Targeted Micellar Phthalocyanine for Lymph Node Metastasis Homing and Photothermal Therapy in an Orthotopic Colorectal Tumor Model
Corresponding Author: Chao Fang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 145
Abstract
Tumor lymph node (LN) metastasis seriously affects the treatment prognosis. Studies have shown that nanoparticles with size of sub-50 nm can directly penetrate into LN metastases after intravenous administration. Here, we speculate through introducing targeting capacity, the nanoparticle accumulation in LN metastases would be further enhanced for improved local treatment such as photothermal therapy. Trastuzumab-targeted micelles (< 50 nm) were formulated using a unique surfactant-stripping approach that yielded concentrated phthalocyanines with strong near-infrared absorption. Targeted micellar phthalocyanine (T-MP) was an effective photothermal transducer and ablated HT-29 cells in vitro. A HER2-expressing colorectal cancer cell line (HT-29) was used to establish an orthotopic mouse model that developed metastatic disease in mesenteric sentinel LN. T-MP accumulated more in the LN metastases compared to the micelles conjugated with control IgG. Following surgical resection of the primary tumor, minimally invasive photothermal treatment of the metastatic LN with T-MP, but not the control micelles, extended mouse survival. Our findings demonstrate for the first time that targeted small-sized nanoparticles have potential to enable superior paradigms for dealing with LN metastases.
Highlights:
1 Small-sized trastuzumab-targeted micelles (T-MP) were engineered using a surfactant-stripping approach that yielded concentrated phthalocyanines with strong near infrared absorption.
2 T-MP accumulated more in the lymph node (LN) metastases of orthotopic colorectal cancer compared to the micelles conjugated with control IgG.
3 Following surgical resection of the primary tumor, minimally invasive photothermal treatment of the metastatic LN with T-MP, but not the control micelles, extended mouse survival.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.A. Stacker, S.P. Williams, T. Karnezis, R. Shayan, S.B. Fox et al., Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat. Rev. Cancer 14, 159–172 (2014). https://doi.org/10.1038/nrc3677
- E.R. Pereira, D. Kedrin, G. Seano, O. Gautier, E.F.J. Meijer et al., Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science 359, 1403–1407 (2018). https://doi.org/10.1126/science.aal3622
- P. Harter, J. Sehouli, D. Lorusso, A. Reuss, I. Vergote et al., A randomized trial of lymphadenectomy in patients with advanced ovarian neoplasms. N. Engl. J. Med. 380, 822–832 (2019). https://doi.org/10.1056/NEJMoa1808424
- E. Van Cutsem, X. Sagaert, B. Topal, K. Haustermans, H. Prenen, Gastric cancer. Lancet 388, 2654–2664 (2016). https://doi.org/10.1016/S0140-6736(16)30354-3
- I.G. Kwon, T. Son, H.I. Kim, W.J. Hyung, Fluorescent lymphography-guided lymphadenectomy during robotic radical gastrectomy for gastric cancer. JAMA Surg. 154, 150–158 (2019). https://doi.org/10.1001/jamasurg.2018.4267
- J. Liu, H.J. Li, Y.L. Luo, C.F. Xu, X.J. Du et al., Enhanced primary tumor penetration facilitates nanoparticle draining into lymph nodes after systemic injection for tumor metastasis inhibition. ACS Nano 13, 8648–8658 (2019). https://doi.org/10.1021/acsnano.9b03472
- H. Cabral, J. Makino, Y. Matsumoto, P. Mi, H. Wu et al., Systemic targeting of lymph node metastasis through the blood vascular system by using size-controlled nanocarriers. ACS Nano 9, 4957–4967 (2015). https://doi.org/10.1021/nn5070259
- X.Y. Zhang, W.Y. Lu, Recent advances in lymphatic targeted drug delivery system for tumor metastasis. Cancer Biol. Med. 11, 247–254 (2014).
