A Flexible Dual-Mode Photodetector for Human–Machine Collaborative IR Imaging
Corresponding Author: He Tian
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 229
Abstract
Photothermoelectric (PTE) photodetectors with self-powered and uncooled advantages have attracted much interest due to the wide application prospects in the military and civilian fields. However, traditional PTE photodetectors lack of mechanical flexibility and cannot operate independently without the test instrument. Herein, we present a flexible PTE photodetector capable of dual-mode output, combining electrical and optical signal generation for enhanced functionality. Using solution processing, high-quality MXene thin films are assembled on asymmetric electrodes as the photosensitive layer. The geometrically asymmetric electrode design significantly enhances the responsivity, achieving 0.33 mA W−1 under infrared illumination, twice that of the symmetrical configuration. This improvement stems from optimized photothermal conversion and an expanded temperature gradient. The PTE device maintains stable performance after 300 bending cycles, demonstrating excellent flexibility. A new energy conversion pathway has been established by coupling the photothermal conversion of MXene with thermochromic composite materials, leading to a real-time visualization of invisible infrared radiation. Leveraging this functionality, we demonstrate the first human–machine collaborative infrared imaging system, wherein the dual-mode photodetector arrays synchronously generate human-readable pattern and machine-readable pattern. Our study not only provides a new solution for functional integration of flexible photodetectors, but also sets a new benchmark for human–machine collaborative optoelectronics.
Highlights:
1 An optical/electric dual-mode photodetector array for human–machine collaborative infrared imaging was demonstrated.
2 The responsivity of the photothermoelectric photodetector was improved by the geometrically asymmetric electrodes.
3 Coupling the photothermal conversion of MXene with thermochromic composites enabled a direct visualization of invisible infrared radiation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Xiong, Q. Yu, X. Hou, B. Liu, S. Li et al., Short-wave infrared photodetectors based on β-In2Se3/Te heterojunctions for optical communication and polarimetric imaging applications. Adv. Funct. Mater. 34(26), 2314972 (2024). https://doi.org/10.1002/adfm.202314972
- N. Li, P. Mahalingavelar, J.H. Vella, D.-S. Leem, J.D. Azoulay et al., Solution-processable infrared photodetectors: materials, device physics, and applications. Mater. Sci. Eng. R. Rep. 146, 100643 (2021). https://doi.org/10.1016/j.mser.2021.100643
- F. Cao, L. Liu, L. Li, Short-wave infrared photodetector. Mater. Today 62, 327–349 (2023). https://doi.org/10.1016/j.mattod.2022.11.003
- A.T. Jhang, P.C. Tsai, Y.T. Tsai, S.Y. Lin, M.H. Fang, Quantum-dots-In-double-perovskite for high-gain short-wave infrared photodetector. Adv. Opt. Mater. 12(29), 2401252 (2024). https://doi.org/10.1002/adom.202401252
- W. Jiang, T. Zheng, B. Wu, H. Jiao, X. Wang et al., A versatile photodetector assisted by photovoltaic and bolometric effects. Light Sci. Appl. 9, 160 (2020). https://doi.org/10.1038/s41377-020-00396-3
