Engineered Cancer Nanovaccines: A New Frontier in Cancer Therapy
Corresponding Author: Kun Zhang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 30
Abstract
Vaccinations are essential for preventing and treating disease, especially cancer nanovaccines, which have gained considerable interest recently for their strong anti-tumor immune capabilities. Vaccines can prompt the immune system to generate antibodies and activate various immune cells, leading to a response against tumor tissues and reducing the negative effects and recurrence risks of traditional chemotherapy and surgery. To enhance the flexibility and targeting of vaccines, nanovaccines utilize nanotechnology to encapsulate or carry antigens at the nanoscale level, enabling more controlled and precise drug delivery to enhance immune responses. Cancer nanovaccines function by encapsulating tumor-specific antigens or tumor-associated antigens within nanomaterials. The small size of these nanomaterials allows for precise targeting of T cells, dendritic cells, or cancer cells, thereby eliciting a more potent anti-tumor response. In this paper, we focus on the classification of carriers for cancer nanovaccines, the roles of different target cells, and clinically tested cancer nanovaccines, discussing strategies for effectively inducing cytotoxic T lymphocytes responses and optimizing antigen presentation, while also looking ahead to the translational challenges of moving from animal experiments to clinical trials.
Highlights:
1 We classified the carriers that built cancer nanovaccines, discussed their diversified applications and coincidently compared their advantages and disadvantages.
2 Various cellular targets that guide the design and engineering of cancer nanovaccines are categorized and their characteristics and benefits are highlighted.
3 The clinical cases and encountered challenges in cancer nanovaccines are discussed, during which reasonable solutions and future research direction are provided.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.A. Plotkin, Vaccines: past, present and future. Nat. Med. 11(4 Suppl), S5–S11 (2005). https://doi.org/10.1038/nm1209
- I. Delany, R. Rappuoli, E. De Gregorio, Vaccines for the 21st century. EMBO Mol. Med. 6, 708–720 (2014). https://doi.org/10.1002/emmm.201403876
- D. Ndwandwe, C.S. Wiysonge, Covid-19 vaccines. Curr. Opin. Immunol. 71, 111–116 (2021). https://doi.org/10.1016/j.coi.2021.07.003
- P. Zamani, J.G. Navashenaq, A.R. Nikpoor, M. Hatamipour, R.K. Oskuee et al., MPL nano-liposomal vaccine containing P5 HER2/neu-derived peptide pulsed PADRE as an effective vaccine in a mice TUBO model of breast cancer. J. Control. Release 303, 223–236 (2019). https://doi.org/10.1016/j.jconrel.2019.04.019
- M.Z. Ahmad, J. Ahmad, A. Haque, M.Y. Alasmary, B.A. Abdel-Wahab et al., Emerging advances in synthetic cancer nano-vaccines: opportunities and challenges. Expert Rev. Vaccines 19, 1053–1071 (2020). https://doi.org/10.1080/14760584.2020.1858058
- K.L. Hess, I.L. Medintz, C.M. Jewell, Designing inorganic nanomaterials for vaccines and immunotherapies. Nano Today 27, 73–98 (2019). https://doi.org/10.1016/j.nantod.2019.04.005
- J. Chen, Z. Ye, C. Huang, M. Qiu, D. Song et al., Lipid nanop-mediated lymph node-targeting delivery of mRNA cancer vaccine elicits robust CD8(+) T cell response. Proc. Natl. Acad. Sci. U.S.A. 119, e2207841119 (2022). https://doi.org/10.1073/pnas.2207841119
- A.M. Reichmuth, M.A. Oberli, A. Jaklenec, R. Langer, D. Blankschtein, mRNA vaccine delivery using lipid nanops. Ther. Deliv. 7, 319–334 (2016). https://doi.org/10.4155/tde-2016-0006
- A. Bolhassani, S. Javanzad, T. Saleh, M. Hashemi, M.R. Aghasadeghi et al., Polymeric nanops: potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum. Vaccin. Immunother. 10, 321–332 (2014). https://doi.org/10.4161/hv.26796
- J. Han, D. Zhao, D. Li, X. Wang, Z. Jin et al., Polymer-based nanomaterials and applications for vaccines and drugs. Polymers 10, 31 (2018). https://doi.org/10.3390/polym10010031
- R. Harrop, J. John, M.W. Carroll, Recombinant viral vectors: cancer vaccines. Adv. Drug Deliv. Rev. 58, 931–947 (2006). https://doi.org/10.1016/j.addr.2006.05.005
- H. Wu, H. Li, Y. Liu, J. Liang, Q. Liu et al., Blockading a new NSCLC immunosuppressive target by pluripotent autologous tumor vaccines magnifies sequential immunotherapy. Bioact. Mater. 13, 223–238 (2021). https://doi.org/10.1016/j.bioactmat.2021.10.048
- X. Dong, Q. Yang, H. Wang, C. Zhu, T. Wang et al., Targetedly attenuating cancer stemness and plasticity by homologous cancer stem cell-inherited fusion membrane nanoeffectors against cancer metastasis. Small Sci. 4, 2300111 (2024). https://doi.org/10.1002/smsc.202300111
- C. Feng, Y. Li, B.E. Ferdows, D.N. Patel, J. Ouyang et al., Emerging vaccine nanotechnology: from defense against infection to sniping cancer. Acta Pharm. Sin. B 12, 2206–2223 (2022). https://doi.org/10.1016/j.apsb.2021.12.021
- C.L. Chiang, L.E. Kandalaft, In vivo cancer vaccination: which dendritic cells to target and how? Cancer Treat. Rev. 71, 88–101 (2018). https://doi.org/10.1016/j.ctrv.2018.10.012
- M. Saxena, S. Balan, V. Roudko, N. Bhardwaj, Towards superior dendritic-cell vaccines for cancer therapy. Nat. Biomed. Eng. 2, 341–346 (2018). https://doi.org/10.1038/s41551-018-0250-x
- X. Huang, X. Zhu, H. Yang, Q. Li, L. Gai et al., Nanomaterial delivery vehicles for the development of neoantigen tumor vaccines for personalized treatment. Molecules 29, 1462 (2024). https://doi.org/10.3390/molecules29071462
- T. Wang, M. Han, Y. Han, Z. Jiang, Q. Zheng et al., Antigen self-presented personalized nanovaccines boost the immunotherapy of highly invasive and metastatic tumors. ACS Nano 18, 6333–6347 (2024). https://doi.org/10.1021/acsnano.3c11189
- H. Wang, X. Wu, Y. Sun, A. Liu, Y. He et al., A natural IgM hitchhiking strategy for delivery of cancer nanovaccines to splenic marginal zone B cells. J. Control. Release 368, 208–218 (2024). https://doi.org/10.1016/j.jconrel.2024.02.029
- Y. Dölen, M. Valente, O. Tagit, E. Jäger, E.A.W. Van Dinther et al., Nanovaccine administration route is critical to obtain pertinent iNKt cell help for robust anti-tumor T and B cell responses. Oncoimmunology 9, 1738813 (2020). https://doi.org/10.1080/2162402X.2020.1738813
- A. Gül, M. Döşkaya, H. Can, M. Karakavuk, M. Anıl-İnevi et al., Immunogenicity of a xenogeneic multi-epitope HER2+ breast cancer DNA vaccine targeting the dendritic cell restricted antigen-uptake receptor DEC205. Vaccine 40, 2409–2419 (2022). https://doi.org/10.1016/j.vaccine.2022.03.014
- L. Ma, L. Diao, Z. Peng, Y. Jia, H. Xie et al., Immunotherapy and prevention of cancer by nanovaccines loaded with whole-cell components of tumor tissues or cells. Adv. Mater. 33, 2104849 (2021). https://doi.org/10.1002/adma.202104849
- M. Saxena, S.H. van der Burg, C.J.M. Melief, N. Bhardwaj, Therapeutic cancer vaccines. Nat. Rev. Cancer 21, 360–378 (2021). https://doi.org/10.1038/s41568-021-00346-0
- R.L. Atmar, W.A. Keitel, Searching for improved flu vaccines-the time is now. J. Infect. Dis. 221, 1–4 (2020). https://doi.org/10.1093/infdis/jiz545
- A.S. Bandyopadhyay, J. Garon, K. Seib, W.A. Orenstein, Polio vaccination: past, present and future. Future Microbiol. 10, 791–808 (2015). https://doi.org/10.2217/fmb.15.19
- D.E. Griffin, Measles vaccine. Viral Immunol. 31, 86–95 (2018). https://doi.org/10.1089/vim.2017.0143
- A.M. Galazka, S.E. Robertson, A. Kraigher, Mumps and mumps vaccine: a global review. Bull. World Health Organ. 77, 3–14 (1999). https://www.ncbi.nlm.nih.gov/pmc/s/PMC2557572/pdf/10063655.pdf
- N. Lambert, P. Strebel, W. Orenstein, J. Icenogle, G.A. Poland, Rubella. Lancet 385, 2297–2307 (2015). https://doi.org/10.1016/S0140-6736(14)60539-0
- H. Zhao, X. Zhou, Y.-H. Zhou, Hepatitis B vaccine development and implementation. Hum. Vaccines Immunother. 16, 1533–1544 (2020). https://doi.org/10.1080/21645515.2020.1732166
- M. Stanley, Immunobiology of HPV and HPV vaccines. Gynecol. Oncol. 109, S15–S21 (2008). https://doi.org/10.1016/j.ygyno.2008.02.003
- M. Li, H. Wang, L. Tian, Z. Pang, Q. Yang et al., COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduct. Target. Ther. 7, 146 (2022). https://doi.org/10.1038/s41392-022-00996-y
- J. Liu, M. Fu, M. Wang, D. Wan, Y. Wei et al., Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J. Hematol. Oncol. 15, 28 (2022). https://doi.org/10.1186/s13045-022-01247-x
- H.C. Hoover Jr., M.G. Surdyke, R.B. Dangel, L.C. Peters, M.G. Hanna Jr., Prospectively randomized trial of adjuvant active-specific immunotherapy for human colorectal cancer. Cancer 55, 1236–1243 (1985). https://doi.org/10.1002/1097-0142(19850315)55:6<1236::aid-cncr2820550616>3.0.co;2-#
- P. van der Bruggen, C. Traversari, P. Chomez, C. Lurquin, E. De Plaen et al., A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643–1647 (1991). https://doi.org/10.1126/science.1840703
- T.A. Gardner, B.D. Elzey, N.M. Hahn, Sipuleucel-T (Provenge) autologous vaccine approved for treatment of men with asymptomatic or minimally symptomatic castrate-resistant metastatic prostate cancer. Hum. Vaccin. Immunother. 8, 534–539 (2012). https://doi.org/10.4161/hv.19795
- K. Liang, Y. Sun, L. Xie, Y. Liu, Y. You et al., Biologically self-assembled tumor cell-derived cancer nanovaccines as an all-in-one platform for cancer immunotherapy. ACS Nano 18, 6702–6717 (2024). https://doi.org/10.1021/acsnano.4c01050
- J. Pan, Y. Wang, C. Zhang, X. Wang, H. Wang et al., Antigen-directed fabrication of a multifunctional nanovaccine with ultrahigh antigen loading efficiency for tumor photothermal-immunotherapy. Adv. Mater. 30, 1704408 (2018). https://doi.org/10.1002/adma.201704408
- L.A. Dykman, Gold nanops for preparation of antibodies and vaccines against infectious diseases. Expert Rev. Vaccines 19, 465–477 (2020). https://doi.org/10.1080/14760584.2020.1758070
- Y. Zhao, X. Zhao, Y. Cheng, X. Guo, W. Yuan, Iron oxide nanops-based vaccine delivery for cancer treatment. Mol. Pharm. 15, 1791–1799 (2018). https://doi.org/10.1021/acs.molpharmaceut.7b01103
- X. Hong, X. Zhong, G. Du, Y. Hou, Y. Zhang et al., The pore size of mesoporous silica nanops regulates their antigen delivery efficiency. Sci. Adv. 6, eaaz4462 (2020). https://doi.org/10.1126/sciadv.aaz4462
- J. Sun, F. Liu, W. Yu, D. Fu, Q. Jiang et al., Visualization of vaccine dynamics with quantum dots for immunotherapy. Angew. Chem. Int. Ed. 60, 24275–24283 (2021). https://doi.org/10.1002/anie.202111093
- T. Wang, M. Zou, H. Jiang, Z. Ji, P. Gao et al., Synthesis of a novel kind of carbon nanop with large mesopores and macropores and its application as an oral vaccine adjuvant. Eur. J. Pharm. Sci. 44, 653–659 (2011). https://doi.org/10.1016/j.ejps.2011.10.012
- X. Li, X. Wang, A. Ito, Tailoring inorganic nanoadjuvants towards next-generation vaccines. Chem. Soc. Rev. 47, 4954–4980 (2018). https://doi.org/10.1039/C8CS00028J
- C.A. Bohannon, A.J. Chancellor, M.T. Kelly, T.T. Le, L. Zhu et al., Adaptable multivalent hairy inorganic nanops. J. Am. Chem. Soc. 143, 16919–16924 (2021). https://doi.org/10.1021/jacs.1c08261
- T. Zhao, Y. Cai, Y. Jiang, X. He, Y. Wei et al., Vaccine adjuvants: mechanisms and platforms. Signal Transduct. Target. Ther. 8, 283 (2023). https://doi.org/10.1038/s41392-023-01557-7
- F. Soetaert, P. Korangath, D. Serantes, S. Fiering, R. Ivkov, Cancer therapy with iron oxide nanops: agents of thermal and immune therapies. Adv. Drug Deliv. Rev. 163–164, 65–83 (2020). https://doi.org/10.1016/j.addr.2020.06.025
- S. Zanganeh, G. Hutter, R. Spitler, O. Lenkov, M. Mahmoudi et al., Iron oxide nanops inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol. 11, 986–994 (2016). https://doi.org/10.1038/nnano.2016.168
- G. Liu, J. Gao, H. Ai, X. Chen, Applications and potential toxicity of magnetic iron oxide nanops. Small 9, 1533–1545 (2013). https://doi.org/10.1002/smll.201201531
- F.P. García de Arquer, D.V. Talapin, V.I. Klimov, Y. Arakawa, M. Bayer et al., Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021). https://doi.org/10.1126/science.aaz8541
- R.E. Bailey, A.M. Smith, S. Nie, Quantum dots in biology and medicine. Phys. E Low Dimension. Syst. Nanostruct. 25, 1–12 (2004). https://doi.org/10.1016/j.physe.2004.07.013
- V.G. Reshma, P.V. Mohanan, Quantum dots: applications and safety consequences. J. Lumin. 205, 287–298 (2019). https://doi.org/10.1016/j.jlumin.2018.09.015
- N. Amonov, E.S. Ch, G. Abduraimova, Analysis of research on the properties, production and use of carbon nanops. Miasto Przyszłości. 28, 136–138 (2022)
- B.J. Panessa-Warren, J.B. Warren, S.S. Wong, J.A. Misewich, Biological cellular response to carbon nanop toxicity. J. Phys. Condens. Matter 18, S2185–S2201 (2006). https://doi.org/10.1088/0953-8984/18/33/s34
- S. Fiorito, A. Serafino, F. Andreola, A. Togna, G. Togna, Toxicity and biocompatibility of carbon nanops. J. Nanosci. Nanotechnol. 6, 591–599 (2006). https://doi.org/10.1166/jnn.2006.125
- J. Ni, J. Song, B. Wang, H. Hua, H. Zhu et al., Dendritic cell vaccine for the effective immunotherapy of breast cancer. Biomed. Pharmacother. 126, 110046 (2020). https://doi.org/10.1016/j.biopha.2020.110046
- L. Huang, Y. Liao, C. Li, Z. Ma, Z. Liu, Multifunctional manganese-containing vaccine delivery system Ca@MnCO3/LLO for tumor immunotherapy. Biomater. Adv. 136, 212752 (2022). https://doi.org/10.1016/j.bioadv.2022.212752
- B. García-Pinel, C. Porras-Alcalá, A. Ortega-Rodríguez, F. Sarabia, J. Prados et al., Lipid-based nanops: application and recent advances in cancer treatment. Nanomaterials 9, 638 (2019). https://doi.org/10.3390/nano9040638
- M.-G. Alameh, I. Tombácz, E. Bettini, K. Lederer, C. Sittplangkoon et al., Lipid nanops enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54, 2877-2892.e7 (2021). https://doi.org/10.1016/j.immuni.2021.11.001
- J. Pardeike, A. Hommoss, R.H. Müller, Lipid nanops (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 366, 170–184 (2009). https://doi.org/10.1016/j.ijpharm.2008.10.003