- Z. Yan, F. Wang, Z. Wen, C. Zhan, L. Feng et al., LyP-1-conjugated PEGylated liposomes: a carrier system for targeted therapy of lymphatic metastatic tumor. J. Control. Release 157, 118–125 (2012). https://doi.org/10.1016/j.jconrel.2011.07.034
- X. Li, Q. Dong, Z. Yan, W. Lu, L. Feng et al., MPEG-DSPE polymeric micelle for translymphatic chemotherapy of lymph node metastasis. Int. J. Pharm. 487, 8–16 (2015). https://doi.org/10.1016/j.ijpharm.2015.03.074
- W. Yu, R. Liu, Y. Zhou, H. Gao, Size-tunable strategies for a tumor targeted drug delivery system. ACS Cent. Sci. 6, 100–116 (2020). https://doi.org/10.1021/acscentsci.9b01139
- W. Zhang, F. Wang, C. Hu, Y. Zhou, H. Gao et al., The progress and perspective of nanoparticle-enabled tumor metastasis treatment. Acta Pharm. Sin. B 10, 2037–2053 (2020). https://doi.org/10.1016/j.apsb.2020.07.013
- S.K. Golombek, J.N. May, B. Theek, L. Appold, N. Drude et al., Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev. 130, 17–38 (2018). https://doi.org/10.1016/j.addr.2018.07.007
- J. Ding, J. Chen, L. Gao, Z. Jiang, Y. Zhang et al., Engineered nanomedicines with enhanced tumor penetration. Nano Today 29, 100800 (2019). https://doi.org/10.1016/j.nantod.2019.100800
- J. Chen, J. Ding, Y. Wang, J. Cheng, S. Ji et al., Sequentially responsive shell-stacked nanoparticles for deep penetration into solid tumors. Adv. Mater. 29, 1701170 (2017). https://doi.org/10.1002/adma.201701170
- P. Mi, H. Cabral, K. Kataoka, Ligand-installed nanocarriers toward precision therapy. Adv. Mater. 32, 1902604 (2020). https://doi.org/10.1002/adma.201902604
- S. He, Y. Jiang, J. Li, K. Pu, Semiconducting polycomplex nanoparticles for photothermal ferrotherapy of cancer. Angew. Chem. Int. Ed. 59, 10633–10638 (2020). https://doi.org/10.1002/anie.202003004
- J. Li, D. Cui, Y. Jiang, J. Huang, P. Cheng et al., Near-infrared photoactivatable semiconducting polymer nanoblockaders for metastasis-inhibited combination cancer therapy. Adv. Mater. 31, 1905091 (2019). https://doi.org/10.1002/adma.201905091
- Y. Zhang, M. Jeon, L.J. Rich, H. Hong, J. Geng et al., Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat. Nanotechnol. 9, 631–638 (2014). https://doi.org/10.1038/nnano.2014.130
- Y. Zhang, D. Wang, S. Goel, B. Sun, U. Chitgupi et al., Surfactant-stripped frozen pheophytin micelles for multimodal gut imaging. Adv. Mater. 28, 8524–8530 (2016). https://doi.org/10.1002/adma.201602373
- U. Chitgupi, N. Nyayapathi, J. Kim, D. Wang, B. Sun et al., Surfactant-stripped micelles for NIR-II photoacoustic imaging through 12 cm of breast tissue and whole human breasts. Adv. Mater. 31, 1902279 (2019). https://doi.org/10.1002/adma.201902279
- A. Beji, D. Horst, J. Engel, T. Kirchner, A. Ullrich, Toward the prognostic significance and therapeutic potential of HER3 receptor tyrosine kinase in human colon cancer. Clin. Cancer Res. 18, 956–968 (2012). https://doi.org/10.1158/1078-0432.CCR-11-1186
- H. Xu, Y. Yu, D. Marciniak, A.K. Rishi, F.H. Sarkar et al., Epidermal growth factor receptor (EGFR)-related protein inhibits multiple members of the EGFR family in colon and breast cancer cells. Mol. Cancer Ther. 4, 435–442 (2005). https://doi.org/10.1158/1535-7163.MCT-04-0280
