/10.1021/acsami.7b06119
- Q. Li, R. Yin, D. Zhang, H. Liu, X. Chen et al., Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors. J. Mater. Chem. A 8(40), 21131–21141 (2020). https://doi.org/10.1039/D0TA07832H
- L. Wang, M. Zhang, B. Yang, J. Tan, X. Ding, Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 14(8), 10633–10647 (2020). https://doi.org/10.1021/acsnano.0c04888
- F. He, X. You, H. Gong, Y. Yang, T. Bai et al., Stretchable, biocompatible, and multi-functional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators. ACS Appl. Mater. Interfaces 12(5), 6442–6450 (2020). https://doi.org/10.1021/acsami.9b19721
- Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju et al., Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 12(3), 2346–2354 (2018). https://doi.org/10.1021/acsnano.7b07613
- L.Q. Tao, K.N. Zhang, H. Tian, Y. Liu, D.Y. Wang et al., Graphene-paper pressure sensor for detecting human motions. ACS Nano 11(9), 8790–8795 (2017). https://doi.org/10.1021/acsnano.7b02826
- X. Wu, Y. Han, X. Zhang, Z. Zhou, C. Lu, Large-area compliant, low-cost, and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human-machine interfacing. Adv. Funct. Mater. 26(34), 6246–6256 (2016). https://doi.org/10.1002/adfm.201601995
- H.B. Yao, J. Ge, C.F. Wang, X. Wang, W. Hu et al., A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design. Adv. Mater. 25(46), 6692–6698 (2013). https://doi.org/10.1002/adma.201303041
- W.W. Nichols, Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am. J. Hypertens. 18, 3S-10S (2005). https://doi.org/10.1016/j.amjhyper.2004.10.009
- C. Pang, J.H. Koo, A. Nguyen, J.M. Caves, M.G. Kim et al., Highly skin-conformal microhairy sensor for pulse signal amplification. Adv. Mater. 27(4), 634–640 (2015). https://doi.org/10.1002/adma.201403807
- Y. Wei, Y. Qiao, G. Jiang, Y. Wang, F. Wang et al., A wearable skinlike ultra-sensitive artificial graphene throat. ACS Nano 13(8), 8639–8647 (2019). https://doi.org/10.1021/acsnano.9b03218
References
D. Helbing, Globally networked risks and how to respond. Nature 497, 51–59 (2013). https://doi.org/10.1038/nature12047
Y. Zhang, Q. Niu, X. Gu, N. Yang, G. Zhao, Recent progress on carbon nanomaterials for the electrochemical detection and removal of environmental pollutants. Nanoscale 11(25), 11992–12014 (2019). https://doi.org/10.1039/C9NR02935D
K. Song, P. Xu, G. Wei, Y. Chen, Q. Wang, Health management decision of sensor system based on health reliability degree and grey group decision-making. Sensors 18(7), 2316 (2018). https://doi.org/10.3390/s18072316
J. Lepawsky, Sources and streams of electronic waste. One Earth 3(1), 13–16 (2020). https://doi.org/10.1016/j.oneear.2020.07.001
K. Zhang, J. Schnoor, E. Zeng, E-waste recycling: where does it go from here? Environ. Sci. Technol. 46(20), 10861–10867 (2012). https://doi.org/10.1021/es303166s
X. Yu, W. Shou, B.K. Mahajan, X. Huang, H. Pan, Materials, processes, and facile manufacturing for bioresorbable electronics: a review. Adv. Mater. 30(28), e1707624 (2018). https://doi.org/10.1002/adma.201707624
X. Zhuang, D. Zhang, X. Wang, X. Yu, J. Yu, Biocompatible and degradable gelatin dielectric based low-operating voltage organic transistors for ultra-high sensitivity NH3 detection. Appl. Phys. Lett. 113(26), 263301 (2018). https://doi.org/10.1063/1.5054026
Y. Guo, S. Chen, L. Sun, L. Yang, L. Zhang et al., Degradable and fully recyclable dynamic thermoset elastomer for 3D-printed wearable electronics. Adv. Funct. Mater. 31(9), 2009799 (2020). https://doi.org/10.1002/adfm.202009799
S. Zheng, R. Du, N. Wang, M. Cao, Y. Zhang et al., Construction of dual conductive network in paper-based composites towards flexible degradable dual-mode sensor. Compos. Part A Appl. Sci. Manuf. 151, 106649 (2021). https://doi.org/10.1016/j.compositesa.2021.106649
X. Jin, L. Li, S. Zhao, X. Li, K. Jiang et al., Assessment of occlusal force and local gas release using degradable bacterial cellulose/Ti3C2Tx MXene bioaerogel for oral healthcare. ACS Nano 15(11), 18385–18393 (2021). https://doi.org/10.1021/acsnano.1c07891
