A Therapeutic Sheep in Metastatic Wolf’s Clothing: Trojan Horse Approach for Cancer Brain Metastases Treatment
Corresponding Author: Peisheng Xu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 114
Abstract
Early-stage brain metastasis of breast cancer (BMBC), due to the existence of an intact blood–brain barrier (BBB), is one of the deadliest neurologic complications. To improve the efficacy of chemotherapy for BMBC, a Trojan horse strategy-based nanocarrier has been developed by integrating the cell membrane of a brain-homing cancer cell and a polymeric drug depot. With the camouflage of a MDA-MB-231/Br cell membrane, doxorubicin-loaded poly (D, L-lactic-co-glycolic acid) nanoparticle (DOX-PLGA@CM) shows enhanced cellular uptake and boosted killing potency for MDA-MB-231/Br cells. Furthermore, DOX-PLGA@CM is equipped with naturally selected molecules for BBB penetration, as evidenced by its boosted capacity in entering the brain of both healthy and early-stage BMBC mouse models. Consequently, DOX-PLGA@CM effectively reaches the metastatic tumor lesions in the brain, slows down cancer progression, reduces tumor burden, and extends the survival time for the BMBC animal. Furthermore, the simplicity and easy scale-up of the design opens a new window for the treatment of BMBC and other brain metastatic cancers.
Highlights:
1 DOX-PLGA@CM employs the whole set of membrane molecules of a brain-homing metastatic breast cancer cell optimized through a natural selection process. Thus, the hetero and multivalent effects of these molecules greatly facilitate the nanoparticle crossing the blood-brain barrier.
2 Attributed to the homotypic effect of the nanocarrier, DOX-PLGA@CM shows stronger anticancer efficacy than free DOX for its parenteral cells.
3 DOX-PLGA@CM effectively reaches the metastatic tumor lesions in the brain, and slows down the progression of brain metastatic breast cancer.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.F. Eichler, E. Chung, D.P. Kodack, J.S. Loeffler, D. Fukumura et al., The biology of brain metastases-translation to new therapies. Nat. Rev. Clin. Oncol. 8, 344–356 (2011). https://doi.org/10.1038/nrclinonc.2011.58
- A.S. Achrol, R.C. Rennert, C. Anders, R. Soffietti, M.S. Ahluwalia et al., Brain metastases. Nat. Rev. Dis. Primers 5, 5 (2019). https://doi.org/10.1038/s41572-018-0055-y
- A.M. Martin, D.N. Cagney, P.J. Catalano, L.E. Warren, J.R. Bellon et al., Brain metastases in newly diagnosed breast cancer: a population-based study. JAMA Oncol. 3(8), 1069–1077 (2017). https://doi.org/10.1001/jamaoncol.2017.0001
- T.K. Owonikoko, J. Arbiser, A. Zelnak, H.K.G. Shu, H. Shim et al., Current approaches to the treatment of metastatic brain tumours. Nat. Rev. Clin. Oncol. 11, 203–222 (2014). https://doi.org/10.1038/nrclinonc.2014.25
- J.Y. Delattre, G. Krol, H.T. Thaler, J.B. Posner, Distribution of brain metastases. Arch Neurol. 45(7), 741–744 (1988). https://doi.org/10.1001/archneur.1988.00520310047016
- P.S. Steeg, K.A. Camphausen, Q.R. Smith, Brain metastases as preventive and therapeutic targets. Nat. Rev. Cancer 11, 352–363 (2011). https://doi.org/10.1038/nrc3053
- J.P. Warrington, N. Ashpole, A. Csiszar, Y.W. Lee, Z. Ungvari et al., Whole brain radiation-induced vascular cognitive impairment: mechanisms and implications. J. Vasc. Res. 50, 445–457 (2013). https://doi.org/10.1159/000354227