- H.-J. Liu, X. Luan, H.-Y. Feng, X. Dong, S.-C. Yang et al., Integrated combination treatment using a “smart” chemotherapy and microrna delivery system improves outcomes in an orthotopic colorectal cancer model. Adv. Funct. Mater. 28, 1801118 (2018). https://doi.org/10.1002/adfm.201801118
- W. Zhang, K. Gilstrap, L. Wu, C.R. K, M.A. Moss et al., Synthesis and characterization of thermally responsive Pluronic F127-chitosan nanocapsules for controlled release and intracellular delivery of small molecules. ACS Nano 4, 6747–6759 (2010). https://doi.org/10.1021/nn101617n
- H. Yang, Q.V. Le, G. Shim, Y.K. Oh, Y.K. Shin, Molecular engineering of antibodies for site-specific conjugation to lipid polydopamine hybrid nanoparticles. Acta Pharm. Sin. B 10, 2212–2226 (2020). https://doi.org/10.1016/j.apsb.2020.07.006
- Y. Jiang, X. Zhao, J. Huang, J. Li, P.K. Upputuri et al., Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nat. Commun. 11, 1857 (2020). https://doi.org/10.1038/s41467-020-15730-x
- M. Cui, S. Liu, B. Song, D. Guo, J. Wang et al., Fluorescent silicon nanorods-based nanotheranostic agents for multimodal imaging-guided photothermal therapy. Nano-Micro Lett. 11, 73 (2019). https://doi.org/10.1007/s40820-019-0306-9
- D. Wang, H. Wu, J. Zhou, P. Xu, C. Wang et al., In situ one-pot synthesis of MOF-polydopamine hybrid nanogels with enhanced photothermal effect for targeted cancer therapy. Adv. Sci. 5, 1800287 (2018). https://doi.org/10.1002/advs.201800287
- Z.-J. Chen, S.-C. Yang, X.-L. Liu, Y. Gao, X. Dong et al., Nanobowl-supported liposomes improve drug loading and delivery. Nano Lett. 20, 4177–4187 (2020). https://doi.org/10.1021/acs.nanolett.0c00495
- W. Shan, R. Chen, Q. Zhang, J. Zhao, B. Chen et al., Improved stable indocyanine green (ICG)-mediated cancer optotheranostics with naturalized hepatitis B core particles. Adv. Mater. 30, 1707567 (2018). https://doi.org/10.1002/adma.201707567
- H.J. Li, J.Z. Du, X.J. Du, C.F. Xu, C.Y. Sun et al., Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl. Acad. Sci. U.S.A. 113, 4164–4169 (2016). https://doi.org/10.1073/pnas.1522080113
- A. Pittobarry, N.P.E. Barry, Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances. Polym. Chem. 5, 3291–3297 (2014). https://doi.org/10.1039/C4PY00039K
- D.H. Yu, Q. Lu, J. Xie, C. Fang, H.Z. Chen, Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature. Biomaterials 31, 2278–2292 (2010). https://doi.org/10.1016/j.biomaterials.2009.11.047
- H. Wang, G.R. Williams, J. Wu, J. Wu, S. Niu et al., Pluronic F127-based micelles for tumor-targeted bufalin delivery. Int. J. Pharm. 559, 289–298 (2019). https://doi.org/10.1016/j.ijpharm.2019.01.049
- Y. Zhang, W. Song, J. Geng, U. Chitgupi, H. Unsal et al., Therapeutic surfactant-stripped frozen micelles. Nat. Commun. 7, 11649 (2016). https://doi.org/10.1038/ncomms11649
- Y. Zhang, L. Feng, J. Wang, D. Tao, C. Liang et al., Surfactant-stripped micelles of near infrared dye and paclitaxel for photoacoustic imaging guided photothermal-chemotherapy. Small 14, 1802991 (2018). https://doi.org/10.1002/smll.201802991