- A. Corletto, P. Myagmarsereejid, S. Wang, W. Yan, S. Balendhran et al., Scalable fabrication of black phosphorous films for infrared photodetector arrays. Adv. Sci. 11(35), 2403182 (2024). https://doi.org/10.1002/advs.202403182
- R. Sharma, L.N. Henderson, P. Sankar, M.M. Tresa, O.P. Oyeku et al., Recent advancements in nanomaterials for near-infrared to long-wave infrared photodetectors. Adv. Opt. Mater. 12(35), 2401821 (2024). https://doi.org/10.1002/adom.202401821
- C.R. Paul Inbaraj, R.J. Mathew, R. Sankar, H.Y. Lin, N.X. Li et al., Coupling between pyroelectricity and built-In electric field enabled highly sensitive infrared phototransistor based on InSe/WSe2/P(VDF-TrFE) heterostructure. ACS Appl. Mater. Interfaces 15(15), 19121–19128 (2023). https://doi.org/10.1021/acsami.2c22876
- M. Dai, X. Zhang, Q.J. Wang, 2D materials for photothermoelectric detectors: mechanisms, materials, and devices. Adv. Funct. Mater. 34(21), 2312872 (2024). https://doi.org/10.1002/adfm.202312872
- H. Zhou, P. Tao, Y. Lin, Z. Chen, Y. Zhao et al., A flexible in-plane p–n heterojunction nano-generator with phonon-enhanced photothermoelectric effect to harvest solar energy. J. Mater. Chem. A 9(26), 14958–14968 (2021). https://doi.org/10.1039/D1TA02946K
- S. Hong, G. Zou, H. Kim, D. Huang, P. Wang et al., Photothermoelectric response of Ti3C2Tx MXene confined ion channels. ACS Nano 14(7), 9042–9049 (2020). https://doi.org/10.1021/acsnano.0c04099
- Y. Liu, Q. Hu, Y. Cao, P. Wang, J. Wei et al., High-performance ultrabroadband photodetector based on photothermoelectric effect. ACS Appl. Mater. Interfaces 14(25), 29077–29086 (2022). https://doi.org/10.1021/acsami.2c03925
- Z. Xue, Z. Fan, X. Liao, Y. Li, Y. Qin et al., Metasurface enabled photothermoelectric photoresponse of semimetal Cd3As2 for broadband photodetection. Nano Lett. 22(21), 8728–8734 (2022). https://doi.org/10.1021/acs.nanolett.2c03574
- X. Lu, P. Jiang, X. Bao, Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector. Nat. Commun. 10(1), 138 (2019). https://doi.org/10.1038/s41467-018-07860-0
- M. Dai, C. Wang, B. Qiang, Y. Jin, M. Ye et al., Long-wave infrared photothermoelectric detectors with ultrahigh polarization sensitivity. Nat. Commun. 14(1), 3421 (2023). https://doi.org/10.1038/s41467-023-39071-7
- C. Chen, H.-L. Yu, Y.-M. Zhao, P.-X. Hou, S.-Y. Guo et al., Ultrahigh-response flexible photothermoelectric photodetectors based on a graded Bi2Te3-carbon nanotube hybrid. Chem. Eng. J. 497, 154263 (2024). https://doi.org/10.1016/j.cej.2024.154263
- M. Zhang, Y. Liu, F. Guo, B. Zhang, B. Hu et al., High-performance flexible broadband photothermoelectric photodetectors based on tellurium films. ACS Appl. Mater. Interfaces 16(5), 6152–6161 (2024). https://doi.org/10.1021/acsami.3c17933
- R. Wang, Z. He, J.-L. Wang, J.-Y. Liu, J.-W. Liu et al., Manipulating nanowire structures for an enhanced broad-band flexible photothermoelectric photodetector. Nano Lett. 22(14), 5929–5935 (2022). https://doi.org/10.1021/acs.nanolett.2c01957
- P. Das, P.K. Marvi, S. Ganguly, X. Tang, B. Wang et al., MXene-based elastomer mimetic stretchable sensors: design, properties, and applications. Nano-Micro Lett. 16(1), 135 (2024). https://doi.org/10.1007/s40820-024-01349-w