- J. Jacob, T. Durand, L. Feuvret, J.J. Mazeron, J.Y. Delattre et al., Cognitive impairment and morphological changes after radiation therapy in brain tumors: a review. Radiother. Oncol. 128, 221 (2018). https://doi.org/10.1016/j.radonc.2018.05.027
- M.P. Mehta, P. Rodrigus, C. Terhaard, A. Rao, J. Suh et al., Survival and neurologic outcomes in a randomized trial of motexafin gadolinium and whole-brain radiation therapy in brain metastases. J. Clin. Oncol. 21(13), 2529 (2003). https://doi.org/10.1200/JCO.2003.12.122
- S.A. Sprowls, T.A. Arsiwala, J.R. Bumgarner, N. Shah, S.S. Lateef et al., Improving CNS delivery to brain metastases by blood-tumor barrier disruption. Trends Cancer 5(8), 495–505 (2019). https://doi.org/10.1016/j.trecan.2019.06.003
- J.F. Deeken, W. Löscher, The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin. Cancer Res. 13(6), 1663–1674 (2007). https://doi.org/10.1158/1078-0432.CCR-06-2854
- P.R. Lockman, R.K. Mittapalli, K.S. Taskar, V. Rudraraju, B. Gril et al., Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin. Cancer Res. 16(23), 5664–5678 (2010). https://doi.org/10.1158/1078-0432.CCR-10-1564
- R. Qiao, Q. Jia, S. Huwel, R. Xia, T. Liu et al., Receptor-mediated delivery of magnetic nanops across the blood-brain barrier. ACS Nano 6(4), 3304–3310 (2012). https://doi.org/10.1021/nn300240p
- D.T. Wiley, P. Webster, A. Gale, M.E. Davis, Transcytosis and brain uptake of transferrin-containing nanops by tuning avidity to transferrin receptor. PNAS 110(21), 8662–8667 (2013). https://doi.org/10.1073/pnas.1307152110
- S. Wohlfart, S. Gelperina, J. Kreuter, Transport of drugs across the blood-brain barrier by nanops. J. Control Release 161(2), 264–273 (2012). https://doi.org/10.1016/j.jconrel.2011.08.017
- Y.H. Tsou, X.Q. Zhang, H. Zhu, S. Syed, X. Xu, Drug delivery to the brain across the blood-brain barrier using nanomaterials. Small 13(43), 1701921 (2017). https://doi.org/10.1002/smll.201701921
- A. Salvati, A.S. Pitek, M.P. Monopoli, K. Prapainop, F.B. Bombelli et al., Transferrin-functionalized nanops lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8, 137–143 (2013). https://doi.org/10.1038/nnano.2012.237
- R.H. Fang, A.V. Kroll, W. Gao, L. Zhang, Cell membrane coating nanotechnology. Adv. Mater. 30(23), 1706759 (2018). https://doi.org/10.1002/adma.201706759
- S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet et al., Analysis of nanop delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016). https://doi.org/10.1038/natrevmats.2016.14
- C.M.J. Hu, L. Zhang, S. Aryal, C. Cheung, R.H. Fang et al., Erythrocyte membrane-camouflaged polymeric nanops as a biomimetic delivery platform. PNAS 108(27), 10980–10985 (2011). https://doi.org/10.1073/pnas.1106634108
- C. Wang, B. Wu, Y. Wu, X. Song, S. Zhang et al., Camouflaging nanops with brain metastatic tumor cell membranes: a new strategy to traverse blood-brain barrier for imaging and therapy of brain tumors. Adv. Funct. Mater. 30(14), 1909369 (2020). https://doi.org/10.1002/adfm.201909369
- Z. Chai, X. Hu, X. Wei, C. Zhan, L. Lu et al., A facile approach to functionalizing cell membrane-coated nanops with neurotoxin-derived peptide for brain-targeted drug delivery. J. Control Release 264, 102–111 (2017). https://doi.org/10.1016/j.jconrel.2017.08.027
- J. Ma, S. Zhang, J. Liu, F. Liu, F. Du et al., Targeted drug delivery to stroke via chemotactic recruitment of nanops coated with membrane of engineered neural stem cell. Small 15(35), 1902011 (2019). https://doi.org/10.1002/smll.201902011
