A Valuable and Low-Budget Process Scheme of Equivalized 1 nm Technology Node Based on 2D Materials
Corresponding Author: He Tian
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 191
Abstract
Emerging two-dimensional (2D) semiconductors are among the most promising materials for ultra-scaled transistors due to their intrinsic atomic-level thickness. As the stacking process advances, the complexity and cost of nanosheet field-effect transistors (NSFETs) and complementary FET (CFET) continue to rise. The 1 nm technology node is going to be based on Si-CFET process according to international roadmap for devices and systems (IRDS) (2022, https://irds.ieee.org/), but not publicly confirmed, indicating that more possibilities still exist. The miniaturization advantage of 2D semiconductors motivates us to explore their potential for reducing process costs while matching the performance of next-generation nodes in terms of area, power consumption and speed. In this study, a comprehensive framework is built. A set of MoS2 NSFETs were designed and fabricated to extract the key parameters and performances. And then for benchmarking, the sizes of 2D-NSFET are scaled to a extent that both of the Si-CFET and 2D-NSFET have the same average device footprint. Under these conditions, the frequency of ultra-scaled 2D-NSFET is found to improve by 36% at a fixed power consumption. This work verifies the feasibility of replacing silicon-based CFETs of 1 nm node with 2D-NSFETs and proposes a 2D technology solution for 1 nm nodes, i.e., “2D eq 1 nm” nodes. At the same time, thanks to the lower characteristic length of 2D semiconductors, the miniaturized 2D-NSFET achieves a 28% frequency increase at a fixed power consumption. Further, developing a standard cell library, these devices obtain a similar trend in 16-bit RISC-V CPUs. This work quantifies and highlights the advantages of 2D semiconductors in advanced nodes, offering new possibilities for the application of 2D semiconductors in high-speed and low-power integrated circuits.
Highlights:
1 A set of MoS2 nanosheet field-effect transistors (NSFETs) are fabricated, with two stacking nanosheet channel, in which two parallel MoS2 channels are controlled by three gate electrodes simultaneously.
2 By building a comprehensive framework, the feasibility of replacing silicon-based complementary field-effect transistors of 1 nm node with 2D-NSFETs provides a 2D technology solution for 1 nm nodes, i.e., “2D eq 1 nm” nodes are verified.
3 The horizontally miniaturized 2D-NSFET achieves a frequency increase of 28% at a fixed power consumption and also obtains a similar trend in 16-bit RISC-V CPU.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- More moore white paper. (IEEE international roadmap for devices and systems (IRDS)). (2022). https://irds.ieee.org/
- J. Ryckaert, M.H. Na, P. Weckx, D. Jang, P. Schuddinck et al., Enabling sub-5nm CMOS technology scaling thinner and taller!. 2019 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2019. San Francisco, CA, USA. IEEE, (2019). 29.4.1–29.4.4. https://doi.org/10.1109/iedm19573.2019.8993631
- Q. Zhang, H. Yin, J. Luo, H. Yang, L. Meng et al., FOI FinFET with ultra-low parasitic resistance enabled by fully metallic source and drain formation on isolated bulk-fin. 2016 IEEE International Electron Devices Meeting (IEDM). December 3–7, 2016, San Francisco, CA, USA. IEEE, (2016)., 17.3.1–17.3.4. https://doi.org/10.1109/IEDM.2016.7838438