- Y. Xia, S. Fu, Q. Ma, Y. Liu, N. Zhang, Application of nano-delivery systems in lymph nodes for tumor immunotherapy. Nano-Micro Lett. 15, 145 (2023). https://doi.org/10.1007/s40820-023-01125-2
- D. Sivadasan, K. Ramakrishnan, J. Mahendran, H. Ranganathan, A. Karuppaiah et al., Solid lipid nanops: applications and prospects in cancer treatment. Int. J. Mol. Sci. 24, 6199 (2023). https://doi.org/10.3390/ijms24076199
- Y. Mirchandani, V.B. Patravale, S. Brijesh, Solid lipid nanops for hydrophilic drugs. J. Control. Release 335, 457–464 (2021). https://doi.org/10.1016/j.jconrel.2021.05.032
- V.J. Lingayat, N.S. Zarekar, R.S. Shendge, Solid lipid nanops: a review. Nanosci. Nanotechnol. Res. 4, 67–72 (2017). https://doi.org/10.12691/nnr-4-2-5
- A. Sharma, Nanocomposite materials for biomedical and energy storage applications. (BoD–Books on Demand; 2022). https://doi.org/10.5772/intechopen.95130
- A. Beloqui, M.Á. Solinís, A. Rodríguez-Gascón, A.J. Almeida, V. Préat, Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomed. Nanotechnol. Biol. Med. 12, 143–161 (2016). https://doi.org/10.1016/j.nano.2015.09.004
- M. Elmowafy, M.M. Al-Sanea, Nanostructured lipid carriers (NLCs) as drug delivery platform: advances in formulation and delivery strategies. Saudi Pharm. J. 29, 999–1012 (2021). https://doi.org/10.1016/j.jsps.2021.07.015
- H. Kang, S. Rho, W.R. Stiles, S. Hu, Y. Baek et al., Size-dependent EPR effect of polymeric nanops on tumor targeting. Adv. Healthc. Mater. 9, 1901223 (2020). https://doi.org/10.1002/adhm.201901223
- R. Han, J. Zhu, X. Yang, H. Xu, Surface modification of poly(D, L-lactic-co-glycolic acid) nanops with protamine enhanced cross-presentation of encapsulated ovalbumin by bone marrow-derived dendritic cells. J. Biomed. Mater. Res. A 96, 142–149 (2011). https://doi.org/10.1002/jbm.a.32860
- W.-S. Cho, F. Thielbeer, R. Duffin, E.M.V. Johansson, I.L. Megson et al., Surface functionalization affects the Zeta potential, coronal stability and membranolytic activity of polymeric nanops. Nanotoxicology 8, 202–211 (2014). https://doi.org/10.3109/17435390.2013.773465
- C. He, Y. Hu, L. Yin, C. Tang, C. Yin, Effects of p size and surface charge on cellular uptake and biodistribution of polymeric nanops. Biomaterials 31, 3657–3666 (2010). https://doi.org/10.1016/j.biomaterials.2010.01.065
- A. Gutjahr, C. Phelip, A.-L. Coolen, C. Monge, A.-S. Boisgard et al., Biodegradable polymeric nanops-based vaccine adjuvants for lymph nodes targeting. Vaccines 4, 34 (2016). https://doi.org/10.3390/vaccines4040034
- M. Kumar, A.K. Behera, R.F. Lockey, J. Zhang, G. Bhullar et al., Intranasal gene transfer by chitosan-DNA nanospheres protects BALB/c mice against acute respiratory syncytial virus infection. Hum. Gene Ther. 13, 1415–1425 (2002). https://doi.org/10.1089/10430340260185058
- M. Iqbal, W. Lin, I. Jabbal-Gill, S.S. Davis, M.W. Steward et al., Nasal delivery of chitosan-DNA plasmid expressing epitopes of respiratory syncytial virus (RSV) induces protective CTL responses in BALB/c mice. Vaccine 21, 1478–1485 (2003). https://doi.org/10.1016/s0264-410x(02)00662-x
- E.C. Carroll, L. Jin, A. Mori, N. Muñoz-Wolf, E. Oleszycka et al., The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity 44, 597–608 (2016). https://doi.org/10.1016/j.immuni.2016.02.004
- K.H. Wong, A. Lu, X. Chen, Z. Yang, Natural ingredient-based polymeric nanops for cancer treatment. Molecules 25, 3620 (2020). https://doi.org/10.3390/molecules25163620
- J.I. Bussio, C. Molina-Perea, J.V. González-Aramundiz, Hyaluronic acid nanocapsules as a platform for needle-free vaccination. Pharmaceutics 11, 246 (2019). https://doi.org/10.3390/pharmaceutics11050246
- J. Yang, Y. Luo, M.A. Shibu, I. Toth, M. Skwarczynskia, Cell-penetrating peptides: efficient vectors for vaccine delivery. Curr. Drug Deliv. 16, 430–443 (2019). https://doi.org/10.2174/1567201816666190123120915
- Q. Liu, J. Jia, T. Yang, Q. Fan, L. Wang et al., Pathogen-mimicking polymeric nanops based on dopamine polymerization as vaccines adjuvants induce robust humoral and cellular immune responses. Small 12, 1744–1757 (2016). https://doi.org/10.1002/smll.201503662
- Q. Su, C. Wang, H. Song, C. Zhang, J. Liu et al., Co-delivery of anionic epitope/CpG vaccine and IDO inhibitor by self-assembled cationic liposomes for combination melanoma immunotherapy. J. Mater. Chem. B 9, 3892–3899 (2021). https://doi.org/10.1039/d1tb00256b
- Y. Gao, Y. Liu, X. Li, H. Wang, Y. Yang et al., A stable open-shell conjugated diradical polymer with ultra-high photothermal conversion efficiency for NIR-II photo-immunotherapy of metastatic tumor. Nano-Micro Lett. 16, 21 (2023). https://doi.org/10.1007/s40820-023-01219-x
- T. Lima, K. Bernfur, M. Vilanova, T. Cedervall, Understanding the lipid and protein Corona formation on different sized polymeric nanops. Sci. Rep. 10, 1129 (2020). https://doi.org/10.1038/s41598-020-57943-6
- J.A. Jackman, B.K. Yoon, L. Ouyang, W. Nan, A.R. Ferhan et al., Biomimetic nanomaterial strategies for virus targeting: antiviral therapies and vaccines. Adv. Funct. Mater. 31, 2008352 (2021). https://doi.org/10.1002/adfm.202008352
- K.G. Gareev, D.S. Grouzdev, V.V. Koziaeva, N.O. Sitkov, H. Gao et al., Biomimetic nanomaterials: diversity, technology, and biomedical applications. Nanomaterials 12, 2485 (2022). https://doi.org/10.3390/nano12142485
- C. Feng, P. Tan, G. Nie, M. Zhu, Biomimetic and bioinspired nano-platforms for cancer vaccine development. Exploration (Beijing) 3, 20210263 (2023). https://doi.org/10.1002/EXP.20210263
- J. Su, H. Sun, Q. Meng, Q. Yin, S. Tang et al., Long circulation red-blood-cell-mimetic nanops with peptide-enhanced tumor penetration for simultaneously inhibiting growth and lung metastasis of breast cancer. Adv. Funct. Mater. 30, 1910229 (2020). https://doi.org/10.1002/adfm.201910229
- M. Xuan, J. Shao, J. Zhao, Q. Li, L. Dai et al., Magnetic mesoporous silica nanops cloaked by red blood cell membranes: applications in cancer therapy. Angew. Chem. Int. Ed. 57, 6049–6053 (2018). https://doi.org/10.1002/anie.201712996
- J. Li, S. Wang, X. Lin, Y. Cao, Z. Cai et al., Red blood cell-mimic nanocatalyst triggering radical storm to augment cancer immunotherapy. Nano-Micro Lett. 14, 57 (2022). https://doi.org/10.1007/s40820-022-00801-z
- Z.-B. Wang, J. Xu, Better adjuvants for better vaccines: progress in adjuvant delivery systems, modifications, and adjuvant-antigen codelivery. Vaccines 8, 128 (2020). https://doi.org/10.3390/vaccines8010128
- J. Xia, Y. Miao, X. Wang, X. Huang, J. Dai, Recent progress of dendritic cell-derived exosomes (Dex) as an anti-cancer nanovaccine. Biomed. Pharmacother. 152, 113250 (2022). https://doi.org/10.1016/j.biopha.2022.113250
- M. Fan, H. Liu, H. Yan, R. Che, Y. Jin et al., A CAR T-inspiring platform based on antibody-engineered exosomes from antigen-feeding dendritic cells for precise solid tumor therapy. Biomaterials 282, 121424 (2022). https://doi.org/10.1016/j.biomaterials.2022.121424
- M. Wu, W. Wu, Y. Duan, X. Li, G. Qi et al., Photosensitizer-bacteria biohybrids promote photodynamic cancer cell ablation and intracellular protein delivery. Chem. Mater. 31, 7212–7220 (2019). https://doi.org/10.1021/acs.chemmater.9b01518
- Q. Hu, M. Wu, C. Fang, C. Cheng, M. Zhao et al., Engineering nanop-coated bacteria as oral DNA vaccines for cancer immunotherapy. Nano Lett. 15, 2732–2739 (2015). https://doi.org/10.1021/acs.nanolett.5b00570
- J. Chen, C.-Q. Sheng, C.-H. Zheng, Y.-W. Li, J.-G. Lv et al., Study of properties of VEGFR2 active site and binding mode of VEGFR2 and its inhibitors. Acta Chim. Sinica 65, 547 (2007)
- Z. Ye, L. Liang, H. Lu, Y. Shen, W. Zhou et al., Nanotechnology-employed bacteria-based delivery strategy for enhanced anticancer therapy. Int. J. Nanomedicine 16, 8069–8086 (2021). https://doi.org/10.2147/IJN.S329855
- C.-J. Chiang, P.-H. Huang, Metabolic engineering of probiotic Escherichia coli for cytolytic therapy of tumors. Sci. Rep. 11, 5853 (2021). https://doi.org/10.1038/s41598-021-85372-6
- S. Dai, H. Wang, F. Deng, Advances and challenges in enveloped virus-like p (VLP)-based vaccines. J. Immunol. Sci. 2, 36–41 (2018). https://www.immunologyresearchjournal.com/s/advances-and-challenges-in-enveloped-viruslike-p-vlpbased-vaccines.pdf
- J.C. Caldeira, M. Perrine, F. Pericle, F. Cavallo, Virus-like ps as an immunogenic platform for cancer vaccines. Viruses 12, 488 (2020). https://doi.org/10.3390/v12050488
- E. Tumban, P. Muttil, C.A.A. Escobar, J. Peabody, D. Wafula et al., Preclinical refinements of a broadly protective VLP-based HPV vaccine targeting the minor capsid protein, L2. Vaccine 33, 3346–3353 (2015). https://doi.org/10.1016/j.vaccine.2015.05.016
- F.-X. Ding, F. Wang, Y.-M. Lu, K. Li, K.-H. Wang et al., Multiepitope peptide-loaded virus-like ps as a vaccine against hepatitis B virus-related hepatocellular carcinoma. Hepatology 49, 1492–1502 (2009). https://doi.org/10.1002/hep.22816
- H. Ali, M. Akbar, B. Iqbal, F. Ali, N.K. Sharma et al., Virosome: an engineered virus for vaccine delivery. Saudi Pharm. J. 31, 752–764 (2023). https://doi.org/10.1016/j.jsps.2023.03.016
- U. Wiedermann, C. Wiltschke, J. Jasinska, M. Kundi, R. Zurbriggen et al., A virosomal formulated Her-2/neu multi-peptide vaccine induces Her-2/neu-specific immune responses in patients with metastatic breast cancer: a phase i study. Breast Cancer Res. Treat. 119, 673–683 (2010). https://doi.org/10.1007/s10549-009-0666-9
- R. Tenchov, R. Bird, A.E. Curtze, Q. Zhou, Lipid nanops─from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 15, 16982–17015 (2021). https://doi.org/10.1021/acsnano.1c04996
- Y. Yang, T. Yang, F. Chen, C. Zhang, B. Yin et al., Degradable magnetic nanoplatform with hydroxide ions triggered photoacoustic, MR imaging, and photothermal conversion for precise cancer theranostic. Nano Lett. 22, 3228–3235 (2022). https://doi.org/10.1021/acs.nanolett.1c04804
- J. Li, X. Chang, X. Chen, Z. Gu, F. Zhao et al., Toxicity of inorganic nanomaterials in biomedical imaging. Biotechnol. Adv. 32, 727–743 (2014). https://doi.org/10.1016/j.biotechadv.2013.12.009
- S.J. Soenen, P. Rivera-Gil, J.-M. Montenegro, W.J. Parak, S.C. De Smedt et al., Cellular toxicity of inorganic nanops: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6, 446–465 (2011). https://doi.org/10.1016/j.nantod.2011.08.001
- F. Jia, W. Huang, Y. Yin, Y. Jiang, Q. Yang et al., Stabilizing RNA nanovaccines with transformable hyaluronan dynamic hydrogel for durable cancer immunotherapy. Adv. Funct. Mater. 33, 2204636 (2023). https://doi.org/10.1002/adfm.202204636
- K.S. Corbett, D.K. Edwards, S.R. Leist, O.M. Abiona, S. Boyoglu-Barnum et al., SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586, 567–571 (2020). https://doi.org/10.1038/s41586-020-2622-0
- M.N. Uddin, M.A. Roni, Challenges of storage and stability of mRNA-based COVID-19 vaccines. Vaccines 9, 1033 (2021). https://doi.org/10.3390/vaccines9091033
- H. Muramatsu, K. Lam, C. Bajusz, D. Laczkó, K. Karikó et al., Lyophilization provides long-term stability for a lipid nanop-formulated, nucleoside-modified mRNA vaccine. Mol. Ther. 30, 1941–1951 (2022). https://doi.org/10.1016/j.ymthe.2022.02.001
- Y. Gu, J. Duan, N. Yang, Y. Yang, X. Zhao, mRNA vaccines in the prevention and treatment of diseases. MedComm 3, e167 (2022). https://doi.org/10.1002/mco2.167
- C. Vasile, Polymeric nanomaterials: recent developments, properties and medical applications [B]. Polymeric nanomaterials in nanotherapeutics, Micro & Nano Technologies. (2019), p. 1–66. https://doi.org/10.1016/B978-0-12-813932-5.00001-7
- T.T. Spear, K. Nagato, M.I. Nishimura, Strategies to genetically engineer T cells for cancer immunotherapy. Cancer Immunol. Immunother. 65, 631–649 (2016). https://doi.org/10.1007/s00262-016-1842-5
- M. Kreutz, B. Giquel, Q. Hu, R. Abuknesha, S. Uematsu et al., Antibody-antigen-adjuvant conjugates enable co-delivery of antigen and adjuvant to dendritic cells in Cis but only have partial targeting specificity. PLoS ONE 7, e40208 (2012). https://doi.org/10.1371/journal.pone.0040208
- M. Yadav, S. Jhunjhunwala, Q.T. Phung, P. Lupardus, J. Tanguay et al., Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515, 572–576 (2014). https://doi.org/10.1038/nature14001
- Q. Zhao, X. Dong, C. Zhu, Y. Zhang, C. Fang et al., DNA damage-encouraged Mn-As-based nanoreactors reshape intratumoral cell phenotypes to recover immune surveillance and potentiate anti-tumor immunity. Chem. Eng. J. 474, 145556 (2023). https://doi.org/10.1016/j.cej.2023.145556
- M. Sarikaya, C. Tamerler, A.K.-Y. Jen, K. Schulten, F. Baneyx, Molecular biomimetics: nanotechnology through biology. Nat. Mater. 2, 577–585 (2003). https://doi.org/10.1038/nmat964
- X. Liang, Y. Zhang, J. Zhou, Z. Bu, J. Liu et al., Tumor microenvironment-triggered intratumoral in situ construction of theranostic supramolecular self-assembly. Coord. Chem. Rev. 473, 214824 (2022). https://doi.org/10.1016/j.ccr.2022.214824
- R.M. Steinman, Decisions about dendritic cells: past, present, and future. Annu. Rev. Immunol. 30, 1–22 (2012). https://doi.org/10.1146/annurev-immunol-100311-102839
- K. Liu, M.C. Nussenzweig, Origin and development of dendritic cells. Immunol. Rev. 234, 45–54 (2010). https://doi.org/10.1111/j.0105-2896.2009.00879.x
- L. Wu, Y.-J. Liu, Development of dendritic-cell lineages. Immunity 26, 741–750 (2007). https://doi.org/10.1016/j.immuni.2007.06.006
- R.M. Steinman, M. Pack, K. Inaba, Dendritic cell development and maturation. Adv. Exp. Med. Biol. 417, 1–6 (1997). https://doi.org/10.1007/978-1-4757-9966-8_1
- L.E. Paulis, S. Mandal, M. Kreutz, C.G. Figdor, Dendritic cell-based nanovaccines for cancer immunotherapy. Curr. Opin. Immunol. 25, 389–395 (2013). https://doi.org/10.1016/j.coi.2013.03.001
- C. Macri, M. Paxman, D. Jenika, X.P. Lin, Z. Elahi et al., FcRn regulates antigen presentation in dendritic cells downstream of DEC205-targeted vaccines. npj Vaccines 9, 76 (2024). https://doi.org/10.1038/s41541-024-00854-8