- L. Feng, C. Dou, Y. Xia, B. Li, M. Zhao et al., Neutrophil-like Cell-membrane-coated nanozyme therapy for ischemic brain damage and long-term neurological functional recovery. ACS Nano 15(2), 2263–2280 (2021). https://doi.org/10.1021/acsnano.0c07973
- H. Liu, Y. Han, T. Wang, H. Zhang, Q. Xu et al., Targeting microglia for therapy of parkinson’s disease by using biomimetic ultrasmall nanops. J. Am. Chem. Soc. 142(52), 21730–21742 (2020). https://doi.org/10.1021/jacs.0c09390
- M. Preusser, D. Capper, A. Ilhan-Mutlu, A.S. Berghoff, P. Birner et al., Brain metastases: pathobiology and emerging targeted therapies. Acta Neuropathol. 123, 205–222 (2012). https://doi.org/10.1007/s00401-011-0933-9
- M. Masmudi-Martín, L. Zhu, M. Sanchez-Navarro, N. Priego, M. Casanova-Acebes et al., Brain metastasis models: what should we aim to achieve better treatments? Adv. Drug Deliv. Rev. 169, 79–99 (2021). https://doi.org/10.1016/j.addr.2020.12.002
- H.J. Liu, J.F. Wang, M.M. Wang, Y.Z. Wang, S.S. Shi et al., Biomimetic nanomedicine coupled with neoadjuvant chemotherapy to suppress breast cancer metastasis via tumor microenvironment remodeling. Adv. Funct. Mater. 31(25), 2100262 (2021). https://doi.org/10.1002/adfm.202100262
- R. Cecchelli, B. Dehouck, L. Descamps, L. Fenart, V. Buee-Scherrer et al., In vitro model for evaluating drug transport across the blood-brain barrier. Adv. Drug Deliv. Rev. 36(2–3), 165–178 (1999). https://doi.org/10.1016/S0169-409X(98)00083-0
- H. Zhou, D. Zhao, Ultrasound imaging-guided intracardiac injection to develop a mouse model of breast cancer brain metastases followed by longitudinal MRI. JOVE 85, e51146 (2014). https://doi.org/10.3791/51146
- K.S. Madden, M.L. Zettel, A.K. Majewska, E.B. Brown, Brain tumor imaging: imaging brain metastasis using a brain-metastasizing breast adenocarcinoma. Cold Spring Harb. Protoc. 2013, 073676 (2013). https://doi.org/10.1101/pdb.prot073676
- D. Luo, S. Goel, H.J. Liu, K.A. Carter, D. Jiang et al., Intrabilayer 64Cu labeling of photoactivatable, doxorubicin-loaded stealth liposomes. ACS Nano 11(12), 12482–12491 (2017). https://doi.org/10.1021/acsnano.7b06578
- S. Zhang, G. Deng, F. Liu, B. Peng, Y. Bao et al., Autocatalytic delivery of brain tumor-targeting, size-shrinkable nanops for treatment of breast cancer brain metastases. Adv. Funct. Mater. 30(14), 1910651 (2020). https://doi.org/10.1002/adfm.201910651
- C. Chittasupho, K. Lirdprapamongkol, P. Kewsuwan, N. Sarisuta, Targeted delivery of doxorubicin to A549 lung cancer cells by CXCR4 antagonist conjugated PLGA nanops. Eur. J. Pharm. Biopharm. 88(2), 529–538 (2014). https://doi.org/10.1016/j.ejpb.2014.06.020
- R.H. Fang, C.M.J. Hu, B.T. Luk, W. Gao, J.A. Copp et al., Cancer cell membrane-coated nanops for anticancer vaccination and drug delivery. Nano Lett. 14(4), 2181–2188 (2014). https://doi.org/10.1021/nl500618u
- Q. Bao, P. Hu, Y. Xu, T. Cheng, C. Wei et al., Simultaneous blood-brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanops. ACS Nano 12(7), 6794–6805 (2018). https://doi.org/10.1021/acsnano.8b01994
- H. Sun, J. Su, Q. Meng, Q. Yin, L. Chen et al., Cancer-cell-biomimetic nanops for targeted therapy of homotypic tumors. Adv. Mater. 28(43), 9581–9588 (2016). https://doi.org/10.1002/adma.201602173
- X.P. Zhang, J.G. Sun, J. Yao, K. Shan, B.H. Liu et al., Effect of nanoencapsulation using poly (lactide-co-glycolide)(PLGA) on anti-angiogenic activity of bevacizumab for ocular angiogenesis therapy. Biomed. Pharmacother. 107, 1056–1063 (2018). https://doi.org/10.1016/j.biopha.2018.08.092