S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12(2), 986–993 (2018). https://doi.org/10.1021/acsnano.7b07460
L. Li, X. Fu, S. Chen, S. Uzun, A.S. Levitt et al., Hydrophobic and stable MXene-polymer pressure sensors for wearable electronics. ACS Appl. Mater. Interfaces 12(13), 15362–915369 (2020). https://doi.org/10.1021/acsami.0c00255
Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12(4), 3209–93216 (2018). https://doi.org/10.1021/acsnano.7b06909
H.J. Lee, J.C. Yang, J. Choi, J. Kim, G.S. Lee et al., Hetero-dimensional 2D Ti3C2Tx MXene and 1D graphene nanoribbon hybrids for machine learning-assisted pressure sensors. ACS Nano 15(6), 10347–910356 (2021). https://doi.org/10.1021/acsnano.1c02567
C. Zhang, L. McKeon, M. Kremer, S. Park, O. Ronan et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
S. Abdolhosseinzadeh, R. Schneider, A. Verma, J. Heier, F. Nuesch et al., Turning trash into treasure: additive free MXene sediment inks for screen-printed micro-supercapacitors. Adv. Mater. 32(17), 2000716 (2020). https://doi.org/10.1002/adma.202000716
X. Wu, T. Tu, Y. Dai, P. Tang, Y. Zhang et al., Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nano-Micro Lett. 13, 148 (2021). https://doi.org/10.1007/s40820-021-00665-9
R. Kumar, X. Liu, J. Zhang, M. Kumar, Room-temperature gas sensors under photoactivation: from metal oxides to 2D materials. Nano-Micro Lett. 12, 164 (2020). https://doi.org/10.1007/s40820-020-00503-4
Y. Guo, M. Zhong, Z. Fang, P. Wan, G. Yu, A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 19(2), 1143–1150 (2019). https://doi.org/10.1021/acs.nanolett.8b04514
Q. Yang, Z. Huang, X. Li, Z. Liu, H. Li et al., A wholly degradable, rechargeable Zn-Ti3C2 MXene capacitor with superior anti-self-discharge function. ACS Nano 13(7), 8275–8283 (2019). https://doi.org/10.1021/acsnano.9b03650
W. Chen, S. Lai, C. Yen, X. Jiang, D. Peroulis et al., Surface functionalization of Ti3C2Tx MXene with highly reliable superhydrophobic protection for volatile organic compounds sensing. ACS Nano 14(9), 11490–11501 (2020). https://doi.org/10.1021/acsnano.0c03896
Z. Yang, A. Liu, C. Wang, F. Liu, J. He et al., Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment. ACS Sens. 4(5), 1261–1269 (2019). https://doi.org/10.1021/acssensors.9b00127
Z. Yang, L. Jiang, J. Wang, F. Liu, J. He et al., Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx/ZnO spheres for room temperature application. Sens. Actuators B Chem. 326, 128828 (2021). https://doi.org/10.1016/j.snb.2020.128828
W.Y. Chen, X. Jiang, S.N. Lai, D. Peroulis, L. Stanciu, Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun. 11, 1302 (2020). https://doi.org/10.1038/s41467-020-15092-4
D. Wang, L. Wang, Z. Lou, Y. Zheng, K. Wang et al., Biomimetic, biocompatible and robust silk fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors. Nano Energy 78, 105252 (2020). https://doi.org/10.1016/j.nanoen.2020.105252
S. Sharma, A. Chhetry, S. Zhang, H. Yoon, C. Park et al., Hydrogen-bond-triggered hybrid nanofibrous membrane-based wearable pressure sensor with ultrahigh sensitivity over a broad pressure range. ACS Nano 15(3), 4380–4393 (2021). https://doi.org/10.1021/acsnano.0c07847
Y. Yue, N. Liu, W. Liu, M. Li, Y. Ma et al., 3D hybrid porous MXene-sponge network and its application in piezoresistive sensor. Nano Energy 50, 79–87 (2018). https://doi.org/10.1016/j.nanoen.2018.05.020
K. Wang, Z. Lou, L. Wang, L. Zhao, S. Zhao et al., Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 13(8), 9139–9147 (2019). https://doi.org/10.1021/acsnano.9b03454
Y. Lv, W. Zhan, Y. He, Y. Wang, X. Kong et al., MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas-sensing properties. ACS Appl. Mater. Interfaces 6(6), 4186–4195 (2014). https://doi.org/10.1021/am405858v