- Y. van Kooyk, G.A. Rabinovich, Protein-glycan interactions in the control of innate and adaptive immune responses. Nat. Immunol. 9, 593–601 (2008). https://doi.org/10.1038/ni.f.203
- M. Kreutz, P.J. Tacken, C.G. Figdor, Targeting dendritic cells: why bother? Blood 121, 2836–2844 (2013). https://doi.org/10.1182/blood-2012-09-452078
- M. Tanaka, M. Saka-Tanaka, K. Ochi, K. Fujieda, Y. Sugiura et al., C-type lectin Mincle mediates cell death-triggered inflammation in acute kidney injury. J. Exp. Med. 217, e20192230 (2020). https://doi.org/10.1084/jem.20192230
- J.M. Jaynes, R. Sable, M. Ronzetti, W. Bautista, Z. Knotts et al., Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses. Sci. Transl. Med. 12, eaax6337 (2020). https://doi.org/10.1126/scitranslmed.aax6337
- M.H. Lahoud, F. Ahmet, J.-G. Zhang, S. Meuter, A.N. Policheni et al., Dec-205 is a cell surface receptor for cpg oligonucleotides. Proc. Natl. Acad. Sci. U.S.A. 109, 16270–16275 (2012). https://doi.org/10.1073/pnas.1208796109
- C. Petzold, S. Schallenberg, J.N.H. Stern, K. Kretschmer, Targeted antigen delivery to DEC-205⁺ dendritic cells for tolerogenic vaccination. Rev. Diabet. Stud. 9, 305–318 (2012). https://doi.org/10.1900/RDS.2012.9.305
- M. Guo, S. Gong, S. Maric, Z. Misulovin, M. Pack et al., A monoclonal antibody to the DEC-205 endocytosis receptor on human dendritic cells. Hum. Immunol. 61, 729–738 (2000). https://doi.org/10.1016/s0198-8859(00)00144-0
- M.O. Silva, B.S. Almeida, N.S. Sales, M.O. Diniz, L.R.M.M. Aps et al., Antigen delivery to DEC205+ dendritic cells induces immunological memory and protective therapeutic effects against HPV-associated tumors at different anatomical sites. Int. J. Biol. Sci. 17, 2944–2956 (2021). https://doi.org/10.7150/ijbs.57038
- C.D. Phung, T.H. Tran, H.T. Nguyen, T.T. Nguyen, J.H. Jeong et al., Nanovaccines silencing IL-10 production at priming phase for boosting immune responses to melanoma. J. Control. Release 338, 211–223 (2021). https://doi.org/10.1016/j.jconrel.2021.08.031
- B.E. Clausen, P. Stoitzner, Functional specialization of skin dendritic cell subsets in regulating T cell responses. Front. Immunol. 6, 534 (2015). https://doi.org/10.3389/fimmu.2015.00534
- C.G. Figdor, Y. van Kooyk, G.J. Adema, C-type lectin receptors on dendritic cells and Langerhans cells. Nat. Rev. Immunol. 2, 77–84 (2002). https://doi.org/10.1038/nri723
- S.W. Kashem, M. Haniffa, D.H. Kaplan, Antigen-presenting cells in the skin. Annu. Rev. Immunol. 35, 469–499 (2017). https://doi.org/10.1146/annurev-immunol-051116-052215
- L. Bellmann, H. Strandt, C. Zelle-Rieser, D. Ortner, C.H. Tripp et al., Targeted delivery of a vaccine protein to Langerhans cells in the human skin via the C-type lectin receptor Langerin. Eur. J. Immunol. 52, 1829–1841 (2022). https://doi.org/10.1002/eji.202149670
- G. Schreibelt, L.J. Klinkenberg, L.J. Cruz, P.J. Tacken, J. Tel et al., The C-type lectin receptor CLEC9A mediates antigen uptake and (cross-) presentation by human blood BDCA3+ myeloid dendritic cells. Blood 119, 2284–2292 (2012). https://doi.org/10.1182/blood-2011-08-373944
- S. Gou, S. Wang, W. Liu, G. Chen, D. Zhang et al., Adjuvant-free peptide vaccine targeting Clec9a on dendritic cells can induce robust antitumor immune response through Syk/IL-21 axis. Theranostics 11, 7308–7321 (2021). https://doi.org/10.7150/thno.56406
- F.E. Pearson, K.M. Tullett, I.M. Leal-Rojas, O.L. Haigh, K.-A. Masterman et al., Human CLEC9A antibodies deliver Wilms’ tumor 1 (WT1) antigen to CD141+ dendritic cells to activate naïve and memory WT1-specific CD8+ T cells. Clin. Transl. Immunology 9, e1141 (2020). https://doi.org/10.1002/cti2.1141
- J. Huang, J. Zhou, R. Ghinnagow, T. Seki, S. Iketani et al., Targeted co-delivery of tumor antigen and α-galactosylceramide to CD141+ dendritic cells induces a potent tumor antigen-specific human CD8+ T cell response in human immune system mice. Front. Immunol. 11, 2043 (2020). https://doi.org/10.3389/fimmu.2020.02043
- X. Feng, D. Liu, Z. Li, J. Bian, Bioactive modulators targeting STING adaptor in cGAS-STING pathway. Drug Discov. Today 25, 230–237 (2020). https://doi.org/10.1016/j.drudis.2019.11.007
- Y. Zhu, X. An, X. Zhang, Y. Qiao, T. Zheng et al., STING: a master regulator in the cancer-immunity cycle. Mol. Cancer 18, 152 (2019). https://doi.org/10.1186/s12943-019-1087-y
- S. Gou, W. Liu, S. Wang, G. Chen, Z. Chen et al., Engineered nanovaccine targeting Clec9a+ dendritic cells remarkably enhances the cancer immunotherapy effects of STING agonist. Nano Lett. 21, 9939–9950 (2021). https://doi.org/10.1021/acs.nanolett.1c03243
- M. Matsumoto, T. Tanaka, T. Kaisho, H. Sanjo, N.G. Copeland et al., A novel LPS-inducible C-type lectin is a transcriptional target of NF-IL6 in macrophages. J. Immunol. 163, 5039–5048 (1999). https://doi.org/10.4049/jimmunol.163.9.5039
- X. Luo, Q. Lian, W. Li, L. Chen, R. Zhang et al., Fully synthetic Mincle-dependent self-adjuvanting cancer vaccines elicit robust humoral and T cell-dependent immune responses and protect mice from tumor development. Chem. Sci. 12, 15998–16013 (2021). https://doi.org/10.1039/d1sc05736g
- E.M. Dangerfield, S. Ishizuka, K. Kodar, S. Yamasaki, M.S.M. Timmer et al., Chimeric NOD2 mincle agonists as vaccine adjuvants. J. Med. Chem. 67, 5373–5390 (2024). https://doi.org/10.1021/acs.jmedchem.3c01840
- P.R. Taylor, S. Gordon, L. Martinez-Pomares, The mannose receptor: linking homeostasis and immunity through sugar recognition. Trends Immunol. 26, 104–110 (2005). https://doi.org/10.1016/j.it.2004.12.001
- H.J.P. van der Zande, D. Nitsche, L. Schlautmann, B. Guigas, S. Burgdorf, The mannose receptor: from endocytic receptor and biomarker to regulator of (meta)inflammation. Front. Immunol. 12, 765034 (2021). https://doi.org/10.3389/fimmu.2021.765034
- G. Moku, S. Vangala, S.K. Gulla, V. Yakati, In vivo targeting of DNA vaccines to dendritic cells via the mannose receptor induces long-lasting immunity against melanoma. ChemBioChem 22, 523–531 (2021). https://doi.org/10.1002/cbic.202000364
- J. Chen, H. Fang, Y. Hu, J. Wu, S. Zhang et al., Combining mannose receptor mediated nanovaccines and gene regulated PD-L1 blockade for boosting cancer immunotherapy. Bioact. Mater. 7, 167–180 (2021). https://doi.org/10.1016/j.bioactmat.2021.05.036
- M. Vasquez, I. Simões, M. Consuegra-Fernández, F. Aranda, F. Lozano et al., Exploiting scavenger receptors in cancer immunotherapy: lessons from CD5 and SR-B1. Eur. J. Immunol. 47, 1108–1118 (2017). https://doi.org/10.1002/eji.201646903
- Y. Qian, H. Jin, S. Qiao, Y. Dai, C. Huang et al., Targeting dendritic cells in lymph node with an antigen peptide-based nanovaccine for cancer immunotherapy. Biomaterials 98, 171–183 (2016). https://doi.org/10.1016/j.biomaterials.2016.05.008
- W.-J. Shen, S. Azhar, F.B. Kraemer, SR-B1: a unique multifunctional receptor for cholesterol influx and efflux. Annu. Rev. Physiol. 80, 95–116 (2018). https://doi.org/10.1146/annurev-physiol-021317-121550
- L. Oliveira-Nascimento, P. Massari, L.M. Wetzler, The role of TLR2 in infection and immunity. Front. Immun. 3, 79 (2012). https://doi.org/10.3389/fimmu.2012.00079
- X. Zhao, R. Zhao, G. Nie, Nanocarriers based on bacterial membrane materials for cancer vaccine delivery. Nat. Protoc. 17, 2240–2274 (2022). https://doi.org/10.1038/s41596-022-00713-7
- N. Garçon, M. Van Mechelen, Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev. Vaccines 10, 471–486 (2011). https://doi.org/10.1586/erv.11.29
- E. Vercammen, J. Staal, R. Beyaert, Sensing of viral infection and activation of innate immunity by toll-like receptor 3. Clin. Microbiol. Rev. 21, 13–25 (2008). https://doi.org/10.1128/CMR.00022-07
- R.A. Robinson, V.T. DeVita, H.B. Levy, S. Baron, S.P. Hubbard et al., A phase I-II trial of multiple-dose polyriboinosic-polyribocytidylic acid in patieonts with leukemia or solid tumors. J. Natl. Cancer Inst. 57, 599–602 (1976). https://doi.org/10.1093/jnci/57.3.599
- A.M. Salazar, H.B. Levy, S. Ondra, M. Kende, B. Scherokman et al., Long-term treatment of malignant gliomas with intramuscularly administered polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose: an open pilot study. Neurosurgery 38, 1096–1103 (1996). https://doi.org/10.1097/00006123-199606000-00006
- N. Butowski, K.R. Lamborn, B.L. Lee, M.D. Prados, T. Cloughesy et al., A North American brain tumor consortium phase II study of poly-ICLC for adult patients with recurrent anaplastic gliomas. J. Neurooncol 91, 183–189 (2009). https://doi.org/10.1007/s11060-008-9705-3
- H. Okada, P. Kalinski, R. Ueda, A. Hoji, G. Kohanbash et al., Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with{alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol. 29, 330–336 (2011). https://doi.org/10.1200/JCO.2010.30.7744
- M.V. Dhodapkar, M. Sznol, B. Zhao, D. Wang, R.D. Carvajal et al., Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci. Transl. Med. 6, 23251 (2014). https://doi.org/10.1126/scitranslmed.3008068
- B.B. Gowen, M.-H. Wong, K.-H. Jung, A.B. Sanders, W.M. Mitchell et al., TLR3 is essential for the induction of protective immunity against Punta toro virus infection by the double-stranded RNA (dsRNA), poly(I: C12U), but not poly(I: C): differential recognition of synthetic dsRNA molecules. J. Immunol. 178, 5200–5208 (2007). https://doi.org/10.4049/jimmunol.178.8.5200
- K.A. Thompson, D.R. Strayer, P.D. Salvato, C.E. Thompson, N. Klimas et al., Results of a double-blind placebo-controlled study of the double-stranded RNA drug polyI: PolyC12U in the treatment of HIV infection. Eur. J. Clin. Microbiol. Infect. Dis. 15, 580–587 (1996). https://doi.org/10.1007/BF01709367
- T. Kaisho, S. Akira, Regulation of dendritic cell function through toll-like receptors. Curr. Mol. Med. 3, 759–771 (2003). https://doi.org/10.2174/1566524033479366
- H. Fang, B. Ang, X. Xu, X. Huang, Y. Wu et al., TLR4 is essential for dendritic cell activation and anti-tumor T-cell response enhancement by DAMPs released from chemically stressed cancer cells. Cell. Mol. Immunol. 11, 150–159 (2014). https://doi.org/10.1038/cmi.2013.59
- H. Zhang, X. You, X. Wang, L. Cui, Z. Wang et al., Delivery of mRNA vaccine with a lipid-like material potentiates antitumor efficacy through Toll-like receptor 4 signaling. Proc. Natl. Acad. Sci. U.S.A. 118, e2005191118 (2021). https://doi.org/10.1073/pnas.2005191118
- J.H. Fritz, S.E. Girardin, C. Fitting, C. Werts, D. Mengin-Lecreulx et al., Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists. Eur. J. Immunol. 35, 2459–2470 (2005). https://doi.org/10.1002/eji.200526286
- S.I. Gringhuis, J. den Dunnen, M. Litjens, B. van Het Hof, Y. van Kooyk et al., C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-κ
- B. Immunity 26, 605–616 (2007). https://doi.org/10.1016/j.immuni.2007.03.012
- D. Yang, X. Luo, Q. Lian, L. Gao, C. Wang et al., Fully synthetic Tn-based three-component cancer vaccine using covalently linked TLR4 ligand MPLA and iNKT cell agonist KRN-7000 as built-in adjuvant effectively protects mice from tumor development. Acta Pharm. Sin. B 12, 4432–4445 (2022). https://doi.org/10.1016/j.apsb.2022.05.028
- T.C. Albershardt, J. Leleux, A.J. Parsons, J.E. Krull, P. Berglund et al., Intratumoral immune activation with TLR4 agonist synergizes with effector T cells to eradicate established murine tumors. npj Vaccines 5, 50 (2020). https://doi.org/10.1038/s41541-020-0201-x
- J.J. Baljon, A.J. Kwiatkowski, H.M. Pagendarm, P.T. Stone, A. Kumar et al., A cancer nanovaccine for co-delivery of peptide neoantigens and optimized combinations of STING and TLR4 agonists. ACS Nano 18, 6845–6862 (2024). https://doi.org/10.1021/acsnano.3c04471
- N. Kuzmich, K. Sivak, V. Chubarev, Y. Porozov, T. Savateeva-Lyubimova et al., TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines 5, 34 (2017). https://doi.org/10.3390/vaccines5040034
- K. Crozat, B. Beutler, Tlr7: a new sensor of viral infection. Proc. Natl. Acad. Sci. U.S.A. 101, 6835–6836 (2004). https://doi.org/10.1073/pnas.0401347101
- H. Xia, M. Qin, Z. Wang, Y. Wang, B. Chen et al., A pH-/ enzyme-responsive nanop selectively targets endosomal toll-like receptors to potentiate robust cancer vaccination. Nano Lett. 22, 2978–2987 (2022). https://doi.org/10.1021/acs.nanolett.2c00185
- M. Liu, Y. Feng, Y. Lu, R. Huang, Y. Zhang et al., Lymph-targeted high-density lipoprotein-mimetic nanovaccine for multi-antigenic personalized cancer immunotherapy. Sci. Adv. 10, eadk2444 (2024). https://doi.org/10.1126/sciadv.adk2444
- C. Rolfo, E. Giovannetti, P. Martinez, S. McCue, A. Naing, Applications and clinical trial landscape using Toll-like receptor agonists to reduce the toll of cancer. npj Precis. Oncol. 7, 26 (2023). https://doi.org/10.1038/s41698-023-00364-1
- B.-D. Zhang, J.-J. Wu, W.-H. Li, H.-G. Hu, L. Zhao et al., STING and TLR7/8 agonists-based nanovaccines for synergistic antitumor immune activation. Nano Res. 15, 6328–6339 (2022). https://doi.org/10.1007/s12274-022-4282-x
- N. Wang, G. Zhang, P. Zhang, K. Zhao, Y. Tian et al., Vaccination of TLR7/8 agonist-conjugated antigen nanops for cancer immunotherapy. Adv. Healthcare Mater. 12, 2300249 (2023). https://doi.org/10.1002/adhm.202300249
- Y. Kumagai, O. Takeuchi, S. Akira, Tlr9 as a key receptor for the recognition of DNA. Adv. Drug Deliv. Rev. 60, 795–804 (2008). https://doi.org/10.1016/j.addr.2007.12.004
- P. Chen, D. Wang, Y. Wang, L. Zhang, Q. Wang et al., Maximizing TLR9 activation in cancer immunotherapy with dual-adjuvanted spherical nucleic acids. Nano Lett. 22, 4058–4066 (2022). https://doi.org/10.1021/acs.nanolett.2c00723
- Y. Wang, S.-L. Qiao, J. Wang, M.-Z. Yu, N.-N. Wang et al., Engineered CpG-loaded nanorobots drive autophagy-mediated immunity for TLR9-positive cancer therapy. Adv. Mater. 36, e2306248 (2024). https://doi.org/10.1002/adma.202306248
- Y. Ma, L. Galluzzi, L. Zitvogel, G. Kroemer, Autophagy and cellular immune responses. Immunity 39, 211–227 (2013). https://doi.org/10.1016/j.immuni.2013.07.017