- E. Teplinsky, F.J. Esteva, Systemic therapy for HER2-positive central nervous system disease: where we are and where do we go from here? Curr. Oncol. Rep. 17, 46 (2015). https://doi.org/10.1007/s11912-015-0471-z
- S.S. Stylli, R.B. Luwor, T.M. Ware, F. Tan, A.H. Kaye, Mouse models of glioma. J. Clin. Neurosci. 22(4), 619–626 (2015). https://doi.org/10.1016/j.jocn.2014.10.013
- P.D. Bos, X.H. Zhang, C. Nadal, W. Shu, R.R. Gomis et al., Genes that mediate breast cancer metastasis to the brain. Nature 459, 1005–1009 (2009). https://doi.org/10.1038/nature08021
- T. Miao, X. Ju, Q. Zhu, Y. Wang, Q. Guo et al., Nanops surmounting blood-brain tumor barrier through both transcellular and paracellular pathways to target brain metastases. Adv. Funct. Mater. 29(27), 1900259 (2019). https://doi.org/10.1002/adfm.201900259
- Z. Chen, P. Zhao, Z. Luo, M. Zheng, H. Tian et al., Cancer cell membrane-biomimetic nanops for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 10(11), 10049–10057 (2016). https://doi.org/10.1021/acsnano.6b04695
References
A.F. Eichler, E. Chung, D.P. Kodack, J.S. Loeffler, D. Fukumura et al., The biology of brain metastases-translation to new therapies. Nat. Rev. Clin. Oncol. 8, 344–356 (2011). https://doi.org/10.1038/nrclinonc.2011.58
A.S. Achrol, R.C. Rennert, C. Anders, R. Soffietti, M.S. Ahluwalia et al., Brain metastases. Nat. Rev. Dis. Primers 5, 5 (2019). https://doi.org/10.1038/s41572-018-0055-y
A.M. Martin, D.N. Cagney, P.J. Catalano, L.E. Warren, J.R. Bellon et al., Brain metastases in newly diagnosed breast cancer: a population-based study. JAMA Oncol. 3(8), 1069–1077 (2017). https://doi.org/10.1001/jamaoncol.2017.0001
T.K. Owonikoko, J. Arbiser, A. Zelnak, H.K.G. Shu, H. Shim et al., Current approaches to the treatment of metastatic brain tumours. Nat. Rev. Clin. Oncol. 11, 203–222 (2014). https://doi.org/10.1038/nrclinonc.2014.25
J.Y. Delattre, G. Krol, H.T. Thaler, J.B. Posner, Distribution of brain metastases. Arch Neurol. 45(7), 741–744 (1988). https://doi.org/10.1001/archneur.1988.00520310047016
P.S. Steeg, K.A. Camphausen, Q.R. Smith, Brain metastases as preventive and therapeutic targets. Nat. Rev. Cancer 11, 352–363 (2011). https://doi.org/10.1038/nrc3053
J.P. Warrington, N. Ashpole, A. Csiszar, Y.W. Lee, Z. Ungvari et al., Whole brain radiation-induced vascular cognitive impairment: mechanisms and implications. J. Vasc. Res. 50, 445–457 (2013). https://doi.org/10.1159/000354227
J. Jacob, T. Durand, L. Feuvret, J.J. Mazeron, J.Y. Delattre et al., Cognitive impairment and morphological changes after radiation therapy in brain tumors: a review. Radiother. Oncol. 128, 221 (2018). https://doi.org/10.1016/j.radonc.2018.05.027
M.P. Mehta, P. Rodrigus, C. Terhaard, A. Rao, J. Suh et al., Survival and neurologic outcomes in a randomized trial of motexafin gadolinium and whole-brain radiation therapy in brain metastases. J. Clin. Oncol. 21(13), 2529 (2003). https://doi.org/10.1200/JCO.2003.12.122
S.A. Sprowls, T.A. Arsiwala, J.R. Bumgarner, N. Shah, S.S. Lateef et al., Improving CNS delivery to brain metastases by blood-tumor barrier disruption. Trends Cancer 5(8), 495–505 (2019). https://doi.org/10.1016/j.trecan.2019.06.003
J.F. Deeken, W. Löscher, The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin. Cancer Res. 13(6), 1663–1674 (2007). https://doi.org/10.1158/1078-0432.CCR-06-2854
P.R. Lockman, R.K. Mittapalli, K.S. Taskar, V. Rudraraju, B. Gril et al., Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin. Cancer Res. 16(23), 5664–5678 (2010). https://doi.org/10.1158/1078-0432.CCR-10-1564