- J. Li, K. Pu, Semiconducting polymer nanomaterials as near-infrared photoactivatable protherapeutics for cancer. Acc. Chem. Res. 53, 752–762 (2020). https://doi.org/10.1021/acs.accounts.9b00569
- C. Xu, K. Pu, Second near-infrared photothermal materials for combinational nanotheranostics. Chem. Soc. Rev. 50, 1111–1137 (2021). https://doi.org/10.1039/D0CS00664E
- D.Y. Oh, Y.J. Bang, HER2-targeted therapies - a role beyond breast cancer. Nat. Rev. Clin. Oncol. 17, 33–48 (2020). https://doi.org/10.1038/s41571-019-0268-3
- F. Meric-Bernstam, H. Hurwitz, K.P.S. Raghav, R.R. McWilliams, M. Fakih et al., Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): an updated report from a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol. 20, 518–530 (2019). https://doi.org/10.1016/S1470-2045(18)30904-5
- A. Sartore-Bianchi, S. Marsoni, S. Siena, Human epidermal growth factor receptor 2 as a molecular biomarker for metastatic colorectal cancer. JAMA Oncol. 4, 19–20 (2018). https://doi.org/10.1001/jamaoncol.2017.3323
- S. Togami, R. Kubo, T. Kawamura, S. Yanazume, M. Kamio, H. Kobayashi, Risk factors for lymphatic complications following lymphadenectomy in patients with endometrial cancer. Taiwan. J. Obstet. Gynecol. 59, 420–424 (2020). https://doi.org/10.1016/j.tjog.2020.03.015
- D. Luo, S. Goel, H.J. Liu, K.A. Carter, D. Jiang et al., Intrabilayer 64Cu labeling of photoactivatable, doxorubicin-loaded stealth liposomes. ACS Nano 11, 12482–12491 (2017). https://doi.org/10.1021/acsnano.7b06578
References
S.A. Stacker, S.P. Williams, T. Karnezis, R. Shayan, S.B. Fox et al., Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat. Rev. Cancer 14, 159–172 (2014). https://doi.org/10.1038/nrc3677
E.R. Pereira, D. Kedrin, G. Seano, O. Gautier, E.F.J. Meijer et al., Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science 359, 1403–1407 (2018). https://doi.org/10.1126/science.aal3622
P. Harter, J. Sehouli, D. Lorusso, A. Reuss, I. Vergote et al., A randomized trial of lymphadenectomy in patients with advanced ovarian neoplasms. N. Engl. J. Med. 380, 822–832 (2019). https://doi.org/10.1056/NEJMoa1808424
E. Van Cutsem, X. Sagaert, B. Topal, K. Haustermans, H. Prenen, Gastric cancer. Lancet 388, 2654–2664 (2016). https://doi.org/10.1016/S0140-6736(16)30354-3
I.G. Kwon, T. Son, H.I. Kim, W.J. Hyung, Fluorescent lymphography-guided lymphadenectomy during robotic radical gastrectomy for gastric cancer. JAMA Surg. 154, 150–158 (2019). https://doi.org/10.1001/jamasurg.2018.4267
J. Liu, H.J. Li, Y.L. Luo, C.F. Xu, X.J. Du et al., Enhanced primary tumor penetration facilitates nanoparticle draining into lymph nodes after systemic injection for tumor metastasis inhibition. ACS Nano 13, 8648–8658 (2019). https://doi.org/10.1021/acsnano.9b03472
H. Cabral, J. Makino, Y. Matsumoto, P. Mi, H. Wu et al., Systemic targeting of lymph node metastasis through the blood vascular system by using size-controlled nanocarriers. ACS Nano 9, 4957–4967 (2015). https://doi.org/10.1021/nn5070259
X.Y. Zhang, W.Y. Lu, Recent advances in lymphatic targeted drug delivery system for tumor metastasis. Cancer Biol. Med. 11, 247–254 (2014).