- G.B. Mackaness, R.V. Blanden, Cellular immunity. Prog. Allergy 11, 89–140 (1967). https://doi.org/10.1159/000287245
- J. Zhang, B. Fan, G. Cao, W. Huang, F. Jia et al., Direct presentation of tumor-associated antigens to induce adaptive immunity by personalized dendritic cell-mimicking nanovaccines. Adv. Mater. 34, e2205950 (2022). https://doi.org/10.1002/adma.202205950
- C. Liu, X. Liu, X. Xiang, X. Pang, S. Chen et al., A nanovaccine for antigen self-presentation and immunosuppression reversal as a personalized cancer immunotherapy strategy. Nat. Nanotechnol. 17, 531–540 (2022). https://doi.org/10.1038/s41565-022-01098-0
- K. Wang, X. Zhang, H. Ye, X. Wang, Z. Fan et al., Biomimetic nanovaccine-mediated multivalent IL-15 self-transpresentation (MIST) for potent and safe cancer immunotherapy. Nat. Commun. 14, 6748 (2023). https://doi.org/10.1038/s41467-023-42155-z
- A. Fusco, M. Fedele, Roles of HMGA proteins in cancer. Nat. Rev. Cancer 7, 899–910 (2007). https://doi.org/10.1038/nrc2271
- M.J. van de Vijver, J.L. Peterse, W.J. Mooi, P. Wisman, J. Lomans et al., Neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. New Engl. J. Med. 319, 1239–1245 (1988). https://doi.org/10.1056/NEJM198811103191902
- J.B. Welsh, L.M. Sapinoso, S.G. Kern, D.A. Brown, T. Liu et al., Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum. Proc. Natl. Acad. Sci. U.S.A. 100, 3410–3415 (2003). https://doi.org/10.1073/pnas.0530278100
- K.R. Kampen, Membrane proteins: the key players of a cancer cell. J. Membr. Biol. 242, 69–74 (2011). https://doi.org/10.1007/s00232-011-9381-7
- E. de Jong, A. Kocer, Current methods for identifying plasma membrane proteins as cancer biomarkers. Membranes 13, 409 (2023). https://doi.org/10.3390/membranes13040409
- D. Grimm, J. Bauer, J. Pietsch, M. Infanger, J. Eucker et al., Diagnostic and therapeutic use of membrane proteins in cancer cells. Curr. Med. Chem. 18, 176–190 (2011). https://doi.org/10.2174/092986711794088344
- J.F. Curtin, N. Liu, M. Candolfi, W. Xiong, H. Assi et al., HMGB1 mediates endogenous TLR2 activation and brain tumor regression. PLoS Med. 6, e10 (2009). https://doi.org/10.1371/journal.pmed.1000010
- E. Vénéreau, C. Ceriotti, M.E. Bianchi, DAMPs from cell death to new life. Front. Immunol. 6, 422 (2015). https://doi.org/10.3389/fimmu.2015.00422
- T. Yamazaki, D. Hannani, V. Poirier-Colame, S. Ladoire, C. Locher et al., Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ. 21, 69–78 (2014). https://doi.org/10.1038/cdd.2013.72
- I.E. Dumitriu, M.E. Bianchi, M. Bacci, A.A. Manfredi, P. Rovere-Querini, The secretion of HMGB1 is required for the migration of maturing dendritic cells. J. Leukoc. Biol. 81, 84–91 (2007). https://doi.org/10.1189/jlb.0306171
- E. Berney, N. Sabnis, M. Panchoo, S. Raut, R. Dickerman et al., The SR-B1 receptor as a potential target for treating glioblastoma. J. Oncol. 2019, 1805841 (2019). https://doi.org/10.1155/2019/1805841
- P. Kadiyala, D. Li, F.M. Nuñez, D. Altshuler, R. Doherty et al., High-density lipoprotein-mimicking nanodiscs for chemo-immunotherapy against glioblastoma multiforme. ACS Nano 13, 1365–1384 (2019). https://doi.org/10.1021/acsnano.8b06842
- L. Bello, M. Francolini, P. Marthyn, J. Zhang, R.S. Carroll et al., αvβ3 and αvβ5 integrin expression in glioma periphery. Neurosurgery 49, 380–389 (2001). https://doi.org/10.1097/00006123-200108000-00022
- C. Böger, V.S. Warneke, H.-M. Behrens, H. Kalthoff, S.L. Goodman et al., Integrins αvβ3 and αvβ5 as prognostic, diagnostic, and therapeutic targets in gastric cancer. Gastric Cancer 18, 784–795 (2015). https://doi.org/10.1007/s10120-014-0435-2
- T. Hurtado de Mendoza, E.S. Mose, G.P. Botta, G.B. Braun, V.R. Kotamraju et al., Tumor-penetrating therapy for β5 integrin-rich pancreas cancer. Nat. Commun. 12, 1541 (2021). https://doi.org/10.1038/s41467-021-21858-1
- N. Ding, Z. Zou, H. Sha, S. Su, H. Qian et al., iRGD synergizes with PD-1 knockout immunotherapy by enhancing lymphocyte infiltration in gastric cancer. Nat. Commun. 10, 1336 (2019). https://doi.org/10.1038/s41467-019-09296-6
- S. Zhou, F. Meng, S. Du, H. Qian, N. Ding et al., Bifunctional iRGD-anti-CD3 enhances antitumor potency of T cells by facilitating tumor infiltration and T-cell activation. J. Immunother. Cancer 9, e001925 (2021). https://doi.org/10.1136/jitc-2020-001925
- Y. Song, M. Xu, Y. Li, Y. Li, W. Gu et al., An iRGD peptide fused superantigen mutant induced tumor-targeting and T lymphocyte infiltrating in cancer immunotherapy. Int. J. Pharm. 586, 119498 (2020). https://doi.org/10.1016/j.ijpharm.2020.119498
- T. Mitsudomi, Y. Yatabe, Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 277, 301–308 (2010). https://doi.org/10.1111/j.1742-4658.2009.07448.x
- D.A. Sabbah, R. Hajjo, K. Sweidan, Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr. Top. Med. Chem. 20, 815–834 (2020). https://doi.org/10.2174/1568026620666200303123102
- A. De Luca, A. Carotenuto, A. Rachiglio, M. Gallo, M.R. Maiello et al., The role of the EGFR signaling in tumor microenvironment. J. Cell. Physiol. 214, 559–567 (2008). https://doi.org/10.1002/jcp.21260
- Q. Cheng, X. Shi, M. Han, G. Smbatyan, H.-J. Lenz et al., Reprogramming exosomes as nanoscale controllers of cellular immunity. J. Am. Chem. Soc. 140, 16413–16417 (2018). https://doi.org/10.1021/jacs.8b10047
- G. Lammering, T.H. Hewit, W.T. Hawkins, J.N. Contessa, D.B. Reardon et al., Epidermal growth factor receptor as a genetic therapy target for carcinoma cell radiosensitization. J. Natl. Cancer Inst. 93, 921–929 (2001). https://doi.org/10.1093/jnci/93.12.921
- M.S. Alghamri, K. Banerjee, A.A. Mujeeb, A. Mauser, A. Taher et al., Systemic delivery of an adjuvant CXCR4-CXCL12 signaling inhibitor encapsulated in synthetic protein nanops for glioma immunotherapy. ACS Nano 16, 8729–8750 (2022). https://doi.org/10.1021/acsnano.1c07492
- D.M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012). https://doi.org/10.1038/nrc3239
- P. Sharma, J.P. Allison, The future of immune checkpoint therapy. Science 348, 56–61 (2015). https://doi.org/10.1126/science.aaa8172
- P. Sharma, J.P. Allison, Dissecting the mechanisms of immune checkpoint therapy. Nat. Rev. Immunol. 20, 75–76 (2020). https://doi.org/10.1038/s41577-020-0275-8
- J.M. Fritz, M.J. Lenardo, Development of immune checkpoint therapy for cancer. J. Exp. Med. 216, 1244–1254 (2019). https://doi.org/10.1084/jem.20182395
- S. Chikuma. CTLA-4, an essential immune-checkpoint for T-cell activation. Current Topics in Microbiology and Immunology. (Springer International Publishing, 2017), pp. 99–126. https://doi.org/10.1007/82_2017_61
- J.B.A.G. Haanen, C. Robert, Immune checkpoint inhibitors. Progress in Tumor Research. S. Karger AG, (2015), pp. 55–66 https://doi.org/10.1159/000437178
- C. Peres, A.I. Matos, B. Carreira, L.I.F. Moura, R. Kleiner et al., Multifunctional nanovaccine sensitizes breast cancer to immune checkpoint therapy. Adv. Funct. Mater. 34, 2401749 (2024). https://doi.org/10.1002/adfm.202401749
- P. Zhao, Y. Xu, W. Ji, L. Li, L. Qiu et al., Hybrid membrane nanovaccines combined with immune checkpoint blockade to enhance cancer immunotherapy. Int. J. Nanomedicine 17, 73–89 (2022). https://doi.org/10.2147/IJN.S346044
- H. Liu, H. Chen, Z. Liu, Z. Le, T. Nie et al., Therapeutic nanovaccines sensitize EBV-associated tumors to checkpoint blockade therapy. Biomaterials 255, 120158 (2020). https://doi.org/10.1016/j.biomaterials.2020.120158
- C. Li, R. Clauson, L.F. Bugada, F. Ke, B. He et al., Antigen-clustered nanovaccine achieves long-term tumor remission by promoting B/CD 4 T cell crosstalk. ACS Nano 18, 9584–9604 (2024). https://doi.org/10.1021/acsnano.3c13038
- R.E. Hollingsworth, K. Jansen, Turning the corner on therapeutic cancer vaccines. npj Vaccines 4, 7 (2019). https://doi.org/10.1038/s41541-019-0103-y
- T. Jiang, T. Shi, H. Zhang, J. Hu, Y. Song et al., Tumor neoantigens: from basic research to clinical applications. J. Hematol. Oncol. 12, 93 (2019). https://doi.org/10.1186/s13045-019-0787-5
- A. Sette, S. Crotty, Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 184, 861–880 (2021). https://doi.org/10.1016/j.cell.2021.01.007
- J.S. Heitmann, T. Bilich, C. Tandler, A. Nelde, Y. Maringer et al., A COVID-19 peptide vaccine for the induction of SARS-CoV-2 T cell immunity. Nature 601, 617–622 (2022). https://doi.org/10.1038/s41586-021-04232-5
- R. Keeton, M.B. Tincho, A. Ngomti, R. Baguma, N. Benede et al., T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature 603, 488–492 (2022). https://doi.org/10.1038/s41586-022-04460-3
- A. Tarke, C.H. Coelho, Z. Zhang, J.M. Dan, E.D. Yu et al., SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell 185, 847-859.e11 (2022). https://doi.org/10.1016/j.cell.2022.01.015
- Z. Zhang, J. Mateus, C.H. Coelho, J.M. Dan, C.R. Moderbacher et al., Humoral and cellular immune memory to four COVID-19 vaccines. Cell 185, 2434-2451.e17 (2022). https://doi.org/10.1016/j.cell.2022.05.022
- A.M. Scott, J.D. Wolchok, L.J. Old, Antibody therapy of cancer. Nat. Rev. Cancer 12, 278–287 (2012). https://doi.org/10.1038/nrc3236
- V.R. Gómez Román, J.C. Murray, L.M. Weiner, Antibody-dependent cellular cytotoxicity (ADCC). Antibody Fc. (Elsevier, 2014), pp. 1–27. https://doi.org/10.1016/b978-0-12-394802-1.00001-7
- M.Z. Tay, K. Wiehe, J. Pollara, Antibody-dependent cellular phagocytosis in antiviral immune responses. Front. Immunol. 10, 332 (2019). https://doi.org/10.3389/fimmu.2019.00332
- D. Gancz, Z. Fishelson, Cancer resistance to complement-dependent cytotoxicity (CDC): problem-oriented research and development. Mol. Immunol. 46, 2794–2800 (2009). https://doi.org/10.1016/j.molimm.2009.05.009
- B.A. Helmink, S.M. Reddy, J. Gao, S. Zhang, R. Basar et al., B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020). https://doi.org/10.1038/s41586-019-1922-8
- S.S. Kim, W.A. Sumner, S. Miyauchi, E.E.W. Cohen, J.A. Califano et al., Role of B cells in responses to checkpoint blockade immunotherapy and overall survival of cancer patients. Clin. Cancer Res. 27, 6075–6082 (2021). https://doi.org/10.1158/1078-0432.ccr-21-0697
- D.A. Barth, S. Stanzer, J.A. Spiegelberg, T. Bauernhofer, G. Absenger et al., Patterns of peripheral blood B-cell subtypes are associated with treatment response in patients treated with immune checkpoint inhibitors: a prospective longitudinal pan-cancer study. Front. Immunol. 13, 840207 (2022). https://doi.org/10.3389/fimmu.2022.840207
- F. Petitprez, A. de Reyniès, E.Z. Keung, T.W.-W. Chen, C.-M. Sun et al., B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020). https://doi.org/10.1038/s41586-019-1906-8
- V. Trujillo-Alonso, E.C. Pratt, H. Zong, A. Lara-Martinez, C. Kaittanis et al., FDA-approved ferumoxytol displays anti-leukaemia efficacy against cells with low ferroportin levels. Nat. Nanotechnol. 14, 616–622 (2019). https://doi.org/10.1038/s41565-019-0406-1
- P. Xie, S.T. Yang, Y. Huang, C. Zeng, Q. Xin et al., Carbon nanops-Fe(II) complex for efficient tumor inhibition with low toxicity by amplifying oxidative stress. ACS Appl. Mater. Interfaces 12(26), 29094–29102 (2020). https://doi.org/10.1021/acsami.0c07617
- Y.H. Ko, EBV and human cancer. Exp. Mol. Med. 47, e130 (2015). https://doi.org/10.1038/emm.2014.109
- D. Srikrishna, K. Sachsenmeier, We need to bring R0 < 1 to treat cancer too. Genome Med. 13, 120 (2021). https://doi.org/10.1186/s13073-021-00940-9
- D. Sarker, R. Plummer, T. Meyer, M.H. Sodergren, B. Basu et al., MTL-CEBPA, a small activating RNA therapeutic upregulating C/EBP-α, in patients with advanced liver cancer: a first-in-human, multicenter, open-label, phase I trial. Clin. Cancer Res. 26, 3936–3946 (2020). https://doi.org/10.1158/1078-0432.CCR-20-0414
- N. Hilf, S. Kuttruff-Coqui, K. Frenzel, V. Bukur, S. Stevanović et al., Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240–245 (2019). https://doi.org/10.1038/s41586-018-0810-y
- S.N. Bhatia, X. Chen, M.A. Dobrovolskaia, T. Lammers, Cancer nanomedicine. Nat. Rev. Cancer 22, 550–556 (2022). https://doi.org/10.1038/s41568-022-00496-9
- T.A. Qiu, M.J. Gallagher, N.V. Hudson-Smith, J. Wu, M.O.P. Krause et al., Research highlights: unveiling the mechanisms underlying nanop-induced ROS generation and oxidative stress. Environ. Sci. Nano 3, 940–945 (2016). https://doi.org/10.1039/C6EN90021F
- S.E. Lehman, A.S. Morris, P.S. Mueller, A.K. Salem, V.H. Grassian et al., Silica nanop-generated ROS as a predictor of cellular toxicity: mechanistic insights and safety by design. Environ. Sci. Nano 3, 56–66 (2016). https://doi.org/10.1039/C5EN00179J
- Y. Li, W. Zhang, J. Niu, Y. Chen, Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanops. ACS Nano 6, 5164–5173 (2012). https://doi.org/10.1021/nn300934k
- D. Bitounis, E. Jacquinet, M.A. Rogers, M.M. Amiji, Strategies to reduce the risks of mRNA drug and vaccine toxicity. Nat. Rev. Drug Discov. 23, 281–300 (2024). https://doi.org/10.1038/s41573-023-00859-3
- J. Xu, D.H.C. Wong, J.D. Byrne, K. Chen, C. Bowerman et al., Future of the p replication in nonwetting templates (PRINT) technology. Angew. Chem. Int. Ed. 52, 6580–6589 (2013). https://doi.org/10.1002/anie.201209145
- J.-M. Lim, A. Swami, L.M. Gilson, S. Chopra, S. Choi et al., Ultra-high throughput synthesis of nanops with homogeneous size distribution using a coaxial turbulent jet mixer. ACS Nano 8, 6056–6065 (2014). https://doi.org/10.1021/nn501371n
- D. Wang, M. Zhang, Y. Zhang, G. Qiu, J. Chen et al., Intrap double-scattering-decoded sonogenetics for augmenting immune checkpoint blockade and CAR-T therapy. Adv. Sci. 9, e2203106 (2022). https://doi.org/10.1002/advs.202203106
- L. Lei, S. Cai, Y. Zhang, L. Yang, J. Deng et al., Structure inversion-bridged sequential amino acid metabolism disturbance potentiates photodynamic-evoked immunotherapy. Adv. Funct. Mater. 32, 2103394 (2022). https://doi.org/10.1002/adfm.202103394