- D. Jang, D. Yakimets, G. Eneman, P. Schuddinck, M.G. Bardon et al., Device exploration of NanoSheet transistors for sub-7-nm technology node. IEEE Trans. Electron Devices 64, 2707–2713 (2017). https://doi.org/10.1109/TED.2017.2695455
- S. Barraud, V. Lapras, B. Previtali, M.P. Samson, J. Lacord et al., Performance and design considerations for gate-all-around stacked-NanoWires FETs. 2017 IEEE International Electron Devices Meeting (IEDM). December 2–6, 2017, San Francisco, CA, USA. IEEE, (2017)., 29.2.1–29.2.4. https://doi.org/10.1109/IEDM.2017.8268473
- N. Loubet, T. Hook, P. Montanini, C.W. Yeung, S. Kanakasabapathy et al., Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. In 2017 IEEE Symposium on VLSI Technology, Kyoto, Japan, T230-T231 (2017). https://doi.org/10.23919/VLSIT.2017.7998183
- D. Yakimets, M.G. Bardon, D. Jang, P. Schuddinck, Y. Sherazi et al., Power aware FinFET and lateral nanosheet FET targeting for 3nm CMOS technology. 2017 IEEE International Electron Devices Meeting (IEDM). December 2–6, 2017, San Francisco, CA, USA. IEEE, (2017)., 20.4.1–20.4.4. https://doi.org/10.1109/IEDM.2017.8268429
- J. Kim, J.-S. Lee, J.-W. Han, M. Meyyappan, Single-event transient in FinFETs and nanosheet FETs. IEEE Electron Device Lett. 39, 1840–1843 (2018). https://doi.org/10.1109/LED.2018.2877882
- A. Veloso, A. Hikavyy, R. Loo, V. Paraschiv, B.T. Chan et al., Vertical nanowire and nanosheet FETs: device features, novel schemes for improved process control and enhanced mobility, potential for faster & more energy efficient circuits. 2019 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2019. San Francisco, CA, USA. IEEE, (2019). 11.1.1–11.1.4. https://doi.org/10.1109/iedm19573.2019.8993602
- P. Weckx, J. Ryckaert, E.D. Litta, D. Yakimets, P. Matagne et al., Novel forksheet device architecture as ultimate logic scaling device towards 2nm. 2019 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2019. San Francisco, CA, USA. IEEE, (2019). 36.5.1–36.5.4. https://doi.org/10.1109/iedm19573.2019.8993635
- J. Ryckaert, P. Schuddinck, P. Weckx, G. Bouche, B. Vincent et al., The complementary FET (CFET) for CMOS scaling beyond N3.2018 IEEE Symposium on VLSI Technology. June 18-22, 2018, Honolulu, HI, USA. IEEE, (2018)., pp.141–142. https://doi.org/10.1109/VLSIT.2018.8510618
- K.S. Kim, J. Kwon, H. Ryu, C. Kim, H. Kim et al., The future of two-dimensional semiconductors beyond Moore’s law. Nat. Nanotechnol. 19, 895–906 (2024). https://doi.org/10.1038/s41565-024-01695-1
- H. Ahn, G. Moon, H.-G. Jung, B. Deng, D.-H. Yang et al., Integrated 1D epitaxial mirror twin boundaries for ultrascaled 2D MoS2 field-effect transistors. Nat. Nanotechnol. 19, 955–961 (2024). https://doi.org/10.1038/s41565-024-01706-1
- S.B. Desai, S.R. Madhvapathy, A.B. Sachid, J.P. Llinas, Q. Wang et al., MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016). https://doi.org/10.1126/science.aah4698
- F. Wu, H. Tian, Y. Shen, Z. Hou, J. Ren et al., Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022). https://doi.org/10.1038/s41586-021-04323-3
- Z. Ahmed, A. Afzalian, T. Schram, D. Jang, D. Verreck et al., Introducing 2D-FETs in device scaling roadmap using DTCO. 2020 IEEE International Electron Devices Meeting (IEDM). December 12–18, 2020. San Francisco, CA, USA. IEEE, (2020). 22.5.1–22.5.4. https://doi.org/10.1109/iedm13553.2020.9371906
- C.J. Liu, Y. Wan, L.J. Li, C.P. Lin, T.H. Hou et al., 2D materials-based static random-access memory. Adv. Mater. 34, e2107894 (2022). https://doi.org/10.1002/adma.202107894
- Y.C. Lu, J.K. Huang, K.Y. Chao, L.J. Li, V.P. Hu, Projected performance of Si- and 2D-material-based SRAM circuits ranging from 16 nm to 1 nm technology nodes. Nat. Nanotechnol. 19, 1066–1072 (2024). https://doi.org/10.1038/s41565-024-01693-3