- A. Gao, R.R. Murphy, W. Chen, G. Dagnino, P. Fischer et al., Progress in robotics for combating infectious diseases. Sci. Robot. 6(52), eabf1462 (2021). https://doi.org/10.1126/scirobotics.abf1462
- J. Chen, K. Han, J. Luo, L. Xu, W. Tang et al., Soft robots with self-powered configurational sensing. Nano Energy 77, 105171 (2020). https://doi.org/10.1016/j.nanoen.2020.105171
- Y. Cao, B. Xu, B. Li, H. Fu, Advanced design of soft robots with artificial intelligence. Nano-Micro Lett. 16, 214 (2024). https://doi.org/10.1007/s40820-024-01423-3
- B. Moya, A. Badías, D. González, F. Chinesta, E. Cueto, A thermodynamics-informed active learning approach to perception and reasoning about fluids. Comput. Mech. 72(3), 577–591 (2023). https://doi.org/10.1007/s00466-023-02279-x
- S. Gong, W. Li, J. Wu, B. Feng, Z. Yi et al., A soft collaborative robot for contact-based intuitive human drag teaching. Adv. Sci. 11(24), e2308835 (2024). https://doi.org/10.1002/advs.202308835
- U.E. Ogenyi, J. Liu, C. Yang, Z. Ju, H. Liu, Physical human–robot collaboration: robotic systems, learning methods, collaborative strategies, sensors, and actuators. IEEE Trans. Cybern. 51(4), 1888–1901 (2021). https://doi.org/10.1109/TCYB.2019.2947532
- H. Chu, T. Zhang, Y. Zou, H. Sun, “Follower” to “collaborator”: a robot proactive collaborative controller based on human multimodal information for 3D handling/assembly scenarios. J. Manuf. Syst. 73, 287–306 (2024). https://doi.org/10.1016/j.jmsy.2024.02.008
- F. Cao, Z. Hu, T. Yan, E. Hong, X. Deng et al., A dual-functional perovskite-based photodetector and memristor for visual memory. Adv. Mater. 35(44), e2304550 (2023). https://doi.org/10.1002/adma.202304550
- C. Choi, G.J. Lee, S. Chang, Y.M. Song, D.H. Kim, Inspiration from visual ecology for advancing multifunctional robotic vision systems: bio-inspired electronic eyes and neuromorphic image sensors. Adv. Mater. 36(48), e2412252 (2024). https://doi.org/10.1002/adma.202412252
- H. Fang, L. Wu, H. Ma, W. Wu, L. Wu et al., Dual-function biomimetic eyes based on thermally-stable organohydrogel electrolyte. Chem. Eng. J. 438, 135383 (2022). https://doi.org/10.1016/j.cej.2022.135383
- D. Xu, Z. Li, L. Li, J. Wang, Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv. Funct. Mater. 30, 2000712 (2020). https://doi.org/10.1002/adfm.202000712
- S.-Y. Pang, W.F. Io, F. Guo, Y. Zhao, J. Hao, Two-dimensional MXene-based devices for information technology. Mater. Sci. Eng. R. Rep. 163, 100894 (2025). https://doi.org/10.1016/j.mser.2024.100894
- H.V. Neelamana, S.M. Rekha, S.V. Bhat, Ti3C2Tx MXene: a new promising 2D material for optoelectronics. Chem. Mater. 35, 7386–7405 (2023). https://doi.org/10.1021/acs.chemmater.3c01660
- A. Parihar, A. Singhal, N. Kumar, R. Khan, M.A. Khan et al., Next-generation intelligent MXene-based electrochemical aptasensors for point-of-care cancer diagnostics. Nano-Micro Lett. 14(1), 100 (2022). https://doi.org/10.1007/s40820-022-00845-1
- W. Cao, Z. Wang, X. Liu, Z. Zhou, Y. Zhang et al., Bioinspired MXene-based user-interactive electronic skin for digital and visual dual-channel sensing. Nano-Micro Lett. 14(1), 119 (2022). https://doi.org/10.1007/s40820-022-00838-0