- H. Zhou, C. Zhu, Q. Zhao, J. Ni, H. Zhang et al., Wrecking neutrophil extracellular traps and antagonizing cancer-associated neurotransmitters by interpenetrating network hydrogels prevent postsurgical cancer relapse and metastases. Bioact. Mater. 39, 14–24 (2024). https://doi.org/10.1016/j.bioactmat.2024.05.022
- D. Wang, M. Zhang, G. Qiu, C. Rong, X. Zhu et al., Extracellular matrix viscosity reprogramming by in situ Au bioreactor-boosted microwavegenetics disables tumor escape in CAR-T immunotherapy. ACS Nano 17, 5503–5516 (2023). https://doi.org/10.1021/acsnano.2c10845
- X. Dong, H. Liu, C. Fang, Y. Zhang, Q. Yang et al., Sonocatalytic on colysis microbiota curb intrinsic microbiota lactate metabolism and blockade CD24-Siglec10 immune escape to revitalize immunological surveillance. Biomaterials 311, 122662 (2024). https://doi.org/10.1016/j.biomaterials.2024.122662
- R. Jiao, X. Lin, Q. Zhang, Y. Zhang, W. Qin et al., Anti-tumor immune potentiation targets-engineered nanobiotechnologies: design principles and applications. Prog. Mater. Sci. 142, 101230 (2024). https://doi.org/10.1016/j.pmatsci.2023.101230
- C. Fang, G. Xiao, T. Wang, L. Song, B. Peng et al., Emerging nano-/ biotechnology drives oncolytic virus-activated and combined cancer immunotherapy. Research (Wash D C) 6, 0108 (2023). https://doi.org/10.34133/research.0108
References
S.A. Plotkin, Vaccines: past, present and future. Nat. Med. 11(4 Suppl), S5–S11 (2005). https://doi.org/10.1038/nm1209
I. Delany, R. Rappuoli, E. De Gregorio, Vaccines for the 21st century. EMBO Mol. Med. 6, 708–720 (2014). https://doi.org/10.1002/emmm.201403876
D. Ndwandwe, C.S. Wiysonge, Covid-19 vaccines. Curr. Opin. Immunol. 71, 111–116 (2021). https://doi.org/10.1016/j.coi.2021.07.003
P. Zamani, J.G. Navashenaq, A.R. Nikpoor, M. Hatamipour, R.K. Oskuee et al., MPL nano-liposomal vaccine containing P5 HER2/neu-derived peptide pulsed PADRE as an effective vaccine in a mice TUBO model of breast cancer. J. Control. Release 303, 223–236 (2019). https://doi.org/10.1016/j.jconrel.2019.04.019
M.Z. Ahmad, J. Ahmad, A. Haque, M.Y. Alasmary, B.A. Abdel-Wahab et al., Emerging advances in synthetic cancer nano-vaccines: opportunities and challenges. Expert Rev. Vaccines 19, 1053–1071 (2020). https://doi.org/10.1080/14760584.2020.1858058
K.L. Hess, I.L. Medintz, C.M. Jewell, Designing inorganic nanomaterials for vaccines and immunotherapies. Nano Today 27, 73–98 (2019). https://doi.org/10.1016/j.nantod.2019.04.005
J. Chen, Z. Ye, C. Huang, M. Qiu, D. Song et al., Lipid nanop-mediated lymph node-targeting delivery of mRNA cancer vaccine elicits robust CD8(+) T cell response. Proc. Natl. Acad. Sci. U.S.A. 119, e2207841119 (2022). https://doi.org/10.1073/pnas.2207841119
A.M. Reichmuth, M.A. Oberli, A. Jaklenec, R. Langer, D. Blankschtein, mRNA vaccine delivery using lipid nanops. Ther. Deliv. 7, 319–334 (2016). https://doi.org/10.4155/tde-2016-0006
A. Bolhassani, S. Javanzad, T. Saleh, M. Hashemi, M.R. Aghasadeghi et al., Polymeric nanops: potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum. Vaccin. Immunother. 10, 321–332 (2014). https://doi.org/10.4161/hv.26796
J. Han, D. Zhao, D. Li, X. Wang, Z. Jin et al., Polymer-based nanomaterials and applications for vaccines and drugs. Polymers 10, 31 (2018). https://doi.org/10.3390/polym10010031
R. Harrop, J. John, M.W. Carroll, Recombinant viral vectors: cancer vaccines. Adv. Drug Deliv. Rev. 58, 931–947 (2006). https://doi.org/10.1016/j.addr.2006.05.005
H. Wu, H. Li, Y. Liu, J. Liang, Q. Liu et al., Blockading a new NSCLC immunosuppressive target by pluripotent autologous tumor vaccines magnifies sequential immunotherapy. Bioact. Mater. 13, 223–238 (2021). https://doi.org/10.1016/j.bioactmat.2021.10.048
X. Dong, Q. Yang, H. Wang, C. Zhu, T. Wang et al., Targetedly attenuating cancer stemness and plasticity by homologous cancer stem cell-inherited fusion membrane nanoeffectors against cancer metastasis. Small Sci. 4, 2300111 (2024). https://doi.org/10.1002/smsc.202300111
C. Feng, Y. Li, B.E. Ferdows, D.N. Patel, J. Ouyang et al., Emerging vaccine nanotechnology: from defense against infection to sniping cancer. Acta Pharm. Sin. B 12, 2206–2223 (2022). https://doi.org/10.1016/j.apsb.2021.12.021
C.L. Chiang, L.E. Kandalaft, In vivo cancer vaccination: which dendritic cells to target and how? Cancer Treat. Rev. 71, 88–101 (2018). https://doi.org/10.1016/j.ctrv.2018.10.012
M. Saxena, S. Balan, V. Roudko, N. Bhardwaj, Towards superior dendritic-cell vaccines for cancer therapy. Nat. Biomed. Eng. 2, 341–346 (2018). https://doi.org/10.1038/s41551-018-0250-x
X. Huang, X. Zhu, H. Yang, Q. Li, L. Gai et al., Nanomaterial delivery vehicles for the development of neoantigen tumor vaccines for personalized treatment. Molecules 29, 1462 (2024). https://doi.org/10.3390/molecules29071462
T. Wang, M. Han, Y. Han, Z. Jiang, Q. Zheng et al., Antigen self-presented personalized nanovaccines boost the immunotherapy of highly invasive and metastatic tumors. ACS Nano 18, 6333–6347 (2024). https://doi.org/10.1021/acsnano.3c11189
H. Wang, X. Wu, Y. Sun, A. Liu, Y. He et al., A natural IgM hitchhiking strategy for delivery of cancer nanovaccines to splenic marginal zone B cells. J. Control. Release 368, 208–218 (2024). https://doi.org/10.1016/j.jconrel.2024.02.029
Y. Dölen, M. Valente, O. Tagit, E. Jäger, E.A.W. Van Dinther et al., Nanovaccine administration route is critical to obtain pertinent iNKt cell help for robust anti-tumor T and B cell responses. Oncoimmunology 9, 1738813 (2020). https://doi.org/10.1080/2162402X.2020.1738813
A. Gül, M. Döşkaya, H. Can, M. Karakavuk, M. Anıl-İnevi et al., Immunogenicity of a xenogeneic multi-epitope HER2+ breast cancer DNA vaccine targeting the dendritic cell restricted antigen-uptake receptor DEC205. Vaccine 40, 2409–2419 (2022). https://doi.org/10.1016/j.vaccine.2022.03.014
L. Ma, L. Diao, Z. Peng, Y. Jia, H. Xie et al., Immunotherapy and prevention of cancer by nanovaccines loaded with whole-cell components of tumor tissues or cells. Adv. Mater. 33, 2104849 (2021). https://doi.org/10.1002/adma.202104849
M. Saxena, S.H. van der Burg, C.J.M. Melief, N. Bhardwaj, Therapeutic cancer vaccines. Nat. Rev. Cancer 21, 360–378 (2021). https://doi.org/10.1038/s41568-021-00346-0
R.L. Atmar, W.A. Keitel, Searching for improved flu vaccines-the time is now. J. Infect. Dis. 221, 1–4 (2020). https://doi.org/10.1093/infdis/jiz545
A.S. Bandyopadhyay, J. Garon, K. Seib, W.A. Orenstein, Polio vaccination: past, present and future. Future Microbiol. 10, 791–808 (2015). https://doi.org/10.2217/fmb.15.19
D.E. Griffin, Measles vaccine. Viral Immunol. 31, 86–95 (2018). https://doi.org/10.1089/vim.2017.0143
A.M. Galazka, S.E. Robertson, A. Kraigher, Mumps and mumps vaccine: a global review. Bull. World Health Organ. 77, 3–14 (1999). https://www.ncbi.nlm.nih.gov/pmc/s/PMC2557572/pdf/10063655.pdf
N. Lambert, P. Strebel, W. Orenstein, J. Icenogle, G.A. Poland, Rubella. Lancet 385, 2297–2307 (2015). https://doi.org/10.1016/S0140-6736(14)60539-0
H. Zhao, X. Zhou, Y.-H. Zhou, Hepatitis B vaccine development and implementation. Hum. Vaccines Immunother. 16, 1533–1544 (2020). https://doi.org/10.1080/21645515.2020.1732166
M. Stanley, Immunobiology of HPV and HPV vaccines. Gynecol. Oncol. 109, S15–S21 (2008). https://doi.org/10.1016/j.ygyno.2008.02.003
M. Li, H. Wang, L. Tian, Z. Pang, Q. Yang et al., COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduct. Target. Ther. 7, 146 (2022). https://doi.org/10.1038/s41392-022-00996-y
J. Liu, M. Fu, M. Wang, D. Wan, Y. Wei et al., Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J. Hematol. Oncol. 15, 28 (2022). https://doi.org/10.1186/s13045-022-01247-x
H.C. Hoover Jr., M.G. Surdyke, R.B. Dangel, L.C. Peters, M.G. Hanna Jr., Prospectively randomized trial of adjuvant active-specific immunotherapy for human colorectal cancer. Cancer 55, 1236–1243 (1985). https://doi.org/10.1002/1097-0142(19850315)55:6<1236::aid-cncr2820550616>3.0.co;2-#
P. van der Bruggen, C. Traversari, P. Chomez, C. Lurquin, E. De Plaen et al., A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643–1647 (1991). https://doi.org/10.1126/science.1840703
T.A. Gardner, B.D. Elzey, N.M. Hahn, Sipuleucel-T (Provenge) autologous vaccine approved for treatment of men with asymptomatic or minimally symptomatic castrate-resistant metastatic prostate cancer. Hum. Vaccin. Immunother. 8, 534–539 (2012). https://doi.org/10.4161/hv.19795
K. Liang, Y. Sun, L. Xie, Y. Liu, Y. You et al., Biologically self-assembled tumor cell-derived cancer nanovaccines as an all-in-one platform for cancer immunotherapy. ACS Nano 18, 6702–6717 (2024). https://doi.org/10.1021/acsnano.4c01050
J. Pan, Y. Wang, C. Zhang, X. Wang, H. Wang et al., Antigen-directed fabrication of a multifunctional nanovaccine with ultrahigh antigen loading efficiency for tumor photothermal-immunotherapy. Adv. Mater. 30, 1704408 (2018). https://doi.org/10.1002/adma.201704408
L.A. Dykman, Gold nanops for preparation of antibodies and vaccines against infectious diseases. Expert Rev. Vaccines 19, 465–477 (2020). https://doi.org/10.1080/14760584.2020.1758070
Y. Zhao, X. Zhao, Y. Cheng, X. Guo, W. Yuan, Iron oxide nanops-based vaccine delivery for cancer treatment. Mol. Pharm. 15, 1791–1799 (2018). https://doi.org/10.1021/acs.molpharmaceut.7b01103
X. Hong, X. Zhong, G. Du, Y. Hou, Y. Zhang et al., The pore size of mesoporous silica nanops regulates their antigen delivery efficiency. Sci. Adv. 6, eaaz4462 (2020). https://doi.org/10.1126/sciadv.aaz4462
J. Sun, F. Liu, W. Yu, D. Fu, Q. Jiang et al., Visualization of vaccine dynamics with quantum dots for immunotherapy. Angew. Chem. Int. Ed. 60, 24275–24283 (2021). https://doi.org/10.1002/anie.202111093
T. Wang, M. Zou, H. Jiang, Z. Ji, P. Gao et al., Synthesis of a novel kind of carbon nanop with large mesopores and macropores and its application as an oral vaccine adjuvant. Eur. J. Pharm. Sci. 44, 653–659 (2011). https://doi.org/10.1016/j.ejps.2011.10.012
X. Li, X. Wang, A. Ito, Tailoring inorganic nanoadjuvants towards next-generation vaccines. Chem. Soc. Rev. 47, 4954–4980 (2018). https://doi.org/10.1039/C8CS00028J
C.A. Bohannon, A.J. Chancellor, M.T. Kelly, T.T. Le, L. Zhu et al., Adaptable multivalent hairy inorganic nanops. J. Am. Chem. Soc. 143, 16919–16924 (2021). https://doi.org/10.1021/jacs.1c08261
T. Zhao, Y. Cai, Y. Jiang, X. He, Y. Wei et al., Vaccine adjuvants: mechanisms and platforms. Signal Transduct. Target. Ther. 8, 283 (2023). https://doi.org/10.1038/s41392-023-01557-7
F. Soetaert, P. Korangath, D. Serantes, S. Fiering, R. Ivkov, Cancer therapy with iron oxide nanops: agents of thermal and immune therapies. Adv. Drug Deliv. Rev. 163–164, 65–83 (2020). https://doi.org/10.1016/j.addr.2020.06.025
S. Zanganeh, G. Hutter, R. Spitler, O. Lenkov, M. Mahmoudi et al., Iron oxide nanops inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol. 11, 986–994 (2016). https://doi.org/10.1038/nnano.2016.168
G. Liu, J. Gao, H. Ai, X. Chen, Applications and potential toxicity of magnetic iron oxide nanops. Small 9, 1533–1545 (2013). https://doi.org/10.1002/smll.201201531
F.P. García de Arquer, D.V. Talapin, V.I. Klimov, Y. Arakawa, M. Bayer et al., Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021). https://doi.org/10.1126/science.aaz8541
R.E. Bailey, A.M. Smith, S. Nie, Quantum dots in biology and medicine. Phys. E Low Dimension. Syst. Nanostruct. 25, 1–12 (2004). https://doi.org/10.1016/j.physe.2004.07.013
V.G. Reshma, P.V. Mohanan, Quantum dots: applications and safety consequences. J. Lumin. 205, 287–298 (2019). https://doi.org/10.1016/j.jlumin.2018.09.015
N. Amonov, E.S. Ch, G. Abduraimova, Analysis of research on the properties, production and use of carbon nanops. Miasto Przyszłości. 28, 136–138 (2022)
B.J. Panessa-Warren, J.B. Warren, S.S. Wong, J.A. Misewich, Biological cellular response to carbon nanop toxicity. J. Phys. Condens. Matter 18, S2185–S2201 (2006). https://doi.org/10.1088/0953-8984/18/33/s34
S. Fiorito, A. Serafino, F. Andreola, A. Togna, G. Togna, Toxicity and biocompatibility of carbon nanops. J. Nanosci. Nanotechnol. 6, 591–599 (2006). https://doi.org/10.1166/jnn.2006.125
J. Ni, J. Song, B. Wang, H. Hua, H. Zhu et al., Dendritic cell vaccine for the effective immunotherapy of breast cancer. Biomed. Pharmacother. 126, 110046 (2020). https://doi.org/10.1016/j.biopha.2020.110046
L. Huang, Y. Liao, C. Li, Z. Ma, Z. Liu, Multifunctional manganese-containing vaccine delivery system Ca@MnCO3/LLO for tumor immunotherapy. Biomater. Adv. 136, 212752 (2022). https://doi.org/10.1016/j.bioadv.2022.212752
B. García-Pinel, C. Porras-Alcalá, A. Ortega-Rodríguez, F. Sarabia, J. Prados et al., Lipid-based nanops: application and recent advances in cancer treatment. Nanomaterials 9, 638 (2019). https://doi.org/10.3390/nano9040638
M.-G. Alameh, I. Tombácz, E. Bettini, K. Lederer, C. Sittplangkoon et al., Lipid nanops enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54, 2877-2892.e7 (2021). https://doi.org/10.1016/j.immuni.2021.11.001
J. Pardeike, A. Hommoss, R.H. Müller, Lipid nanops (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 366, 170–184 (2009). https://doi.org/10.1016/j.ijpharm.2008.10.003
Y. Xia, S. Fu, Q. Ma, Y. Liu, N. Zhang, Application of nano-delivery systems in lymph nodes for tumor immunotherapy. Nano-Micro Lett. 15, 145 (2023). https://doi.org/10.1007/s40820-023-01125-2
D. Sivadasan, K. Ramakrishnan, J. Mahendran, H. Ranganathan, A. Karuppaiah et al., Solid lipid nanops: applications and prospects in cancer treatment. Int. J. Mol. Sci. 24, 6199 (2023). https://doi.org/10.3390/ijms24076199
Y. Mirchandani, V.B. Patravale, S. Brijesh, Solid lipid nanops for hydrophilic drugs. J. Control. Release 335, 457–464 (2021). https://doi.org/10.1016/j.jconrel.2021.05.032
V.J. Lingayat, N.S. Zarekar, R.S. Shendge, Solid lipid nanops: a review. Nanosci. Nanotechnol. Res. 4, 67–72 (2017). https://doi.org/10.12691/nnr-4-2-5
A. Sharma, Nanocomposite materials for biomedical and energy storage applications. (BoD–Books on Demand; 2022). https://doi.org/10.5772/intechopen.95130