R. Qiao, Q. Jia, S. Huwel, R. Xia, T. Liu et al., Receptor-mediated delivery of magnetic nanops across the blood-brain barrier. ACS Nano 6(4), 3304–3310 (2012). https://doi.org/10.1021/nn300240p
D.T. Wiley, P. Webster, A. Gale, M.E. Davis, Transcytosis and brain uptake of transferrin-containing nanops by tuning avidity to transferrin receptor. PNAS 110(21), 8662–8667 (2013). https://doi.org/10.1073/pnas.1307152110
S. Wohlfart, S. Gelperina, J. Kreuter, Transport of drugs across the blood-brain barrier by nanops. J. Control Release 161(2), 264–273 (2012). https://doi.org/10.1016/j.jconrel.2011.08.017
Y.H. Tsou, X.Q. Zhang, H. Zhu, S. Syed, X. Xu, Drug delivery to the brain across the blood-brain barrier using nanomaterials. Small 13(43), 1701921 (2017). https://doi.org/10.1002/smll.201701921
A. Salvati, A.S. Pitek, M.P. Monopoli, K. Prapainop, F.B. Bombelli et al., Transferrin-functionalized nanops lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8, 137–143 (2013). https://doi.org/10.1038/nnano.2012.237
R.H. Fang, A.V. Kroll, W. Gao, L. Zhang, Cell membrane coating nanotechnology. Adv. Mater. 30(23), 1706759 (2018). https://doi.org/10.1002/adma.201706759
S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet et al., Analysis of nanop delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016). https://doi.org/10.1038/natrevmats.2016.14
C.M.J. Hu, L. Zhang, S. Aryal, C. Cheung, R.H. Fang et al., Erythrocyte membrane-camouflaged polymeric nanops as a biomimetic delivery platform. PNAS 108(27), 10980–10985 (2011). https://doi.org/10.1073/pnas.1106634108
C. Wang, B. Wu, Y. Wu, X. Song, S. Zhang et al., Camouflaging nanops with brain metastatic tumor cell membranes: a new strategy to traverse blood-brain barrier for imaging and therapy of brain tumors. Adv. Funct. Mater. 30(14), 1909369 (2020). https://doi.org/10.1002/adfm.201909369
Z. Chai, X. Hu, X. Wei, C. Zhan, L. Lu et al., A facile approach to functionalizing cell membrane-coated nanops with neurotoxin-derived peptide for brain-targeted drug delivery. J. Control Release 264, 102–111 (2017). https://doi.org/10.1016/j.jconrel.2017.08.027
J. Ma, S. Zhang, J. Liu, F. Liu, F. Du et al., Targeted drug delivery to stroke via chemotactic recruitment of nanops coated with membrane of engineered neural stem cell. Small 15(35), 1902011 (2019). https://doi.org/10.1002/smll.201902011
L. Feng, C. Dou, Y. Xia, B. Li, M. Zhao et al., Neutrophil-like Cell-membrane-coated nanozyme therapy for ischemic brain damage and long-term neurological functional recovery. ACS Nano 15(2), 2263–2280 (2021). https://doi.org/10.1021/acsnano.0c07973
H. Liu, Y. Han, T. Wang, H. Zhang, Q. Xu et al., Targeting microglia for therapy of parkinson’s disease by using biomimetic ultrasmall nanops. J. Am. Chem. Soc. 142(52), 21730–21742 (2020). https://doi.org/10.1021/jacs.0c09390
M. Preusser, D. Capper, A. Ilhan-Mutlu, A.S. Berghoff, P. Birner et al., Brain metastases: pathobiology and emerging targeted therapies. Acta Neuropathol. 123, 205–222 (2012). https://doi.org/10.1007/s00401-011-0933-9
M. Masmudi-Martín, L. Zhu, M. Sanchez-Navarro, N. Priego, M. Casanova-Acebes et al., Brain metastasis models: what should we aim to achieve better treatments? Adv. Drug Deliv. Rev. 169, 79–99 (2021). https://doi.org/10.1016/j.addr.2020.12.002