- H. Ma, H. Fang, Y. Liu, J. Li, K. Jing et al., Fully transparent ultraviolet photodetector with ultrahigh responsivity enhanced by MXene-induced photogating effect. Adv. Opt. Mater. 11(12), 2300393 (2023). https://doi.org/10.1002/adom.202300393
- T. Parker, D. Zhang, D. Bugallo, K. Shevchuk, M. Downes et al., Fourier-transform infrared spectral library of MXenes. Chem. Mater. 36(17), 8437–8446 (2024). https://doi.org/10.1021/acs.chemmater.4c01536
- R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11(4), 3752–3759 (2017). https://doi.org/10.1021/acsnano.6b08415
- H. Ma, H. Fang, J. Li, Z. Li, X. Fang et al., Transmittance contrast-induced photocurrent: a general strategy for self-powered photodetectors based on MXene electrodes. InfoMat 6(5), e12540 (2024). https://doi.org/10.1002/inf2.12540
- W. Song, J. Chen, Z. Li, X. Fang, Self-powered MXene/GaN van der Waals heterojunction ultraviolet photodiodes with superhigh efficiency and stable current outputs. Adv. Mater. 33(27), e2101059 (2021). https://doi.org/10.1002/adma.202101059
- H. Lin, X. Wang, L. Yu, Y. Chen, J. Shi, Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 17(1), 384–391 (2017). https://doi.org/10.1021/acs.nanolett.6b04339
- W. Zeng, X. Ye, Y. Dong, Y. Zhang, C. Sun et al., MXene for photocatalysis and photothermal conversion: synthesis, physicochemical properties, and applications. Coord. Chem. Rev. 508, 215753 (2024). https://doi.org/10.1016/j.ccr.2024.215753
- T. Yuan, R. Yin, C. Li, Z. Fan, L. Pan, Ti3C2Tx MXene-based all-resistive dual-mode sensor with near-zero temperature coefficient of resistance for crosstalk-free pressure and temperature detections. Chem. Eng. J. 487, 150396 (2024). https://doi.org/10.1016/j.cej.2024.150396
- Y. Zhang, J. Jiang, Z. Zhang, H. Yu, Y. Lian et al., Long-wave infrared photothermoelectric detectors with resonant nanophotonics. J. Mater. Chem. C 12(41), 16714–16721 (2024). https://doi.org/10.1039/d4tc02504k
- D. Wang, A.E.L. Allcca, T.F. Chung, A.V. Kildishev, Y.P. Chen et al., Enhancing the graphene photocurrent using surface plasmons and a p-n junction. Light Sci. Appl. 9, 126 (2020). https://doi.org/10.1038/s41377-020-00344-1
- L. Li, G. Shen, MXene based flexible photodetectors: progress, challenges, and opportunities. Mater. Horiz. 10(12), 5457–5473 (2023). https://doi.org/10.1039/d3mh01362f
- L. Gao, Y. Zhao, X. Chang, J. Zhang, Y. Li et al., Emerging applications of MXenes for photodetection: recent advances and future challenges. Mater. Today 61, 169–190 (2022). https://doi.org/10.1016/j.mattod.2022.10.022
- A. Ahmed, S. Sharma, B. Adak, M.M. Hossain, A.M. LaChance et al., Two-dimensional MXenes: new frontier of wearable and flexible electronics. InfoMat 4, e12295 (2022). https://doi.org/10.1002/inf2.12295
References
J. Xiong, Q. Yu, X. Hou, B. Liu, S. Li et al., Short-wave infrared photodetectors based on β-In2Se3/Te heterojunctions for optical communication and polarimetric imaging applications. Adv. Funct. Mater. 34(26), 2314972 (2024). https://doi.org/10.1002/adfm.202314972
N. Li, P. Mahalingavelar, J.H. Vella, D.-S. Leem, J.D. Azoulay et al., Solution-processable infrared photodetectors: materials, device physics, and applications. Mater. Sci. Eng. R. Rep. 146, 100643 (2021). https://doi.org/10.1016/j.mser.2021.100643