A. Beloqui, M.Á. Solinís, A. Rodríguez-Gascón, A.J. Almeida, V. Préat, Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomed. Nanotechnol. Biol. Med. 12, 143–161 (2016). https://doi.org/10.1016/j.nano.2015.09.004
M. Elmowafy, M.M. Al-Sanea, Nanostructured lipid carriers (NLCs) as drug delivery platform: advances in formulation and delivery strategies. Saudi Pharm. J. 29, 999–1012 (2021). https://doi.org/10.1016/j.jsps.2021.07.015
H. Kang, S. Rho, W.R. Stiles, S. Hu, Y. Baek et al., Size-dependent EPR effect of polymeric nanops on tumor targeting. Adv. Healthc. Mater. 9, 1901223 (2020). https://doi.org/10.1002/adhm.201901223
R. Han, J. Zhu, X. Yang, H. Xu, Surface modification of poly(D, L-lactic-co-glycolic acid) nanops with protamine enhanced cross-presentation of encapsulated ovalbumin by bone marrow-derived dendritic cells. J. Biomed. Mater. Res. A 96, 142–149 (2011). https://doi.org/10.1002/jbm.a.32860
W.-S. Cho, F. Thielbeer, R. Duffin, E.M.V. Johansson, I.L. Megson et al., Surface functionalization affects the Zeta potential, coronal stability and membranolytic activity of polymeric nanops. Nanotoxicology 8, 202–211 (2014). https://doi.org/10.3109/17435390.2013.773465
C. He, Y. Hu, L. Yin, C. Tang, C. Yin, Effects of p size and surface charge on cellular uptake and biodistribution of polymeric nanops. Biomaterials 31, 3657–3666 (2010). https://doi.org/10.1016/j.biomaterials.2010.01.065
A. Gutjahr, C. Phelip, A.-L. Coolen, C. Monge, A.-S. Boisgard et al., Biodegradable polymeric nanops-based vaccine adjuvants for lymph nodes targeting. Vaccines 4, 34 (2016). https://doi.org/10.3390/vaccines4040034
M. Kumar, A.K. Behera, R.F. Lockey, J. Zhang, G. Bhullar et al., Intranasal gene transfer by chitosan-DNA nanospheres protects BALB/c mice against acute respiratory syncytial virus infection. Hum. Gene Ther. 13, 1415–1425 (2002). https://doi.org/10.1089/10430340260185058
M. Iqbal, W. Lin, I. Jabbal-Gill, S.S. Davis, M.W. Steward et al., Nasal delivery of chitosan-DNA plasmid expressing epitopes of respiratory syncytial virus (RSV) induces protective CTL responses in BALB/c mice. Vaccine 21, 1478–1485 (2003). https://doi.org/10.1016/s0264-410x(02)00662-x
E.C. Carroll, L. Jin, A. Mori, N. Muñoz-Wolf, E. Oleszycka et al., The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity 44, 597–608 (2016). https://doi.org/10.1016/j.immuni.2016.02.004
K.H. Wong, A. Lu, X. Chen, Z. Yang, Natural ingredient-based polymeric nanops for cancer treatment. Molecules 25, 3620 (2020). https://doi.org/10.3390/molecules25163620
J.I. Bussio, C. Molina-Perea, J.V. González-Aramundiz, Hyaluronic acid nanocapsules as a platform for needle-free vaccination. Pharmaceutics 11, 246 (2019). https://doi.org/10.3390/pharmaceutics11050246
J. Yang, Y. Luo, M.A. Shibu, I. Toth, M. Skwarczynskia, Cell-penetrating peptides: efficient vectors for vaccine delivery. Curr. Drug Deliv. 16, 430–443 (2019). https://doi.org/10.2174/1567201816666190123120915
Q. Liu, J. Jia, T. Yang, Q. Fan, L. Wang et al., Pathogen-mimicking polymeric nanops based on dopamine polymerization as vaccines adjuvants induce robust humoral and cellular immune responses. Small 12, 1744–1757 (2016). https://doi.org/10.1002/smll.201503662
Q. Su, C. Wang, H. Song, C. Zhang, J. Liu et al., Co-delivery of anionic epitope/CpG vaccine and IDO inhibitor by self-assembled cationic liposomes for combination melanoma immunotherapy. J. Mater. Chem. B 9, 3892–3899 (2021). https://doi.org/10.1039/d1tb00256b
Y. Gao, Y. Liu, X. Li, H. Wang, Y. Yang et al., A stable open-shell conjugated diradical polymer with ultra-high photothermal conversion efficiency for NIR-II photo-immunotherapy of metastatic tumor. Nano-Micro Lett. 16, 21 (2023). https://doi.org/10.1007/s40820-023-01219-x
T. Lima, K. Bernfur, M. Vilanova, T. Cedervall, Understanding the lipid and protein Corona formation on different sized polymeric nanops. Sci. Rep. 10, 1129 (2020). https://doi.org/10.1038/s41598-020-57943-6
J.A. Jackman, B.K. Yoon, L. Ouyang, W. Nan, A.R. Ferhan et al., Biomimetic nanomaterial strategies for virus targeting: antiviral therapies and vaccines. Adv. Funct. Mater. 31, 2008352 (2021). https://doi.org/10.1002/adfm.202008352
K.G. Gareev, D.S. Grouzdev, V.V. Koziaeva, N.O. Sitkov, H. Gao et al., Biomimetic nanomaterials: diversity, technology, and biomedical applications. Nanomaterials 12, 2485 (2022). https://doi.org/10.3390/nano12142485
C. Feng, P. Tan, G. Nie, M. Zhu, Biomimetic and bioinspired nano-platforms for cancer vaccine development. Exploration (Beijing) 3, 20210263 (2023). https://doi.org/10.1002/EXP.20210263
J. Su, H. Sun, Q. Meng, Q. Yin, S. Tang et al., Long circulation red-blood-cell-mimetic nanops with peptide-enhanced tumor penetration for simultaneously inhibiting growth and lung metastasis of breast cancer. Adv. Funct. Mater. 30, 1910229 (2020). https://doi.org/10.1002/adfm.201910229
M. Xuan, J. Shao, J. Zhao, Q. Li, L. Dai et al., Magnetic mesoporous silica nanops cloaked by red blood cell membranes: applications in cancer therapy. Angew. Chem. Int. Ed. 57, 6049–6053 (2018). https://doi.org/10.1002/anie.201712996
J. Li, S. Wang, X. Lin, Y. Cao, Z. Cai et al., Red blood cell-mimic nanocatalyst triggering radical storm to augment cancer immunotherapy. Nano-Micro Lett. 14, 57 (2022). https://doi.org/10.1007/s40820-022-00801-z
Z.-B. Wang, J. Xu, Better adjuvants for better vaccines: progress in adjuvant delivery systems, modifications, and adjuvant-antigen codelivery. Vaccines 8, 128 (2020). https://doi.org/10.3390/vaccines8010128
J. Xia, Y. Miao, X. Wang, X. Huang, J. Dai, Recent progress of dendritic cell-derived exosomes (Dex) as an anti-cancer nanovaccine. Biomed. Pharmacother. 152, 113250 (2022). https://doi.org/10.1016/j.biopha.2022.113250
M. Fan, H. Liu, H. Yan, R. Che, Y. Jin et al., A CAR T-inspiring platform based on antibody-engineered exosomes from antigen-feeding dendritic cells for precise solid tumor therapy. Biomaterials 282, 121424 (2022). https://doi.org/10.1016/j.biomaterials.2022.121424
M. Wu, W. Wu, Y. Duan, X. Li, G. Qi et al., Photosensitizer-bacteria biohybrids promote photodynamic cancer cell ablation and intracellular protein delivery. Chem. Mater. 31, 7212–7220 (2019). https://doi.org/10.1021/acs.chemmater.9b01518
Q. Hu, M. Wu, C. Fang, C. Cheng, M. Zhao et al., Engineering nanop-coated bacteria as oral DNA vaccines for cancer immunotherapy. Nano Lett. 15, 2732–2739 (2015). https://doi.org/10.1021/acs.nanolett.5b00570
J. Chen, C.-Q. Sheng, C.-H. Zheng, Y.-W. Li, J.-G. Lv et al., Study of properties of VEGFR2 active site and binding mode of VEGFR2 and its inhibitors. Acta Chim. Sinica 65, 547 (2007)
Z. Ye, L. Liang, H. Lu, Y. Shen, W. Zhou et al., Nanotechnology-employed bacteria-based delivery strategy for enhanced anticancer therapy. Int. J. Nanomedicine 16, 8069–8086 (2021). https://doi.org/10.2147/IJN.S329855
C.-J. Chiang, P.-H. Huang, Metabolic engineering of probiotic Escherichia coli for cytolytic therapy of tumors. Sci. Rep. 11, 5853 (2021). https://doi.org/10.1038/s41598-021-85372-6
S. Dai, H. Wang, F. Deng, Advances and challenges in enveloped virus-like p (VLP)-based vaccines. J. Immunol. Sci. 2, 36–41 (2018). https://www.immunologyresearchjournal.com/s/advances-and-challenges-in-enveloped-viruslike-p-vlpbased-vaccines.pdf
J.C. Caldeira, M. Perrine, F. Pericle, F. Cavallo, Virus-like ps as an immunogenic platform for cancer vaccines. Viruses 12, 488 (2020). https://doi.org/10.3390/v12050488
E. Tumban, P. Muttil, C.A.A. Escobar, J. Peabody, D. Wafula et al., Preclinical refinements of a broadly protective VLP-based HPV vaccine targeting the minor capsid protein, L2. Vaccine 33, 3346–3353 (2015). https://doi.org/10.1016/j.vaccine.2015.05.016
F.-X. Ding, F. Wang, Y.-M. Lu, K. Li, K.-H. Wang et al., Multiepitope peptide-loaded virus-like ps as a vaccine against hepatitis B virus-related hepatocellular carcinoma. Hepatology 49, 1492–1502 (2009). https://doi.org/10.1002/hep.22816
H. Ali, M. Akbar, B. Iqbal, F. Ali, N.K. Sharma et al., Virosome: an engineered virus for vaccine delivery. Saudi Pharm. J. 31, 752–764 (2023). https://doi.org/10.1016/j.jsps.2023.03.016
U. Wiedermann, C. Wiltschke, J. Jasinska, M. Kundi, R. Zurbriggen et al., A virosomal formulated Her-2/neu multi-peptide vaccine induces Her-2/neu-specific immune responses in patients with metastatic breast cancer: a phase i study. Breast Cancer Res. Treat. 119, 673–683 (2010). https://doi.org/10.1007/s10549-009-0666-9
R. Tenchov, R. Bird, A.E. Curtze, Q. Zhou, Lipid nanops─from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 15, 16982–17015 (2021). https://doi.org/10.1021/acsnano.1c04996
Y. Yang, T. Yang, F. Chen, C. Zhang, B. Yin et al., Degradable magnetic nanoplatform with hydroxide ions triggered photoacoustic, MR imaging, and photothermal conversion for precise cancer theranostic. Nano Lett. 22, 3228–3235 (2022). https://doi.org/10.1021/acs.nanolett.1c04804
J. Li, X. Chang, X. Chen, Z. Gu, F. Zhao et al., Toxicity of inorganic nanomaterials in biomedical imaging. Biotechnol. Adv. 32, 727–743 (2014). https://doi.org/10.1016/j.biotechadv.2013.12.009
S.J. Soenen, P. Rivera-Gil, J.-M. Montenegro, W.J. Parak, S.C. De Smedt et al., Cellular toxicity of inorganic nanops: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6, 446–465 (2011). https://doi.org/10.1016/j.nantod.2011.08.001
F. Jia, W. Huang, Y. Yin, Y. Jiang, Q. Yang et al., Stabilizing RNA nanovaccines with transformable hyaluronan dynamic hydrogel for durable cancer immunotherapy. Adv. Funct. Mater. 33, 2204636 (2023). https://doi.org/10.1002/adfm.202204636
K.S. Corbett, D.K. Edwards, S.R. Leist, O.M. Abiona, S. Boyoglu-Barnum et al., SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586, 567–571 (2020). https://doi.org/10.1038/s41586-020-2622-0
M.N. Uddin, M.A. Roni, Challenges of storage and stability of mRNA-based COVID-19 vaccines. Vaccines 9, 1033 (2021). https://doi.org/10.3390/vaccines9091033
H. Muramatsu, K. Lam, C. Bajusz, D. Laczkó, K. Karikó et al., Lyophilization provides long-term stability for a lipid nanop-formulated, nucleoside-modified mRNA vaccine. Mol. Ther. 30, 1941–1951 (2022). https://doi.org/10.1016/j.ymthe.2022.02.001
Y. Gu, J. Duan, N. Yang, Y. Yang, X. Zhao, mRNA vaccines in the prevention and treatment of diseases. MedComm 3, e167 (2022). https://doi.org/10.1002/mco2.167
C. Vasile, Polymeric nanomaterials: recent developments, properties and medical applications [B]. Polymeric nanomaterials in nanotherapeutics, Micro & Nano Technologies. (2019), p. 1–66. https://doi.org/10.1016/B978-0-12-813932-5.00001-7
T.T. Spear, K. Nagato, M.I. Nishimura, Strategies to genetically engineer T cells for cancer immunotherapy. Cancer Immunol. Immunother. 65, 631–649 (2016). https://doi.org/10.1007/s00262-016-1842-5
M. Kreutz, B. Giquel, Q. Hu, R. Abuknesha, S. Uematsu et al., Antibody-antigen-adjuvant conjugates enable co-delivery of antigen and adjuvant to dendritic cells in Cis but only have partial targeting specificity. PLoS ONE 7, e40208 (2012). https://doi.org/10.1371/journal.pone.0040208
M. Yadav, S. Jhunjhunwala, Q.T. Phung, P. Lupardus, J. Tanguay et al., Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515, 572–576 (2014). https://doi.org/10.1038/nature14001
Q. Zhao, X. Dong, C. Zhu, Y. Zhang, C. Fang et al., DNA damage-encouraged Mn-As-based nanoreactors reshape intratumoral cell phenotypes to recover immune surveillance and potentiate anti-tumor immunity. Chem. Eng. J. 474, 145556 (2023). https://doi.org/10.1016/j.cej.2023.145556
M. Sarikaya, C. Tamerler, A.K.-Y. Jen, K. Schulten, F. Baneyx, Molecular biomimetics: nanotechnology through biology. Nat. Mater. 2, 577–585 (2003). https://doi.org/10.1038/nmat964
X. Liang, Y. Zhang, J. Zhou, Z. Bu, J. Liu et al., Tumor microenvironment-triggered intratumoral in situ construction of theranostic supramolecular self-assembly. Coord. Chem. Rev. 473, 214824 (2022). https://doi.org/10.1016/j.ccr.2022.214824
R.M. Steinman, Decisions about dendritic cells: past, present, and future. Annu. Rev. Immunol. 30, 1–22 (2012). https://doi.org/10.1146/annurev-immunol-100311-102839
K. Liu, M.C. Nussenzweig, Origin and development of dendritic cells. Immunol. Rev. 234, 45–54 (2010). https://doi.org/10.1111/j.0105-2896.2009.00879.x
L. Wu, Y.-J. Liu, Development of dendritic-cell lineages. Immunity 26, 741–750 (2007). https://doi.org/10.1016/j.immuni.2007.06.006
R.M. Steinman, M. Pack, K. Inaba, Dendritic cell development and maturation. Adv. Exp. Med. Biol. 417, 1–6 (1997). https://doi.org/10.1007/978-1-4757-9966-8_1
L.E. Paulis, S. Mandal, M. Kreutz, C.G. Figdor, Dendritic cell-based nanovaccines for cancer immunotherapy. Curr. Opin. Immunol. 25, 389–395 (2013). https://doi.org/10.1016/j.coi.2013.03.001
C. Macri, M. Paxman, D. Jenika, X.P. Lin, Z. Elahi et al., FcRn regulates antigen presentation in dendritic cells downstream of DEC205-targeted vaccines. npj Vaccines 9, 76 (2024). https://doi.org/10.1038/s41541-024-00854-8
Y. van Kooyk, G.A. Rabinovich, Protein-glycan interactions in the control of innate and adaptive immune responses. Nat. Immunol. 9, 593–601 (2008). https://doi.org/10.1038/ni.f.203
M. Kreutz, P.J. Tacken, C.G. Figdor, Targeting dendritic cells: why bother? Blood 121, 2836–2844 (2013). https://doi.org/10.1182/blood-2012-09-452078
M. Tanaka, M. Saka-Tanaka, K. Ochi, K. Fujieda, Y. Sugiura et al., C-type lectin Mincle mediates cell death-triggered inflammation in acute kidney injury. J. Exp. Med. 217, e20192230 (2020). https://doi.org/10.1084/jem.20192230
J.M. Jaynes, R. Sable, M. Ronzetti, W. Bautista, Z. Knotts et al., Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses. Sci. Transl. Med. 12, eaax6337 (2020). https://doi.org/10.1126/scitranslmed.aax6337
M.H. Lahoud, F. Ahmet, J.-G. Zhang, S. Meuter, A.N. Policheni et al., Dec-205 is a cell surface receptor for cpg oligonucleotides. Proc. Natl. Acad. Sci. U.S.A. 109, 16270–16275 (2012). https://doi.org/10.1073/pnas.1208796109