Y. Zhai, Y. Yu, K. Zhou, Z. Yun, W. Huang et al., Flexible and wearable carbon black/thermoplastic polyurethane foam with a pinnate-veined aligned porous structure for multi-functional piezoresistive sensors. Chem. Eng. J. 382, 1222985 (2020). https://doi.org/10.1016/j.cej.2019.122985
L. Xiu, Z. Wang, M. Yu, X. Wu, J. Qiu, Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano 12(8), 8017–8028 (2018). https://doi.org/10.1021/acsnano.8b02849
J. Yoon, S.H. Choi, J. Kim, H.W. Jang, Y.C. Kang et al., Trimodally porous SnO2 nanospheres with three-dimensional interconnectivity and size tunability: a one-pot synthetic route and potential application as an extremely sensitive ethanol detector. NPG Asia Mater. 8, e244 (2016). https://doi.org/10.1038/am.2016.16
N. Joshi, L.F. Silva, H.S. Jadhavd, F.M. Shimizua, P.H. Sumane et al., Yolk-shelled ZnCo2O4 microspheres: surface properties and gas sensing application. Sens. Actuators B Chem. 257, 906–915 (2018). https://doi.org/10.1016/j.snb.2017.11.041
R.K. Mishra, G.J. Choi, Y. Sohn, S.H. Lee, J.S. Gwag, A novel RGO/N-RGO supercapacitor architecture for a wide voltage window, high energy density and long-life via voltage holding tests. Chem. Commun. 56(19), 2893–2896 (2020). https://doi.org/10.1039/D0CC00249F
R. Wang, Y. Lin, P. Chen, H. Chen, W. Chiu, Anomalous output performance enhancement of RGO-based triboelectric nanogenerators by Cu-bonding. Nano Energy 86, 106126 (2021). https://doi.org/10.1016/j.nanoen.2021.106126
W. Yuan, K. Yang, H. Peng, F. Li, F. Yin, A flexible VOCs sensor based on a 3D Mxene framework with a high sensing performance. J. Mater. Chem. A 6(37), 18116–18124 (2018). https://doi.org/10.1039/C8TA06928J
Y. Jian, D. Qu, L. Guo, Y. Zhu, C. Su et al., The prior rules of designing Ti3C2Tx MXene-based gas sensors. Front. Chem. Sci. Eng. 15, 505–517 (2021). https://doi.org/10.1007/s11705-020-2013-y
K.H. Kim, S.K. Hong, N.S. Jang, S.H. Ha, H.W. Lee et al., Wearable resistive pressure sensor based on highly flexible carbon composite conductors with irregular surface morphology. ACS Appl. Mater. Interfaces 9(20), 17499–17507 (2017). https://doi.org/10.1021/acsami.7b06119
Q. Li, R. Yin, D. Zhang, H. Liu, X. Chen et al., Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors. J. Mater. Chem. A 8(40), 21131–21141 (2020). https://doi.org/10.1039/D0TA07832H
L. Wang, M. Zhang, B. Yang, J. Tan, X. Ding, Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 14(8), 10633–10647 (2020). https://doi.org/10.1021/acsnano.0c04888
F. He, X. You, H. Gong, Y. Yang, T. Bai et al., Stretchable, biocompatible, and multi-functional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators. ACS Appl. Mater. Interfaces 12(5), 6442–6450 (2020). https://doi.org/10.1021/acsami.9b19721
Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju et al., Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 12(3), 2346–2354 (2018). https://doi.org/10.1021/acsnano.7b07613
L.Q. Tao, K.N. Zhang, H. Tian, Y. Liu, D.Y. Wang et al., Graphene-paper pressure sensor for detecting human motions. ACS Nano 11(9), 8790–8795 (2017). https://doi.org/10.1021/acsnano.7b02826
X. Wu, Y. Han, X. Zhang, Z. Zhou, C. Lu, Large-area compliant, low-cost, and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human-machine interfacing. Adv. Funct. Mater. 26(34), 6246–6256 (2016). https://doi.org/10.1002/adfm.201601995
H.B. Yao, J. Ge, C.F. Wang, X. Wang, W. Hu et al., A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design. Adv. Mater. 25(46), 6692–6698 (2013). https://doi.org/10.1002/adma.201303041
W.W. Nichols, Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am. J. Hypertens. 18, 3S-10S (2005). https://doi.org/10.1016/j.amjhyper.2004.10.009
C. Pang, J.H. Koo, A. Nguyen, J.M. Caves, M.G. Kim et al., Highly skin-conformal microhairy sensor for pulse signal amplification. Adv. Mater. 27(4), 634–640 (2015). https://doi.org/10.1002/adma.201403807
Y. Wei, Y. Qiao, G. Jiang, Y. Wang, F. Wang et al., A wearable skinlike ultra-sensitive artificial graphene throat. ACS Nano 13(8), 8639–8647 (2019). https://doi.org/10.1021/acsnano.9b03218