Z. Yan, F. Wang, Z. Wen, C. Zhan, L. Feng et al., LyP-1-conjugated PEGylated liposomes: a carrier system for targeted therapy of lymphatic metastatic tumor. J. Control. Release 157, 118–125 (2012). https://doi.org/10.1016/j.jconrel.2011.07.034
X. Li, Q. Dong, Z. Yan, W. Lu, L. Feng et al., MPEG-DSPE polymeric micelle for translymphatic chemotherapy of lymph node metastasis. Int. J. Pharm. 487, 8–16 (2015). https://doi.org/10.1016/j.ijpharm.2015.03.074
W. Yu, R. Liu, Y. Zhou, H. Gao, Size-tunable strategies for a tumor targeted drug delivery system. ACS Cent. Sci. 6, 100–116 (2020). https://doi.org/10.1021/acscentsci.9b01139
W. Zhang, F. Wang, C. Hu, Y. Zhou, H. Gao et al., The progress and perspective of nanoparticle-enabled tumor metastasis treatment. Acta Pharm. Sin. B 10, 2037–2053 (2020). https://doi.org/10.1016/j.apsb.2020.07.013
S.K. Golombek, J.N. May, B. Theek, L. Appold, N. Drude et al., Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev. 130, 17–38 (2018). https://doi.org/10.1016/j.addr.2018.07.007
J. Ding, J. Chen, L. Gao, Z. Jiang, Y. Zhang et al., Engineered nanomedicines with enhanced tumor penetration. Nano Today 29, 100800 (2019). https://doi.org/10.1016/j.nantod.2019.100800
J. Chen, J. Ding, Y. Wang, J. Cheng, S. Ji et al., Sequentially responsive shell-stacked nanoparticles for deep penetration into solid tumors. Adv. Mater. 29, 1701170 (2017). https://doi.org/10.1002/adma.201701170
P. Mi, H. Cabral, K. Kataoka, Ligand-installed nanocarriers toward precision therapy. Adv. Mater. 32, 1902604 (2020). https://doi.org/10.1002/adma.201902604
S. He, Y. Jiang, J. Li, K. Pu, Semiconducting polycomplex nanoparticles for photothermal ferrotherapy of cancer. Angew. Chem. Int. Ed. 59, 10633–10638 (2020). https://doi.org/10.1002/anie.202003004
J. Li, D. Cui, Y. Jiang, J. Huang, P. Cheng et al., Near-infrared photoactivatable semiconducting polymer nanoblockaders for metastasis-inhibited combination cancer therapy. Adv. Mater. 31, 1905091 (2019). https://doi.org/10.1002/adma.201905091
Y. Zhang, M. Jeon, L.J. Rich, H. Hong, J. Geng et al., Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat. Nanotechnol. 9, 631–638 (2014). https://doi.org/10.1038/nnano.2014.130
Y. Zhang, D. Wang, S. Goel, B. Sun, U. Chitgupi et al., Surfactant-stripped frozen pheophytin micelles for multimodal gut imaging. Adv. Mater. 28, 8524–8530 (2016). https://doi.org/10.1002/adma.201602373
U. Chitgupi, N. Nyayapathi, J. Kim, D. Wang, B. Sun et al., Surfactant-stripped micelles for NIR-II photoacoustic imaging through 12 cm of breast tissue and whole human breasts. Adv. Mater. 31, 1902279 (2019). https://doi.org/10.1002/adma.201902279
A. Beji, D. Horst, J. Engel, T. Kirchner, A. Ullrich, Toward the prognostic significance and therapeutic potential of HER3 receptor tyrosine kinase in human colon cancer. Clin. Cancer Res. 18, 956–968 (2012). https://doi.org/10.1158/1078-0432.CCR-11-1186
H. Xu, Y. Yu, D. Marciniak, A.K. Rishi, F.H. Sarkar et al., Epidermal growth factor receptor (EGFR)-related protein inhibits multiple members of the EGFR family in colon and breast cancer cells. Mol. Cancer Ther. 4, 435–442 (2005). https://doi.org/10.1158/1535-7163.MCT-04-0280
H.-J. Liu, X. Luan, H.-Y. Feng, X. Dong, S.-C. Yang et al., Integrated combination treatment using a “smart” chemotherapy and microrna delivery system improves outcomes in an orthotopic colorectal cancer model. Adv. Funct. Mater. 28, 1801118 (2018). https://doi.org/10.1002/adfm.201801118
W. Zhang, K. Gilstrap, L. Wu, C.R. K, M.A. Moss et al., Synthesis and characterization of thermally responsive Pluronic F127-chitosan nanocapsules for controlled release and intracellular delivery of small molecules. ACS Nano 4, 6747–6759 (2010). https://doi.org/10.1021/nn101617n