F. Cao, L. Liu, L. Li, Short-wave infrared photodetector. Mater. Today 62, 327–349 (2023). https://doi.org/10.1016/j.mattod.2022.11.003
A.T. Jhang, P.C. Tsai, Y.T. Tsai, S.Y. Lin, M.H. Fang, Quantum-dots-In-double-perovskite for high-gain short-wave infrared photodetector. Adv. Opt. Mater. 12(29), 2401252 (2024). https://doi.org/10.1002/adom.202401252
W. Jiang, T. Zheng, B. Wu, H. Jiao, X. Wang et al., A versatile photodetector assisted by photovoltaic and bolometric effects. Light Sci. Appl. 9, 160 (2020). https://doi.org/10.1038/s41377-020-00396-3
A. Corletto, P. Myagmarsereejid, S. Wang, W. Yan, S. Balendhran et al., Scalable fabrication of black phosphorous films for infrared photodetector arrays. Adv. Sci. 11(35), 2403182 (2024). https://doi.org/10.1002/advs.202403182
R. Sharma, L.N. Henderson, P. Sankar, M.M. Tresa, O.P. Oyeku et al., Recent advancements in nanomaterials for near-infrared to long-wave infrared photodetectors. Adv. Opt. Mater. 12(35), 2401821 (2024). https://doi.org/10.1002/adom.202401821
C.R. Paul Inbaraj, R.J. Mathew, R. Sankar, H.Y. Lin, N.X. Li et al., Coupling between pyroelectricity and built-In electric field enabled highly sensitive infrared phototransistor based on InSe/WSe2/P(VDF-TrFE) heterostructure. ACS Appl. Mater. Interfaces 15(15), 19121–19128 (2023). https://doi.org/10.1021/acsami.2c22876
M. Dai, X. Zhang, Q.J. Wang, 2D materials for photothermoelectric detectors: mechanisms, materials, and devices. Adv. Funct. Mater. 34(21), 2312872 (2024). https://doi.org/10.1002/adfm.202312872
H. Zhou, P. Tao, Y. Lin, Z. Chen, Y. Zhao et al., A flexible in-plane p–n heterojunction nano-generator with phonon-enhanced photothermoelectric effect to harvest solar energy. J. Mater. Chem. A 9(26), 14958–14968 (2021). https://doi.org/10.1039/D1TA02946K
S. Hong, G. Zou, H. Kim, D. Huang, P. Wang et al., Photothermoelectric response of Ti3C2Tx MXene confined ion channels. ACS Nano 14(7), 9042–9049 (2020). https://doi.org/10.1021/acsnano.0c04099
Y. Liu, Q. Hu, Y. Cao, P. Wang, J. Wei et al., High-performance ultrabroadband photodetector based on photothermoelectric effect. ACS Appl. Mater. Interfaces 14(25), 29077–29086 (2022). https://doi.org/10.1021/acsami.2c03925
Z. Xue, Z. Fan, X. Liao, Y. Li, Y. Qin et al., Metasurface enabled photothermoelectric photoresponse of semimetal Cd3As2 for broadband photodetection. Nano Lett. 22(21), 8728–8734 (2022). https://doi.org/10.1021/acs.nanolett.2c03574
X. Lu, P. Jiang, X. Bao, Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector. Nat. Commun. 10(1), 138 (2019). https://doi.org/10.1038/s41467-018-07860-0
M. Dai, C. Wang, B. Qiang, Y. Jin, M. Ye et al., Long-wave infrared photothermoelectric detectors with ultrahigh polarization sensitivity. Nat. Commun. 14(1), 3421 (2023). https://doi.org/10.1038/s41467-023-39071-7
C. Chen, H.-L. Yu, Y.-M. Zhao, P.-X. Hou, S.-Y. Guo et al., Ultrahigh-response flexible photothermoelectric photodetectors based on a graded Bi2Te3-carbon nanotube hybrid. Chem. Eng. J. 497, 154263 (2024). https://doi.org/10.1016/j.cej.2024.154263
M. Zhang, Y. Liu, F. Guo, B. Zhang, B. Hu et al., High-performance flexible broadband photothermoelectric photodetectors based on tellurium films. ACS Appl. Mater. Interfaces 16(5), 6152–6161 (2024). https://doi.org/10.1021/acsami.3c17933