C. Petzold, S. Schallenberg, J.N.H. Stern, K. Kretschmer, Targeted antigen delivery to DEC-205⁺ dendritic cells for tolerogenic vaccination. Rev. Diabet. Stud. 9, 305–318 (2012). https://doi.org/10.1900/RDS.2012.9.305
M. Guo, S. Gong, S. Maric, Z. Misulovin, M. Pack et al., A monoclonal antibody to the DEC-205 endocytosis receptor on human dendritic cells. Hum. Immunol. 61, 729–738 (2000). https://doi.org/10.1016/s0198-8859(00)00144-0
M.O. Silva, B.S. Almeida, N.S. Sales, M.O. Diniz, L.R.M.M. Aps et al., Antigen delivery to DEC205+ dendritic cells induces immunological memory and protective therapeutic effects against HPV-associated tumors at different anatomical sites. Int. J. Biol. Sci. 17, 2944–2956 (2021). https://doi.org/10.7150/ijbs.57038
C.D. Phung, T.H. Tran, H.T. Nguyen, T.T. Nguyen, J.H. Jeong et al., Nanovaccines silencing IL-10 production at priming phase for boosting immune responses to melanoma. J. Control. Release 338, 211–223 (2021). https://doi.org/10.1016/j.jconrel.2021.08.031
B.E. Clausen, P. Stoitzner, Functional specialization of skin dendritic cell subsets in regulating T cell responses. Front. Immunol. 6, 534 (2015). https://doi.org/10.3389/fimmu.2015.00534
C.G. Figdor, Y. van Kooyk, G.J. Adema, C-type lectin receptors on dendritic cells and Langerhans cells. Nat. Rev. Immunol. 2, 77–84 (2002). https://doi.org/10.1038/nri723
S.W. Kashem, M. Haniffa, D.H. Kaplan, Antigen-presenting cells in the skin. Annu. Rev. Immunol. 35, 469–499 (2017). https://doi.org/10.1146/annurev-immunol-051116-052215
L. Bellmann, H. Strandt, C. Zelle-Rieser, D. Ortner, C.H. Tripp et al., Targeted delivery of a vaccine protein to Langerhans cells in the human skin via the C-type lectin receptor Langerin. Eur. J. Immunol. 52, 1829–1841 (2022). https://doi.org/10.1002/eji.202149670
G. Schreibelt, L.J. Klinkenberg, L.J. Cruz, P.J. Tacken, J. Tel et al., The C-type lectin receptor CLEC9A mediates antigen uptake and (cross-) presentation by human blood BDCA3+ myeloid dendritic cells. Blood 119, 2284–2292 (2012). https://doi.org/10.1182/blood-2011-08-373944
S. Gou, S. Wang, W. Liu, G. Chen, D. Zhang et al., Adjuvant-free peptide vaccine targeting Clec9a on dendritic cells can induce robust antitumor immune response through Syk/IL-21 axis. Theranostics 11, 7308–7321 (2021). https://doi.org/10.7150/thno.56406
F.E. Pearson, K.M. Tullett, I.M. Leal-Rojas, O.L. Haigh, K.-A. Masterman et al., Human CLEC9A antibodies deliver Wilms’ tumor 1 (WT1) antigen to CD141+ dendritic cells to activate naïve and memory WT1-specific CD8+ T cells. Clin. Transl. Immunology 9, e1141 (2020). https://doi.org/10.1002/cti2.1141
J. Huang, J. Zhou, R. Ghinnagow, T. Seki, S. Iketani et al., Targeted co-delivery of tumor antigen and α-galactosylceramide to CD141+ dendritic cells induces a potent tumor antigen-specific human CD8+ T cell response in human immune system mice. Front. Immunol. 11, 2043 (2020). https://doi.org/10.3389/fimmu.2020.02043
X. Feng, D. Liu, Z. Li, J. Bian, Bioactive modulators targeting STING adaptor in cGAS-STING pathway. Drug Discov. Today 25, 230–237 (2020). https://doi.org/10.1016/j.drudis.2019.11.007
Y. Zhu, X. An, X. Zhang, Y. Qiao, T. Zheng et al., STING: a master regulator in the cancer-immunity cycle. Mol. Cancer 18, 152 (2019). https://doi.org/10.1186/s12943-019-1087-y
S. Gou, W. Liu, S. Wang, G. Chen, Z. Chen et al., Engineered nanovaccine targeting Clec9a+ dendritic cells remarkably enhances the cancer immunotherapy effects of STING agonist. Nano Lett. 21, 9939–9950 (2021). https://doi.org/10.1021/acs.nanolett.1c03243
M. Matsumoto, T. Tanaka, T. Kaisho, H. Sanjo, N.G. Copeland et al., A novel LPS-inducible C-type lectin is a transcriptional target of NF-IL6 in macrophages. J. Immunol. 163, 5039–5048 (1999). https://doi.org/10.4049/jimmunol.163.9.5039
X. Luo, Q. Lian, W. Li, L. Chen, R. Zhang et al., Fully synthetic Mincle-dependent self-adjuvanting cancer vaccines elicit robust humoral and T cell-dependent immune responses and protect mice from tumor development. Chem. Sci. 12, 15998–16013 (2021). https://doi.org/10.1039/d1sc05736g
E.M. Dangerfield, S. Ishizuka, K. Kodar, S. Yamasaki, M.S.M. Timmer et al., Chimeric NOD2 mincle agonists as vaccine adjuvants. J. Med. Chem. 67, 5373–5390 (2024). https://doi.org/10.1021/acs.jmedchem.3c01840
P.R. Taylor, S. Gordon, L. Martinez-Pomares, The mannose receptor: linking homeostasis and immunity through sugar recognition. Trends Immunol. 26, 104–110 (2005). https://doi.org/10.1016/j.it.2004.12.001
H.J.P. van der Zande, D. Nitsche, L. Schlautmann, B. Guigas, S. Burgdorf, The mannose receptor: from endocytic receptor and biomarker to regulator of (meta)inflammation. Front. Immunol. 12, 765034 (2021). https://doi.org/10.3389/fimmu.2021.765034
G. Moku, S. Vangala, S.K. Gulla, V. Yakati, In vivo targeting of DNA vaccines to dendritic cells via the mannose receptor induces long-lasting immunity against melanoma. ChemBioChem 22, 523–531 (2021). https://doi.org/10.1002/cbic.202000364
J. Chen, H. Fang, Y. Hu, J. Wu, S. Zhang et al., Combining mannose receptor mediated nanovaccines and gene regulated PD-L1 blockade for boosting cancer immunotherapy. Bioact. Mater. 7, 167–180 (2021). https://doi.org/10.1016/j.bioactmat.2021.05.036
M. Vasquez, I. Simões, M. Consuegra-Fernández, F. Aranda, F. Lozano et al., Exploiting scavenger receptors in cancer immunotherapy: lessons from CD5 and SR-B1. Eur. J. Immunol. 47, 1108–1118 (2017). https://doi.org/10.1002/eji.201646903
Y. Qian, H. Jin, S. Qiao, Y. Dai, C. Huang et al., Targeting dendritic cells in lymph node with an antigen peptide-based nanovaccine for cancer immunotherapy. Biomaterials 98, 171–183 (2016). https://doi.org/10.1016/j.biomaterials.2016.05.008
W.-J. Shen, S. Azhar, F.B. Kraemer, SR-B1: a unique multifunctional receptor for cholesterol influx and efflux. Annu. Rev. Physiol. 80, 95–116 (2018). https://doi.org/10.1146/annurev-physiol-021317-121550
L. Oliveira-Nascimento, P. Massari, L.M. Wetzler, The role of TLR2 in infection and immunity. Front. Immun. 3, 79 (2012). https://doi.org/10.3389/fimmu.2012.00079
X. Zhao, R. Zhao, G. Nie, Nanocarriers based on bacterial membrane materials for cancer vaccine delivery. Nat. Protoc. 17, 2240–2274 (2022). https://doi.org/10.1038/s41596-022-00713-7
N. Garçon, M. Van Mechelen, Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev. Vaccines 10, 471–486 (2011). https://doi.org/10.1586/erv.11.29
E. Vercammen, J. Staal, R. Beyaert, Sensing of viral infection and activation of innate immunity by toll-like receptor 3. Clin. Microbiol. Rev. 21, 13–25 (2008). https://doi.org/10.1128/CMR.00022-07
R.A. Robinson, V.T. DeVita, H.B. Levy, S. Baron, S.P. Hubbard et al., A phase I-II trial of multiple-dose polyriboinosic-polyribocytidylic acid in patieonts with leukemia or solid tumors. J. Natl. Cancer Inst. 57, 599–602 (1976). https://doi.org/10.1093/jnci/57.3.599
A.M. Salazar, H.B. Levy, S. Ondra, M. Kende, B. Scherokman et al., Long-term treatment of malignant gliomas with intramuscularly administered polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose: an open pilot study. Neurosurgery 38, 1096–1103 (1996). https://doi.org/10.1097/00006123-199606000-00006
N. Butowski, K.R. Lamborn, B.L. Lee, M.D. Prados, T. Cloughesy et al., A North American brain tumor consortium phase II study of poly-ICLC for adult patients with recurrent anaplastic gliomas. J. Neurooncol 91, 183–189 (2009). https://doi.org/10.1007/s11060-008-9705-3
H. Okada, P. Kalinski, R. Ueda, A. Hoji, G. Kohanbash et al., Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with{alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol. 29, 330–336 (2011). https://doi.org/10.1200/JCO.2010.30.7744
M.V. Dhodapkar, M. Sznol, B. Zhao, D. Wang, R.D. Carvajal et al., Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci. Transl. Med. 6, 23251 (2014). https://doi.org/10.1126/scitranslmed.3008068
B.B. Gowen, M.-H. Wong, K.-H. Jung, A.B. Sanders, W.M. Mitchell et al., TLR3 is essential for the induction of protective immunity against Punta toro virus infection by the double-stranded RNA (dsRNA), poly(I: C12U), but not poly(I: C): differential recognition of synthetic dsRNA molecules. J. Immunol. 178, 5200–5208 (2007). https://doi.org/10.4049/jimmunol.178.8.5200
K.A. Thompson, D.R. Strayer, P.D. Salvato, C.E. Thompson, N. Klimas et al., Results of a double-blind placebo-controlled study of the double-stranded RNA drug polyI: PolyC12U in the treatment of HIV infection. Eur. J. Clin. Microbiol. Infect. Dis. 15, 580–587 (1996). https://doi.org/10.1007/BF01709367
T. Kaisho, S. Akira, Regulation of dendritic cell function through toll-like receptors. Curr. Mol. Med. 3, 759–771 (2003). https://doi.org/10.2174/1566524033479366
H. Fang, B. Ang, X. Xu, X. Huang, Y. Wu et al., TLR4 is essential for dendritic cell activation and anti-tumor T-cell response enhancement by DAMPs released from chemically stressed cancer cells. Cell. Mol. Immunol. 11, 150–159 (2014). https://doi.org/10.1038/cmi.2013.59
H. Zhang, X. You, X. Wang, L. Cui, Z. Wang et al., Delivery of mRNA vaccine with a lipid-like material potentiates antitumor efficacy through Toll-like receptor 4 signaling. Proc. Natl. Acad. Sci. U.S.A. 118, e2005191118 (2021). https://doi.org/10.1073/pnas.2005191118
J.H. Fritz, S.E. Girardin, C. Fitting, C. Werts, D. Mengin-Lecreulx et al., Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists. Eur. J. Immunol. 35, 2459–2470 (2005). https://doi.org/10.1002/eji.200526286
S.I. Gringhuis, J. den Dunnen, M. Litjens, B. van Het Hof, Y. van Kooyk et al., C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-κ
B. Immunity 26, 605–616 (2007). https://doi.org/10.1016/j.immuni.2007.03.012
D. Yang, X. Luo, Q. Lian, L. Gao, C. Wang et al., Fully synthetic Tn-based three-component cancer vaccine using covalently linked TLR4 ligand MPLA and iNKT cell agonist KRN-7000 as built-in adjuvant effectively protects mice from tumor development. Acta Pharm. Sin. B 12, 4432–4445 (2022). https://doi.org/10.1016/j.apsb.2022.05.028
T.C. Albershardt, J. Leleux, A.J. Parsons, J.E. Krull, P. Berglund et al., Intratumoral immune activation with TLR4 agonist synergizes with effector T cells to eradicate established murine tumors. npj Vaccines 5, 50 (2020). https://doi.org/10.1038/s41541-020-0201-x
J.J. Baljon, A.J. Kwiatkowski, H.M. Pagendarm, P.T. Stone, A. Kumar et al., A cancer nanovaccine for co-delivery of peptide neoantigens and optimized combinations of STING and TLR4 agonists. ACS Nano 18, 6845–6862 (2024). https://doi.org/10.1021/acsnano.3c04471
N. Kuzmich, K. Sivak, V. Chubarev, Y. Porozov, T. Savateeva-Lyubimova et al., TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines 5, 34 (2017). https://doi.org/10.3390/vaccines5040034
K. Crozat, B. Beutler, Tlr7: a new sensor of viral infection. Proc. Natl. Acad. Sci. U.S.A. 101, 6835–6836 (2004). https://doi.org/10.1073/pnas.0401347101
H. Xia, M. Qin, Z. Wang, Y. Wang, B. Chen et al., A pH-/ enzyme-responsive nanop selectively targets endosomal toll-like receptors to potentiate robust cancer vaccination. Nano Lett. 22, 2978–2987 (2022). https://doi.org/10.1021/acs.nanolett.2c00185
M. Liu, Y. Feng, Y. Lu, R. Huang, Y. Zhang et al., Lymph-targeted high-density lipoprotein-mimetic nanovaccine for multi-antigenic personalized cancer immunotherapy. Sci. Adv. 10, eadk2444 (2024). https://doi.org/10.1126/sciadv.adk2444
C. Rolfo, E. Giovannetti, P. Martinez, S. McCue, A. Naing, Applications and clinical trial landscape using Toll-like receptor agonists to reduce the toll of cancer. npj Precis. Oncol. 7, 26 (2023). https://doi.org/10.1038/s41698-023-00364-1
B.-D. Zhang, J.-J. Wu, W.-H. Li, H.-G. Hu, L. Zhao et al., STING and TLR7/8 agonists-based nanovaccines for synergistic antitumor immune activation. Nano Res. 15, 6328–6339 (2022). https://doi.org/10.1007/s12274-022-4282-x
N. Wang, G. Zhang, P. Zhang, K. Zhao, Y. Tian et al., Vaccination of TLR7/8 agonist-conjugated antigen nanops for cancer immunotherapy. Adv. Healthcare Mater. 12, 2300249 (2023). https://doi.org/10.1002/adhm.202300249
Y. Kumagai, O. Takeuchi, S. Akira, Tlr9 as a key receptor for the recognition of DNA. Adv. Drug Deliv. Rev. 60, 795–804 (2008). https://doi.org/10.1016/j.addr.2007.12.004
P. Chen, D. Wang, Y. Wang, L. Zhang, Q. Wang et al., Maximizing TLR9 activation in cancer immunotherapy with dual-adjuvanted spherical nucleic acids. Nano Lett. 22, 4058–4066 (2022). https://doi.org/10.1021/acs.nanolett.2c00723
Y. Wang, S.-L. Qiao, J. Wang, M.-Z. Yu, N.-N. Wang et al., Engineered CpG-loaded nanorobots drive autophagy-mediated immunity for TLR9-positive cancer therapy. Adv. Mater. 36, e2306248 (2024). https://doi.org/10.1002/adma.202306248
Y. Ma, L. Galluzzi, L. Zitvogel, G. Kroemer, Autophagy and cellular immune responses. Immunity 39, 211–227 (2013). https://doi.org/10.1016/j.immuni.2013.07.017
G.B. Mackaness, R.V. Blanden, Cellular immunity. Prog. Allergy 11, 89–140 (1967). https://doi.org/10.1159/000287245
J. Zhang, B. Fan, G. Cao, W. Huang, F. Jia et al., Direct presentation of tumor-associated antigens to induce adaptive immunity by personalized dendritic cell-mimicking nanovaccines. Adv. Mater. 34, e2205950 (2022). https://doi.org/10.1002/adma.202205950
C. Liu, X. Liu, X. Xiang, X. Pang, S. Chen et al., A nanovaccine for antigen self-presentation and immunosuppression reversal as a personalized cancer immunotherapy strategy. Nat. Nanotechnol. 17, 531–540 (2022). https://doi.org/10.1038/s41565-022-01098-0
K. Wang, X. Zhang, H. Ye, X. Wang, Z. Fan et al., Biomimetic nanovaccine-mediated multivalent IL-15 self-transpresentation (MIST) for potent and safe cancer immunotherapy. Nat. Commun. 14, 6748 (2023). https://doi.org/10.1038/s41467-023-42155-z
A. Fusco, M. Fedele, Roles of HMGA proteins in cancer. Nat. Rev. Cancer 7, 899–910 (2007). https://doi.org/10.1038/nrc2271