- Y. Xia, L. Zong, Y. Pan, X. Chen, L. Zhou et al., Wafer-scale demonstration of MBC-FET and C-FET arrays based on two-dimensional semiconductors. Small 18, e2107650 (2022). https://doi.org/10.1002/smll.202107650
- X. Huang, C. Liu, Z. Tang, S. Zeng, L. Liu et al., High drive and low leakage current MBC FET with channel thickness 1.2nm/0.6nm. 2020 IEEE International Electron Devices Meeting (IEDM). December 12–18, 2020. San Francisco, CA, USA. IEEE, (2020). 12.1.1–12.1.4. https://doi.org/10.1109/iedm13553.2020.9371941
- D.M. Sathaiya, T.Y.T. Hung, E. Chen, W.-C. Wu, A. Wei et al., Comprehensive physics based TCAD model for 2D MX2 channel transistors. 2022 International Electron Devices Meeting (IEDM). December 3–7, 2022, San Francisco, CA, USA. IEEE, (2022)., 28.4.1–28.4.4. https://doi.org/10.1109/IEDM45625.2022.10019446
- S. Wachter, D.K. Polyushkin, O. Bethge, T. Mueller, A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017). https://doi.org/10.1038/ncomms14948
- Y. Shen, Z. Dong, Y. Sun, H. Guo, F. Wu et al., The trend of 2D transistors toward integrated circuits: scaling down and new mechanisms. Adv. Mater. 34, e2201916 (2022). https://doi.org/10.1002/adma.202201916
- K. Zhu, S. Pazos, F. Aguirre, Y. Shen, Y. Yuan et al., Hybrid 2D–CMOS microchips for memristive applications. Nature 618, 57–62 (2023). https://doi.org/10.1038/s41586-023-05973-1
- S.B. Samavedam, J. Ryckaert, E. Beyne, K. Ronse, N. Horiguchi et al., Future logic scaling: towards atomic channels and deconstructed chips. 2020 IEEE International Electron Devices Meeting (IEDM). December 12–18, 2020. San Francisco, CA, USA. IEEE, (2020). 1.1.1–1.1.10. https://doi.org/10.1109/iedm13553.2020.9372023
- G. Hills, C. Lau, A. Wright, S. Fuller, M.D. Bishop et al., Modern microprocessor built from complementary carbon nanotube transistors. Nature 572, 595–602 (2019). https://doi.org/10.1038/s41586-019-1493-8
- D. Fan, W. Li, H. Qiu, Y. Xu, S. Gao et al., Two-dimensional semiconductor integrated circuits operating at gigahertz frequencies. Nat. Electron. 6, 879–887 (2023). https://doi.org/10.1038/s41928-023-01052-5
- W. Li, X. Gong, Z. Yu, L. Ma, W. Sun et al., Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613, 274–279 (2023). https://doi.org/10.1038/s41586-022-05431-4
- X. Wei, X. Zhang, H. Yu, L. Gao, W. Tang et al., Homojunction-loaded inverters based on self-biased molybdenum disulfide transistors for sub-picowatt computing. Nat. Electron. 7, 138–146 (2024). https://doi.org/10.1038/s41928-023-01112-w
- H.K. Ng, D. Xiang, A. Suwardi, G. Hu, K. Yang et al., Improving carrier mobility in two-dimensional semiconductors with rippled materials. Nat. Electron. 5, 489–496 (2022). https://doi.org/10.1038/s41928-022-00777-z
- C.-S. Lee, B. Cline, S. Sinha, G. Yeric, H.S. Philip Wong, 32-bit processor core at 5-nm technology: analysis of transistor and interconnect impact on VLSI system performance. 2016 IEEE international electron devices meeting (IEDM). December 3–7, 2016, San Francisco, CA, USA. IEEE, (2016)., 28.3.1–28.3.4. https://doi.org/10.1109/IEDM.2016.7838498
References
More moore white paper. (IEEE international roadmap for devices and systems (IRDS)). (2022). https://irds.ieee.org/
J. Ryckaert, M.H. Na, P. Weckx, D. Jang, P. Schuddinck et al., Enabling sub-5nm CMOS technology scaling thinner and taller!. 2019 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2019. San Francisco, CA, USA. IEEE, (2019). 29.4.1–29.4.4. https://doi.org/10.1109/iedm19573.2019.8993631