H. Yang, Q.V. Le, G. Shim, Y.K. Oh, Y.K. Shin, Molecular engineering of antibodies for site-specific conjugation to lipid polydopamine hybrid nanoparticles. Acta Pharm. Sin. B 10, 2212–2226 (2020). https://doi.org/10.1016/j.apsb.2020.07.006
Y. Jiang, X. Zhao, J. Huang, J. Li, P.K. Upputuri et al., Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nat. Commun. 11, 1857 (2020). https://doi.org/10.1038/s41467-020-15730-x
M. Cui, S. Liu, B. Song, D. Guo, J. Wang et al., Fluorescent silicon nanorods-based nanotheranostic agents for multimodal imaging-guided photothermal therapy. Nano-Micro Lett. 11, 73 (2019). https://doi.org/10.1007/s40820-019-0306-9
D. Wang, H. Wu, J. Zhou, P. Xu, C. Wang et al., In situ one-pot synthesis of MOF-polydopamine hybrid nanogels with enhanced photothermal effect for targeted cancer therapy. Adv. Sci. 5, 1800287 (2018). https://doi.org/10.1002/advs.201800287
Z.-J. Chen, S.-C. Yang, X.-L. Liu, Y. Gao, X. Dong et al., Nanobowl-supported liposomes improve drug loading and delivery. Nano Lett. 20, 4177–4187 (2020). https://doi.org/10.1021/acs.nanolett.0c00495
W. Shan, R. Chen, Q. Zhang, J. Zhao, B. Chen et al., Improved stable indocyanine green (ICG)-mediated cancer optotheranostics with naturalized hepatitis B core particles. Adv. Mater. 30, 1707567 (2018). https://doi.org/10.1002/adma.201707567
H.J. Li, J.Z. Du, X.J. Du, C.F. Xu, C.Y. Sun et al., Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl. Acad. Sci. U.S.A. 113, 4164–4169 (2016). https://doi.org/10.1073/pnas.1522080113
A. Pittobarry, N.P.E. Barry, Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances. Polym. Chem. 5, 3291–3297 (2014). https://doi.org/10.1039/C4PY00039K
D.H. Yu, Q. Lu, J. Xie, C. Fang, H.Z. Chen, Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature. Biomaterials 31, 2278–2292 (2010). https://doi.org/10.1016/j.biomaterials.2009.11.047
H. Wang, G.R. Williams, J. Wu, J. Wu, S. Niu et al., Pluronic F127-based micelles for tumor-targeted bufalin delivery. Int. J. Pharm. 559, 289–298 (2019). https://doi.org/10.1016/j.ijpharm.2019.01.049
Y. Zhang, W. Song, J. Geng, U. Chitgupi, H. Unsal et al., Therapeutic surfactant-stripped frozen micelles. Nat. Commun. 7, 11649 (2016). https://doi.org/10.1038/ncomms11649
Y. Zhang, L. Feng, J. Wang, D. Tao, C. Liang et al., Surfactant-stripped micelles of near infrared dye and paclitaxel for photoacoustic imaging guided photothermal-chemotherapy. Small 14, 1802991 (2018). https://doi.org/10.1002/smll.201802991
J. Li, K. Pu, Semiconducting polymer nanomaterials as near-infrared photoactivatable protherapeutics for cancer. Acc. Chem. Res. 53, 752–762 (2020). https://doi.org/10.1021/acs.accounts.9b00569
C. Xu, K. Pu, Second near-infrared photothermal materials for combinational nanotheranostics. Chem. Soc. Rev. 50, 1111–1137 (2021). https://doi.org/10.1039/D0CS00664E
D.Y. Oh, Y.J. Bang, HER2-targeted therapies - a role beyond breast cancer. Nat. Rev. Clin. Oncol. 17, 33–48 (2020). https://doi.org/10.1038/s41571-019-0268-3
F. Meric-Bernstam, H. Hurwitz, K.P.S. Raghav, R.R. McWilliams, M. Fakih et al., Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): an updated report from a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol. 20, 518–530 (2019). https://doi.org/10.1016/S1470-2045(18)30904-5
A. Sartore-Bianchi, S. Marsoni, S. Siena, Human epidermal growth factor receptor 2 as a molecular biomarker for metastatic colorectal cancer. JAMA Oncol. 4, 19–20 (2018). https://doi.org/10.1001/jamaoncol.2017.3323
S. Togami, R. Kubo, T. Kawamura, S. Yanazume, M. Kamio, H. Kobayashi, Risk factors for lymphatic complications following lymphadenectomy in patients with endometrial cancer. Taiwan. J. Obstet. Gynecol. 59, 420–424 (2020). https://doi.org/10.1016/j.tjog.2020.03.015
D. Luo, S. Goel, H.J. Liu, K.A. Carter, D. Jiang et al., Intrabilayer 64Cu labeling of photoactivatable, doxorubicin-loaded stealth liposomes. ACS Nano 11, 12482–12491 (2017). https://doi.org/10.1021/acsnano.7b06578