M.J. van de Vijver, J.L. Peterse, W.J. Mooi, P. Wisman, J. Lomans et al., Neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. New Engl. J. Med. 319, 1239–1245 (1988). https://doi.org/10.1056/NEJM198811103191902
J.B. Welsh, L.M. Sapinoso, S.G. Kern, D.A. Brown, T. Liu et al., Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum. Proc. Natl. Acad. Sci. U.S.A. 100, 3410–3415 (2003). https://doi.org/10.1073/pnas.0530278100
K.R. Kampen, Membrane proteins: the key players of a cancer cell. J. Membr. Biol. 242, 69–74 (2011). https://doi.org/10.1007/s00232-011-9381-7
E. de Jong, A. Kocer, Current methods for identifying plasma membrane proteins as cancer biomarkers. Membranes 13, 409 (2023). https://doi.org/10.3390/membranes13040409
D. Grimm, J. Bauer, J. Pietsch, M. Infanger, J. Eucker et al., Diagnostic and therapeutic use of membrane proteins in cancer cells. Curr. Med. Chem. 18, 176–190 (2011). https://doi.org/10.2174/092986711794088344
J.F. Curtin, N. Liu, M. Candolfi, W. Xiong, H. Assi et al., HMGB1 mediates endogenous TLR2 activation and brain tumor regression. PLoS Med. 6, e10 (2009). https://doi.org/10.1371/journal.pmed.1000010
E. Vénéreau, C. Ceriotti, M.E. Bianchi, DAMPs from cell death to new life. Front. Immunol. 6, 422 (2015). https://doi.org/10.3389/fimmu.2015.00422
T. Yamazaki, D. Hannani, V. Poirier-Colame, S. Ladoire, C. Locher et al., Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ. 21, 69–78 (2014). https://doi.org/10.1038/cdd.2013.72
I.E. Dumitriu, M.E. Bianchi, M. Bacci, A.A. Manfredi, P. Rovere-Querini, The secretion of HMGB1 is required for the migration of maturing dendritic cells. J. Leukoc. Biol. 81, 84–91 (2007). https://doi.org/10.1189/jlb.0306171
E. Berney, N. Sabnis, M. Panchoo, S. Raut, R. Dickerman et al., The SR-B1 receptor as a potential target for treating glioblastoma. J. Oncol. 2019, 1805841 (2019). https://doi.org/10.1155/2019/1805841
P. Kadiyala, D. Li, F.M. Nuñez, D. Altshuler, R. Doherty et al., High-density lipoprotein-mimicking nanodiscs for chemo-immunotherapy against glioblastoma multiforme. ACS Nano 13, 1365–1384 (2019). https://doi.org/10.1021/acsnano.8b06842
L. Bello, M. Francolini, P. Marthyn, J. Zhang, R.S. Carroll et al., αvβ3 and αvβ5 integrin expression in glioma periphery. Neurosurgery 49, 380–389 (2001). https://doi.org/10.1097/00006123-200108000-00022
C. Böger, V.S. Warneke, H.-M. Behrens, H. Kalthoff, S.L. Goodman et al., Integrins αvβ3 and αvβ5 as prognostic, diagnostic, and therapeutic targets in gastric cancer. Gastric Cancer 18, 784–795 (2015). https://doi.org/10.1007/s10120-014-0435-2
T. Hurtado de Mendoza, E.S. Mose, G.P. Botta, G.B. Braun, V.R. Kotamraju et al., Tumor-penetrating therapy for β5 integrin-rich pancreas cancer. Nat. Commun. 12, 1541 (2021). https://doi.org/10.1038/s41467-021-21858-1
N. Ding, Z. Zou, H. Sha, S. Su, H. Qian et al., iRGD synergizes with PD-1 knockout immunotherapy by enhancing lymphocyte infiltration in gastric cancer. Nat. Commun. 10, 1336 (2019). https://doi.org/10.1038/s41467-019-09296-6
S. Zhou, F. Meng, S. Du, H. Qian, N. Ding et al., Bifunctional iRGD-anti-CD3 enhances antitumor potency of T cells by facilitating tumor infiltration and T-cell activation. J. Immunother. Cancer 9, e001925 (2021). https://doi.org/10.1136/jitc-2020-001925
Y. Song, M. Xu, Y. Li, Y. Li, W. Gu et al., An iRGD peptide fused superantigen mutant induced tumor-targeting and T lymphocyte infiltrating in cancer immunotherapy. Int. J. Pharm. 586, 119498 (2020). https://doi.org/10.1016/j.ijpharm.2020.119498
T. Mitsudomi, Y. Yatabe, Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 277, 301–308 (2010). https://doi.org/10.1111/j.1742-4658.2009.07448.x
D.A. Sabbah, R. Hajjo, K. Sweidan, Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr. Top. Med. Chem. 20, 815–834 (2020). https://doi.org/10.2174/1568026620666200303123102
A. De Luca, A. Carotenuto, A. Rachiglio, M. Gallo, M.R. Maiello et al., The role of the EGFR signaling in tumor microenvironment. J. Cell. Physiol. 214, 559–567 (2008). https://doi.org/10.1002/jcp.21260
Q. Cheng, X. Shi, M. Han, G. Smbatyan, H.-J. Lenz et al., Reprogramming exosomes as nanoscale controllers of cellular immunity. J. Am. Chem. Soc. 140, 16413–16417 (2018). https://doi.org/10.1021/jacs.8b10047
G. Lammering, T.H. Hewit, W.T. Hawkins, J.N. Contessa, D.B. Reardon et al., Epidermal growth factor receptor as a genetic therapy target for carcinoma cell radiosensitization. J. Natl. Cancer Inst. 93, 921–929 (2001). https://doi.org/10.1093/jnci/93.12.921
M.S. Alghamri, K. Banerjee, A.A. Mujeeb, A. Mauser, A. Taher et al., Systemic delivery of an adjuvant CXCR4-CXCL12 signaling inhibitor encapsulated in synthetic protein nanops for glioma immunotherapy. ACS Nano 16, 8729–8750 (2022). https://doi.org/10.1021/acsnano.1c07492
D.M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012). https://doi.org/10.1038/nrc3239
P. Sharma, J.P. Allison, The future of immune checkpoint therapy. Science 348, 56–61 (2015). https://doi.org/10.1126/science.aaa8172
P. Sharma, J.P. Allison, Dissecting the mechanisms of immune checkpoint therapy. Nat. Rev. Immunol. 20, 75–76 (2020). https://doi.org/10.1038/s41577-020-0275-8
J.M. Fritz, M.J. Lenardo, Development of immune checkpoint therapy for cancer. J. Exp. Med. 216, 1244–1254 (2019). https://doi.org/10.1084/jem.20182395
S. Chikuma. CTLA-4, an essential immune-checkpoint for T-cell activation. Current Topics in Microbiology and Immunology. (Springer International Publishing, 2017), pp. 99–126. https://doi.org/10.1007/82_2017_61
J.B.A.G. Haanen, C. Robert, Immune checkpoint inhibitors. Progress in Tumor Research. S. Karger AG, (2015), pp. 55–66 https://doi.org/10.1159/000437178
C. Peres, A.I. Matos, B. Carreira, L.I.F. Moura, R. Kleiner et al., Multifunctional nanovaccine sensitizes breast cancer to immune checkpoint therapy. Adv. Funct. Mater. 34, 2401749 (2024). https://doi.org/10.1002/adfm.202401749
P. Zhao, Y. Xu, W. Ji, L. Li, L. Qiu et al., Hybrid membrane nanovaccines combined with immune checkpoint blockade to enhance cancer immunotherapy. Int. J. Nanomedicine 17, 73–89 (2022). https://doi.org/10.2147/IJN.S346044
H. Liu, H. Chen, Z. Liu, Z. Le, T. Nie et al., Therapeutic nanovaccines sensitize EBV-associated tumors to checkpoint blockade therapy. Biomaterials 255, 120158 (2020). https://doi.org/10.1016/j.biomaterials.2020.120158
C. Li, R. Clauson, L.F. Bugada, F. Ke, B. He et al., Antigen-clustered nanovaccine achieves long-term tumor remission by promoting B/CD 4 T cell crosstalk. ACS Nano 18, 9584–9604 (2024). https://doi.org/10.1021/acsnano.3c13038
R.E. Hollingsworth, K. Jansen, Turning the corner on therapeutic cancer vaccines. npj Vaccines 4, 7 (2019). https://doi.org/10.1038/s41541-019-0103-y
T. Jiang, T. Shi, H. Zhang, J. Hu, Y. Song et al., Tumor neoantigens: from basic research to clinical applications. J. Hematol. Oncol. 12, 93 (2019). https://doi.org/10.1186/s13045-019-0787-5
A. Sette, S. Crotty, Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 184, 861–880 (2021). https://doi.org/10.1016/j.cell.2021.01.007
J.S. Heitmann, T. Bilich, C. Tandler, A. Nelde, Y. Maringer et al., A COVID-19 peptide vaccine for the induction of SARS-CoV-2 T cell immunity. Nature 601, 617–622 (2022). https://doi.org/10.1038/s41586-021-04232-5
R. Keeton, M.B. Tincho, A. Ngomti, R. Baguma, N. Benede et al., T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature 603, 488–492 (2022). https://doi.org/10.1038/s41586-022-04460-3
A. Tarke, C.H. Coelho, Z. Zhang, J.M. Dan, E.D. Yu et al., SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell 185, 847-859.e11 (2022). https://doi.org/10.1016/j.cell.2022.01.015
Z. Zhang, J. Mateus, C.H. Coelho, J.M. Dan, C.R. Moderbacher et al., Humoral and cellular immune memory to four COVID-19 vaccines. Cell 185, 2434-2451.e17 (2022). https://doi.org/10.1016/j.cell.2022.05.022
A.M. Scott, J.D. Wolchok, L.J. Old, Antibody therapy of cancer. Nat. Rev. Cancer 12, 278–287 (2012). https://doi.org/10.1038/nrc3236
V.R. Gómez Román, J.C. Murray, L.M. Weiner, Antibody-dependent cellular cytotoxicity (ADCC). Antibody Fc. (Elsevier, 2014), pp. 1–27. https://doi.org/10.1016/b978-0-12-394802-1.00001-7
M.Z. Tay, K. Wiehe, J. Pollara, Antibody-dependent cellular phagocytosis in antiviral immune responses. Front. Immunol. 10, 332 (2019). https://doi.org/10.3389/fimmu.2019.00332
D. Gancz, Z. Fishelson, Cancer resistance to complement-dependent cytotoxicity (CDC): problem-oriented research and development. Mol. Immunol. 46, 2794–2800 (2009). https://doi.org/10.1016/j.molimm.2009.05.009
B.A. Helmink, S.M. Reddy, J. Gao, S. Zhang, R. Basar et al., B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020). https://doi.org/10.1038/s41586-019-1922-8
S.S. Kim, W.A. Sumner, S. Miyauchi, E.E.W. Cohen, J.A. Califano et al., Role of B cells in responses to checkpoint blockade immunotherapy and overall survival of cancer patients. Clin. Cancer Res. 27, 6075–6082 (2021). https://doi.org/10.1158/1078-0432.ccr-21-0697
D.A. Barth, S. Stanzer, J.A. Spiegelberg, T. Bauernhofer, G. Absenger et al., Patterns of peripheral blood B-cell subtypes are associated with treatment response in patients treated with immune checkpoint inhibitors: a prospective longitudinal pan-cancer study. Front. Immunol. 13, 840207 (2022). https://doi.org/10.3389/fimmu.2022.840207
F. Petitprez, A. de Reyniès, E.Z. Keung, T.W.-W. Chen, C.-M. Sun et al., B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020). https://doi.org/10.1038/s41586-019-1906-8
V. Trujillo-Alonso, E.C. Pratt, H. Zong, A. Lara-Martinez, C. Kaittanis et al., FDA-approved ferumoxytol displays anti-leukaemia efficacy against cells with low ferroportin levels. Nat. Nanotechnol. 14, 616–622 (2019). https://doi.org/10.1038/s41565-019-0406-1
P. Xie, S.T. Yang, Y. Huang, C. Zeng, Q. Xin et al., Carbon nanops-Fe(II) complex for efficient tumor inhibition with low toxicity by amplifying oxidative stress. ACS Appl. Mater. Interfaces 12(26), 29094–29102 (2020). https://doi.org/10.1021/acsami.0c07617
Y.H. Ko, EBV and human cancer. Exp. Mol. Med. 47, e130 (2015). https://doi.org/10.1038/emm.2014.109
D. Srikrishna, K. Sachsenmeier, We need to bring R0 < 1 to treat cancer too. Genome Med. 13, 120 (2021). https://doi.org/10.1186/s13073-021-00940-9
D. Sarker, R. Plummer, T. Meyer, M.H. Sodergren, B. Basu et al., MTL-CEBPA, a small activating RNA therapeutic upregulating C/EBP-α, in patients with advanced liver cancer: a first-in-human, multicenter, open-label, phase I trial. Clin. Cancer Res. 26, 3936–3946 (2020). https://doi.org/10.1158/1078-0432.CCR-20-0414
N. Hilf, S. Kuttruff-Coqui, K. Frenzel, V. Bukur, S. Stevanović et al., Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240–245 (2019). https://doi.org/10.1038/s41586-018-0810-y
S.N. Bhatia, X. Chen, M.A. Dobrovolskaia, T. Lammers, Cancer nanomedicine. Nat. Rev. Cancer 22, 550–556 (2022). https://doi.org/10.1038/s41568-022-00496-9
T.A. Qiu, M.J. Gallagher, N.V. Hudson-Smith, J. Wu, M.O.P. Krause et al., Research highlights: unveiling the mechanisms underlying nanop-induced ROS generation and oxidative stress. Environ. Sci. Nano 3, 940–945 (2016). https://doi.org/10.1039/C6EN90021F
S.E. Lehman, A.S. Morris, P.S. Mueller, A.K. Salem, V.H. Grassian et al., Silica nanop-generated ROS as a predictor of cellular toxicity: mechanistic insights and safety by design. Environ. Sci. Nano 3, 56–66 (2016). https://doi.org/10.1039/C5EN00179J
Y. Li, W. Zhang, J. Niu, Y. Chen, Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanops. ACS Nano 6, 5164–5173 (2012). https://doi.org/10.1021/nn300934k
D. Bitounis, E. Jacquinet, M.A. Rogers, M.M. Amiji, Strategies to reduce the risks of mRNA drug and vaccine toxicity. Nat. Rev. Drug Discov. 23, 281–300 (2024). https://doi.org/10.1038/s41573-023-00859-3
J. Xu, D.H.C. Wong, J.D. Byrne, K. Chen, C. Bowerman et al., Future of the p replication in nonwetting templates (PRINT) technology. Angew. Chem. Int. Ed. 52, 6580–6589 (2013). https://doi.org/10.1002/anie.201209145
J.-M. Lim, A. Swami, L.M. Gilson, S. Chopra, S. Choi et al., Ultra-high throughput synthesis of nanops with homogeneous size distribution using a coaxial turbulent jet mixer. ACS Nano 8, 6056–6065 (2014). https://doi.org/10.1021/nn501371n
D. Wang, M. Zhang, Y. Zhang, G. Qiu, J. Chen et al., Intrap double-scattering-decoded sonogenetics for augmenting immune checkpoint blockade and CAR-T therapy. Adv. Sci. 9, e2203106 (2022). https://doi.org/10.1002/advs.202203106
L. Lei, S. Cai, Y. Zhang, L. Yang, J. Deng et al., Structure inversion-bridged sequential amino acid metabolism disturbance potentiates photodynamic-evoked immunotherapy. Adv. Funct. Mater. 32, 2103394 (2022). https://doi.org/10.1002/adfm.202103394
H. Zhou, C. Zhu, Q. Zhao, J. Ni, H. Zhang et al., Wrecking neutrophil extracellular traps and antagonizing cancer-associated neurotransmitters by interpenetrating network hydrogels prevent postsurgical cancer relapse and metastases. Bioact. Mater. 39, 14–24 (2024). https://doi.org/10.1016/j.bioactmat.2024.05.022
D. Wang, M. Zhang, G. Qiu, C. Rong, X. Zhu et al., Extracellular matrix viscosity reprogramming by in situ Au bioreactor-boosted microwavegenetics disables tumor escape in CAR-T immunotherapy. ACS Nano 17, 5503–5516 (2023). https://doi.org/10.1021/acsnano.2c10845
X. Dong, H. Liu, C. Fang, Y. Zhang, Q. Yang et al., Sonocatalytic on colysis microbiota curb intrinsic microbiota lactate metabolism and blockade CD24-Siglec10 immune escape to revitalize immunological surveillance. Biomaterials 311, 122662 (2024). https://doi.org/10.1016/j.biomaterials.2024.122662
R. Jiao, X. Lin, Q. Zhang, Y. Zhang, W. Qin et al., Anti-tumor immune potentiation targets-engineered nanobiotechnologies: design principles and applications. Prog. Mater. Sci. 142, 101230 (2024). https://doi.org/10.1016/j.pmatsci.2023.101230
C. Fang, G. Xiao, T. Wang, L. Song, B. Peng et al., Emerging nano-/ biotechnology drives oncolytic virus-activated and combined cancer immunotherapy. Research (Wash D C) 6, 0108 (2023). https://doi.org/10.34133/research.0108