Q. Zhang, H. Yin, J. Luo, H. Yang, L. Meng et al., FOI FinFET with ultra-low parasitic resistance enabled by fully metallic source and drain formation on isolated bulk-fin. 2016 IEEE International Electron Devices Meeting (IEDM). December 3–7, 2016, San Francisco, CA, USA. IEEE, (2016)., 17.3.1–17.3.4. https://doi.org/10.1109/IEDM.2016.7838438
D. Jang, D. Yakimets, G. Eneman, P. Schuddinck, M.G. Bardon et al., Device exploration of NanoSheet transistors for sub-7-nm technology node. IEEE Trans. Electron Devices 64, 2707–2713 (2017). https://doi.org/10.1109/TED.2017.2695455
S. Barraud, V. Lapras, B. Previtali, M.P. Samson, J. Lacord et al., Performance and design considerations for gate-all-around stacked-NanoWires FETs. 2017 IEEE International Electron Devices Meeting (IEDM). December 2–6, 2017, San Francisco, CA, USA. IEEE, (2017)., 29.2.1–29.2.4. https://doi.org/10.1109/IEDM.2017.8268473
N. Loubet, T. Hook, P. Montanini, C.W. Yeung, S. Kanakasabapathy et al., Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. In 2017 IEEE Symposium on VLSI Technology, Kyoto, Japan, T230-T231 (2017). https://doi.org/10.23919/VLSIT.2017.7998183
D. Yakimets, M.G. Bardon, D. Jang, P. Schuddinck, Y. Sherazi et al., Power aware FinFET and lateral nanosheet FET targeting for 3nm CMOS technology. 2017 IEEE International Electron Devices Meeting (IEDM). December 2–6, 2017, San Francisco, CA, USA. IEEE, (2017)., 20.4.1–20.4.4. https://doi.org/10.1109/IEDM.2017.8268429
J. Kim, J.-S. Lee, J.-W. Han, M. Meyyappan, Single-event transient in FinFETs and nanosheet FETs. IEEE Electron Device Lett. 39, 1840–1843 (2018). https://doi.org/10.1109/LED.2018.2877882
A. Veloso, A. Hikavyy, R. Loo, V. Paraschiv, B.T. Chan et al., Vertical nanowire and nanosheet FETs: device features, novel schemes for improved process control and enhanced mobility, potential for faster & more energy efficient circuits. 2019 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2019. San Francisco, CA, USA. IEEE, (2019). 11.1.1–11.1.4. https://doi.org/10.1109/iedm19573.2019.8993602
P. Weckx, J. Ryckaert, E.D. Litta, D. Yakimets, P. Matagne et al., Novel forksheet device architecture as ultimate logic scaling device towards 2nm. 2019 IEEE International Electron Devices Meeting (IEDM). December 7–11, 2019. San Francisco, CA, USA. IEEE, (2019). 36.5.1–36.5.4. https://doi.org/10.1109/iedm19573.2019.8993635
J. Ryckaert, P. Schuddinck, P. Weckx, G. Bouche, B. Vincent et al., The complementary FET (CFET) for CMOS scaling beyond N3.2018 IEEE Symposium on VLSI Technology. June 18-22, 2018, Honolulu, HI, USA. IEEE, (2018)., pp.141–142. https://doi.org/10.1109/VLSIT.2018.8510618
K.S. Kim, J. Kwon, H. Ryu, C. Kim, H. Kim et al., The future of two-dimensional semiconductors beyond Moore’s law. Nat. Nanotechnol. 19, 895–906 (2024). https://doi.org/10.1038/s41565-024-01695-1
H. Ahn, G. Moon, H.-G. Jung, B. Deng, D.-H. Yang et al., Integrated 1D epitaxial mirror twin boundaries for ultrascaled 2D MoS2 field-effect transistors. Nat. Nanotechnol. 19, 955–961 (2024). https://doi.org/10.1038/s41565-024-01706-1
S.B. Desai, S.R. Madhvapathy, A.B. Sachid, J.P. Llinas, Q. Wang et al., MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016). https://doi.org/10.1126/science.aah4698
F. Wu, H. Tian, Y. Shen, Z. Hou, J. Ren et al., Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022). https://doi.org/10.1038/s41586-021-04323-3
Z. Ahmed, A. Afzalian, T. Schram, D. Jang, D. Verreck et al., Introducing 2D-FETs in device scaling roadmap using DTCO. 2020 IEEE International Electron Devices Meeting (IEDM). December 12–18, 2020. San Francisco, CA, USA. IEEE, (2020). 22.5.1–22.5.4. https://doi.org/10.1109/iedm13553.2020.9371906