R. Wang, Z. He, J.-L. Wang, J.-Y. Liu, J.-W. Liu et al., Manipulating nanowire structures for an enhanced broad-band flexible photothermoelectric photodetector. Nano Lett. 22(14), 5929–5935 (2022). https://doi.org/10.1021/acs.nanolett.2c01957
P. Das, P.K. Marvi, S. Ganguly, X. Tang, B. Wang et al., MXene-based elastomer mimetic stretchable sensors: design, properties, and applications. Nano-Micro Lett. 16(1), 135 (2024). https://doi.org/10.1007/s40820-024-01349-w
A. Gao, R.R. Murphy, W. Chen, G. Dagnino, P. Fischer et al., Progress in robotics for combating infectious diseases. Sci. Robot. 6(52), eabf1462 (2021). https://doi.org/10.1126/scirobotics.abf1462
J. Chen, K. Han, J. Luo, L. Xu, W. Tang et al., Soft robots with self-powered configurational sensing. Nano Energy 77, 105171 (2020). https://doi.org/10.1016/j.nanoen.2020.105171
Y. Cao, B. Xu, B. Li, H. Fu, Advanced design of soft robots with artificial intelligence. Nano-Micro Lett. 16, 214 (2024). https://doi.org/10.1007/s40820-024-01423-3
B. Moya, A. Badías, D. González, F. Chinesta, E. Cueto, A thermodynamics-informed active learning approach to perception and reasoning about fluids. Comput. Mech. 72(3), 577–591 (2023). https://doi.org/10.1007/s00466-023-02279-x
S. Gong, W. Li, J. Wu, B. Feng, Z. Yi et al., A soft collaborative robot for contact-based intuitive human drag teaching. Adv. Sci. 11(24), e2308835 (2024). https://doi.org/10.1002/advs.202308835
U.E. Ogenyi, J. Liu, C. Yang, Z. Ju, H. Liu, Physical human–robot collaboration: robotic systems, learning methods, collaborative strategies, sensors, and actuators. IEEE Trans. Cybern. 51(4), 1888–1901 (2021). https://doi.org/10.1109/TCYB.2019.2947532
H. Chu, T. Zhang, Y. Zou, H. Sun, “Follower” to “collaborator”: a robot proactive collaborative controller based on human multimodal information for 3D handling/assembly scenarios. J. Manuf. Syst. 73, 287–306 (2024). https://doi.org/10.1016/j.jmsy.2024.02.008
F. Cao, Z. Hu, T. Yan, E. Hong, X. Deng et al., A dual-functional perovskite-based photodetector and memristor for visual memory. Adv. Mater. 35(44), e2304550 (2023). https://doi.org/10.1002/adma.202304550
C. Choi, G.J. Lee, S. Chang, Y.M. Song, D.H. Kim, Inspiration from visual ecology for advancing multifunctional robotic vision systems: bio-inspired electronic eyes and neuromorphic image sensors. Adv. Mater. 36(48), e2412252 (2024). https://doi.org/10.1002/adma.202412252
H. Fang, L. Wu, H. Ma, W. Wu, L. Wu et al., Dual-function biomimetic eyes based on thermally-stable organohydrogel electrolyte. Chem. Eng. J. 438, 135383 (2022). https://doi.org/10.1016/j.cej.2022.135383
D. Xu, Z. Li, L. Li, J. Wang, Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv. Funct. Mater. 30, 2000712 (2020). https://doi.org/10.1002/adfm.202000712
S.-Y. Pang, W.F. Io, F. Guo, Y. Zhao, J. Hao, Two-dimensional MXene-based devices for information technology. Mater. Sci. Eng. R. Rep. 163, 100894 (2025). https://doi.org/10.1016/j.mser.2024.100894
H.V. Neelamana, S.M. Rekha, S.V. Bhat, Ti3C2Tx MXene: a new promising 2D material for optoelectronics. Chem. Mater. 35, 7386–7405 (2023). https://doi.org/10.1021/acs.chemmater.3c01660