H.J. Liu, J.F. Wang, M.M. Wang, Y.Z. Wang, S.S. Shi et al., Biomimetic nanomedicine coupled with neoadjuvant chemotherapy to suppress breast cancer metastasis via tumor microenvironment remodeling. Adv. Funct. Mater. 31(25), 2100262 (2021). https://doi.org/10.1002/adfm.202100262
R. Cecchelli, B. Dehouck, L. Descamps, L. Fenart, V. Buee-Scherrer et al., In vitro model for evaluating drug transport across the blood-brain barrier. Adv. Drug Deliv. Rev. 36(2–3), 165–178 (1999). https://doi.org/10.1016/S0169-409X(98)00083-0
H. Zhou, D. Zhao, Ultrasound imaging-guided intracardiac injection to develop a mouse model of breast cancer brain metastases followed by longitudinal MRI. JOVE 85, e51146 (2014). https://doi.org/10.3791/51146
K.S. Madden, M.L. Zettel, A.K. Majewska, E.B. Brown, Brain tumor imaging: imaging brain metastasis using a brain-metastasizing breast adenocarcinoma. Cold Spring Harb. Protoc. 2013, 073676 (2013). https://doi.org/10.1101/pdb.prot073676
D. Luo, S. Goel, H.J. Liu, K.A. Carter, D. Jiang et al., Intrabilayer 64Cu labeling of photoactivatable, doxorubicin-loaded stealth liposomes. ACS Nano 11(12), 12482–12491 (2017). https://doi.org/10.1021/acsnano.7b06578
S. Zhang, G. Deng, F. Liu, B. Peng, Y. Bao et al., Autocatalytic delivery of brain tumor-targeting, size-shrinkable nanops for treatment of breast cancer brain metastases. Adv. Funct. Mater. 30(14), 1910651 (2020). https://doi.org/10.1002/adfm.201910651
C. Chittasupho, K. Lirdprapamongkol, P. Kewsuwan, N. Sarisuta, Targeted delivery of doxorubicin to A549 lung cancer cells by CXCR4 antagonist conjugated PLGA nanops. Eur. J. Pharm. Biopharm. 88(2), 529–538 (2014). https://doi.org/10.1016/j.ejpb.2014.06.020
R.H. Fang, C.M.J. Hu, B.T. Luk, W. Gao, J.A. Copp et al., Cancer cell membrane-coated nanops for anticancer vaccination and drug delivery. Nano Lett. 14(4), 2181–2188 (2014). https://doi.org/10.1021/nl500618u
Q. Bao, P. Hu, Y. Xu, T. Cheng, C. Wei et al., Simultaneous blood-brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanops. ACS Nano 12(7), 6794–6805 (2018). https://doi.org/10.1021/acsnano.8b01994
H. Sun, J. Su, Q. Meng, Q. Yin, L. Chen et al., Cancer-cell-biomimetic nanops for targeted therapy of homotypic tumors. Adv. Mater. 28(43), 9581–9588 (2016). https://doi.org/10.1002/adma.201602173
X.P. Zhang, J.G. Sun, J. Yao, K. Shan, B.H. Liu et al., Effect of nanoencapsulation using poly (lactide-co-glycolide)(PLGA) on anti-angiogenic activity of bevacizumab for ocular angiogenesis therapy. Biomed. Pharmacother. 107, 1056–1063 (2018). https://doi.org/10.1016/j.biopha.2018.08.092
E. Teplinsky, F.J. Esteva, Systemic therapy for HER2-positive central nervous system disease: where we are and where do we go from here? Curr. Oncol. Rep. 17, 46 (2015). https://doi.org/10.1007/s11912-015-0471-z
S.S. Stylli, R.B. Luwor, T.M. Ware, F. Tan, A.H. Kaye, Mouse models of glioma. J. Clin. Neurosci. 22(4), 619–626 (2015). https://doi.org/10.1016/j.jocn.2014.10.013
P.D. Bos, X.H. Zhang, C. Nadal, W. Shu, R.R. Gomis et al., Genes that mediate breast cancer metastasis to the brain. Nature 459, 1005–1009 (2009). https://doi.org/10.1038/nature08021
T. Miao, X. Ju, Q. Zhu, Y. Wang, Q. Guo et al., Nanops surmounting blood-brain tumor barrier through both transcellular and paracellular pathways to target brain metastases. Adv. Funct. Mater. 29(27), 1900259 (2019). https://doi.org/10.1002/adfm.201900259
Z. Chen, P. Zhao, Z. Luo, M. Zheng, H. Tian et al., Cancer cell membrane-biomimetic nanops for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 10(11), 10049–10057 (2016). https://doi.org/10.1021/acsnano.6b04695