C.J. Liu, Y. Wan, L.J. Li, C.P. Lin, T.H. Hou et al., 2D materials-based static random-access memory. Adv. Mater. 34, e2107894 (2022). https://doi.org/10.1002/adma.202107894
Y.C. Lu, J.K. Huang, K.Y. Chao, L.J. Li, V.P. Hu, Projected performance of Si- and 2D-material-based SRAM circuits ranging from 16 nm to 1 nm technology nodes. Nat. Nanotechnol. 19, 1066–1072 (2024). https://doi.org/10.1038/s41565-024-01693-3
Y. Xia, L. Zong, Y. Pan, X. Chen, L. Zhou et al., Wafer-scale demonstration of MBC-FET and C-FET arrays based on two-dimensional semiconductors. Small 18, e2107650 (2022). https://doi.org/10.1002/smll.202107650
X. Huang, C. Liu, Z. Tang, S. Zeng, L. Liu et al., High drive and low leakage current MBC FET with channel thickness 1.2nm/0.6nm. 2020 IEEE International Electron Devices Meeting (IEDM). December 12–18, 2020. San Francisco, CA, USA. IEEE, (2020). 12.1.1–12.1.4. https://doi.org/10.1109/iedm13553.2020.9371941
D.M. Sathaiya, T.Y.T. Hung, E. Chen, W.-C. Wu, A. Wei et al., Comprehensive physics based TCAD model for 2D MX2 channel transistors. 2022 International Electron Devices Meeting (IEDM). December 3–7, 2022, San Francisco, CA, USA. IEEE, (2022)., 28.4.1–28.4.4. https://doi.org/10.1109/IEDM45625.2022.10019446
S. Wachter, D.K. Polyushkin, O. Bethge, T. Mueller, A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017). https://doi.org/10.1038/ncomms14948
Y. Shen, Z. Dong, Y. Sun, H. Guo, F. Wu et al., The trend of 2D transistors toward integrated circuits: scaling down and new mechanisms. Adv. Mater. 34, e2201916 (2022). https://doi.org/10.1002/adma.202201916
K. Zhu, S. Pazos, F. Aguirre, Y. Shen, Y. Yuan et al., Hybrid 2D–CMOS microchips for memristive applications. Nature 618, 57–62 (2023). https://doi.org/10.1038/s41586-023-05973-1
S.B. Samavedam, J. Ryckaert, E. Beyne, K. Ronse, N. Horiguchi et al., Future logic scaling: towards atomic channels and deconstructed chips. 2020 IEEE International Electron Devices Meeting (IEDM). December 12–18, 2020. San Francisco, CA, USA. IEEE, (2020). 1.1.1–1.1.10. https://doi.org/10.1109/iedm13553.2020.9372023
G. Hills, C. Lau, A. Wright, S. Fuller, M.D. Bishop et al., Modern microprocessor built from complementary carbon nanotube transistors. Nature 572, 595–602 (2019). https://doi.org/10.1038/s41586-019-1493-8
D. Fan, W. Li, H. Qiu, Y. Xu, S. Gao et al., Two-dimensional semiconductor integrated circuits operating at gigahertz frequencies. Nat. Electron. 6, 879–887 (2023). https://doi.org/10.1038/s41928-023-01052-5
W. Li, X. Gong, Z. Yu, L. Ma, W. Sun et al., Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613, 274–279 (2023). https://doi.org/10.1038/s41586-022-05431-4
X. Wei, X. Zhang, H. Yu, L. Gao, W. Tang et al., Homojunction-loaded inverters based on self-biased molybdenum disulfide transistors for sub-picowatt computing. Nat. Electron. 7, 138–146 (2024). https://doi.org/10.1038/s41928-023-01112-w
H.K. Ng, D. Xiang, A. Suwardi, G. Hu, K. Yang et al., Improving carrier mobility in two-dimensional semiconductors with rippled materials. Nat. Electron. 5, 489–496 (2022). https://doi.org/10.1038/s41928-022-00777-z
C.-S. Lee, B. Cline, S. Sinha, G. Yeric, H.S. Philip Wong, 32-bit processor core at 5-nm technology: analysis of transistor and interconnect impact on VLSI system performance. 2016 IEEE international electron devices meeting (IEDM). December 3–7, 2016, San Francisco, CA, USA. IEEE, (2016)., 28.3.1–28.3.4. https://doi.org/10.1109/IEDM.2016.7838498