A. Parihar, A. Singhal, N. Kumar, R. Khan, M.A. Khan et al., Next-generation intelligent MXene-based electrochemical aptasensors for point-of-care cancer diagnostics. Nano-Micro Lett. 14(1), 100 (2022). https://doi.org/10.1007/s40820-022-00845-1
W. Cao, Z. Wang, X. Liu, Z. Zhou, Y. Zhang et al., Bioinspired MXene-based user-interactive electronic skin for digital and visual dual-channel sensing. Nano-Micro Lett. 14(1), 119 (2022). https://doi.org/10.1007/s40820-022-00838-0
H. Ma, H. Fang, Y. Liu, J. Li, K. Jing et al., Fully transparent ultraviolet photodetector with ultrahigh responsivity enhanced by MXene-induced photogating effect. Adv. Opt. Mater. 11(12), 2300393 (2023). https://doi.org/10.1002/adom.202300393
T. Parker, D. Zhang, D. Bugallo, K. Shevchuk, M. Downes et al., Fourier-transform infrared spectral library of MXenes. Chem. Mater. 36(17), 8437–8446 (2024). https://doi.org/10.1021/acs.chemmater.4c01536
R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11(4), 3752–3759 (2017). https://doi.org/10.1021/acsnano.6b08415
H. Ma, H. Fang, J. Li, Z. Li, X. Fang et al., Transmittance contrast-induced photocurrent: a general strategy for self-powered photodetectors based on MXene electrodes. InfoMat 6(5), e12540 (2024). https://doi.org/10.1002/inf2.12540
W. Song, J. Chen, Z. Li, X. Fang, Self-powered MXene/GaN van der Waals heterojunction ultraviolet photodiodes with superhigh efficiency and stable current outputs. Adv. Mater. 33(27), e2101059 (2021). https://doi.org/10.1002/adma.202101059
H. Lin, X. Wang, L. Yu, Y. Chen, J. Shi, Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 17(1), 384–391 (2017). https://doi.org/10.1021/acs.nanolett.6b04339
W. Zeng, X. Ye, Y. Dong, Y. Zhang, C. Sun et al., MXene for photocatalysis and photothermal conversion: synthesis, physicochemical properties, and applications. Coord. Chem. Rev. 508, 215753 (2024). https://doi.org/10.1016/j.ccr.2024.215753
T. Yuan, R. Yin, C. Li, Z. Fan, L. Pan, Ti3C2Tx MXene-based all-resistive dual-mode sensor with near-zero temperature coefficient of resistance for crosstalk-free pressure and temperature detections. Chem. Eng. J. 487, 150396 (2024). https://doi.org/10.1016/j.cej.2024.150396
Y. Zhang, J. Jiang, Z. Zhang, H. Yu, Y. Lian et al., Long-wave infrared photothermoelectric detectors with resonant nanophotonics. J. Mater. Chem. C 12(41), 16714–16721 (2024). https://doi.org/10.1039/d4tc02504k
D. Wang, A.E.L. Allcca, T.F. Chung, A.V. Kildishev, Y.P. Chen et al., Enhancing the graphene photocurrent using surface plasmons and a p-n junction. Light Sci. Appl. 9, 126 (2020). https://doi.org/10.1038/s41377-020-00344-1
L. Li, G. Shen, MXene based flexible photodetectors: progress, challenges, and opportunities. Mater. Horiz. 10(12), 5457–5473 (2023). https://doi.org/10.1039/d3mh01362f
L. Gao, Y. Zhao, X. Chang, J. Zhang, Y. Li et al., Emerging applications of MXenes for photodetection: recent advances and future challenges. Mater. Today 61, 169–190 (2022). https://doi.org/10.1016/j.mattod.2022.10.022
A. Ahmed, S. Sharma, B. Adak, M.M. Hossain, A.M. LaChance et al., Two-dimensional MXenes: new frontier of wearable and flexible electronics. InfoMat 4, e12295 (2022). https://doi.org/10.1002/inf2.12295