Boosting Transport Kinetics of Ions and Electrons Simultaneously by Ti3C2Tx (MXene) Addition for Enhanced Electrochromic Performance
Corresponding Author: Hong Wang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 20
Abstract
Electrochromic technology plays a significant role in energy conservation, while its performance is greatly limited by the transport behavior of ions and electrons. Hence, an electrochromic system with overall excellent performances still need to be explored. Initially motivated by the high ionic and electronic conductivity of transition metal carbide or nitride (MXene), we design a feasible procedure to synthesize the MXene/WO3−x composite electrochromic film. The consequently boosted electrochromic performances prove that the addition of MXene is an effective strategy for simultaneously enhancing electrons and ions transport behavior in electrochromic layer. The MXene/WO3−x electrochromic device exhibits enhanced transmittance modulation and coloration efficiency (60.4%, 69.1 cm2 C−1), higher diffusion coefficient of Li+ and excellent cycling stability (200 cycles) over the pure WO3−x device. Meanwhile, numerical stimulation theoretically explores the mechanism and kinetics of the lithium ion diffusion, and proves the spatial and time distributions of higher Li+ concentration in MXene/WO3−x composite electrochromic layer. Both experiments and theoretical data reveal that the addition of MXene is effective to promote the transport kinetics of ions and electrons simultaneously and thus realizing a high-performance electrochromic device. This work opens new avenues for electrochromic materials design and deepens the study of kinetics mechanism of ion diffusion in electrochromic devices.
Highlights:
1 MXene/WO3−x composite film with excellent electrochromic performances was fabricated for the first time.
2 The addition of MXene is an effective strategy for simultaneously enhancing electron and ion transport behaviors in the electrochromic layer.
3 The kinetics of ion diffusion in electrochromic devices are studied in depth based on both experiment and simulation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). https://doi.org/10.1038/nmat2297
- C.G. Granqvist, M.A. Arvizu, İ Bayrak Pehlivan, H.Y. Qu, R.T. Wen et al., Electrochromic materials and devices for energy efficiency and human comfort in buildings: A critical review. Electrochim. Acta 259, 1170–1182 (2018). https://doi.org/10.1016/j.electacta.2017.11.169
- Y. Wang, E.L. Runnerstrom, D.J. Milliron, Switchable materials for smart windows. Annu. Rev. Chem. Biomol. 7(1), 283–304 (2016). https://doi.org/10.1146/annurev-chembioeng-080615-034647
- G. Cai, A.S. Eh, L. Ji, P.S. Lee, Recent advances in electrochromic smart fenestration. Adv. Sustain. Syst. 1(12), 1700074 (2017). https://doi.org/10.1002/adsu.201700074
- H. Khandelwal, A.P.H.J. Schenning, M.G. Debije, Infrared regulating smart window based on organic materials. Adv. Energy Mater. 7(14), 1602209 (2017). https://doi.org/10.1002/aenm.201602209
- H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. , Kalantar-zadeh Nanostructured tungsten oxide-properties, synthesis, and applications. Adv. Funct. Mater. 21(12), 2175–2196 (2011). https://doi.org/10.1002/adfm.201002477
- J.Z. Chen, W.Y. Ko, Y.C. Yen, P.H. Chen, K.J. Lin, Hydrothermally processed TiO2 nanowire electrodes with antireflective and electrochromic properties. ACS Nano 6(8), 6633–6639 (2012). https://doi.org/10.1021/nn300787r
- Y. Wang, B. Chen, Y. Zhu, L. Fu, Y. Wu, T.V. Ree, 13-Metal oxides in energy-saving smart windows. pp. 341–360 (2018). Doi: https://doi.org/10.1016/B978-0-12-811167-3.00013-4
- X. Liu, A. Zhou, Y. Dou, T. Pan, M. Shao et al., Ultrafast switching of an electrochromic device based on layered double hydroxide/prussian blue multilayered films. Nanoscale 7(40), 17088–17095 (2015). https://doi.org/10.1039/C5NR04458H
- G. Cai, X. Cheng, M. Layani, A.W.M. Tan, S. Li et al., Direct inkjet-patterning of energy efficient flexible electrochromics. Nano Energy 49, 147–154 (2018). https://doi.org/10.1016/j.nanoen.2018.04.017
- L. Wu, H. Fang, C. Zheng, Q. Wang, H. Wang, A multifunctional smart window: Detecting ultraviolet radiation and regulating the spectrum automatically. J. Mater. Chem. C 7(34), 10446–10453 (2019). https://doi.org/10.1039/C9TC03398J
- L. Zhou, P. Wei, H. Fang, W. Wu, L. Wu et al., Self-doped tungsten oxide films induced by in situ carbothermal reduction for high performance electrochromic devices. J. Mater. Chem. C (2020). https://doi.org/10.1039/D0TC03103H
- V.R. Buch, A.K. Chawla, S.K. Rawal, Review on electrochromic property for WO3 thin films using different deposition techniques. Mater. Today Proceed. 3(6), 1429–1437 (2016). https://doi.org/10.1016/j.matpr.2016.04.025
- X. Han, W. Du, M. Chen, X. Wang, X. Zhang et al., Visualization recording and storage of pressure distribution through a smart matrix based on the piezotronic effect. Adv. Mater. 29(26), 1701253 (2017). https://doi.org/10.1002/adma.201701253
- S.H. Lee, H. Cheong, J.G. Zhang, A. Mascarenhas, D. Benson et al., Electrochromic mechanism in a-WO3−y thin films. Appl. Phys. Lett. (1999). https://doi.org/10.1063/1.123268
- Y. Tian, W. Zhang, S. Cong, Y. Zheng, F. Geng, Z. Zhao, Unconventional aluminum ion intercalation/deintercalation for fast switching and highly stable electrochromism. Adv. Funct. Mater. 25(36), 5833–5839 (2015). https://doi.org/10.1002/adfm.201502638
- J. Zhao, G. Wang, Q. Zhang, W. Rui, C. Qu et al., An underlying intercalation ion for fast-switching and stable electrochromism. J. Mater. Sci. 30(13), 12753–12756 (2019). https://doi.org/10.1007/s10854-019-01640-2
- H. Li, L. McRae, C.J. Firby, A.Y. Elezzabi, Rechargeable aqueous electrochromic batteries utilizing ti-substituted tungsten molybdenum oxide based Zn2+ ion intercalation cathodes. Adv. Mater. 31(15), 1807065 (2019). https://doi.org/10.1002/adma.201807065
- Y.Y. Yang, P. Gong, W.D. Ma, Y.L. Li, X.Y. Fang et al., Different substitutions lead to differences in the transport and recombination properties of group v doped SiCNTs. Phys. Lett. A 384(25), 126602 (2020). https://doi.org/10.1016/j.physleta.2020.126602
- D. Qiu, H. Ji, X. Zhang, H. Zhang, H. Cao et al., Electrochromism of nanocrystal-in-glass tungsten oxide thin films under various conduction cations. Inorg. Chem. 58(3), 2089–2098 (2019). https://doi.org/10.1021/acs.inorgchem.8b03178
- B.R. Koo, M.H. Jo, K.H. Kim, H.J. Ahn, Multifunctional electrochromic energy storage devices by chemical cross-linking: Impact of a WO3·H2O nanoparticle-embedded chitosan thin film on amorphous WO3 films. NPG Asia Mater. (2020). https://doi.org/10.1038/s41427-019-0193-z
- S. Cong, Y. Tian, Q. Li, Z. Zhao, F. Geng, Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Adv. Mater. 26(25), 4260–4267 (2014). https://doi.org/10.1002/adma.201400447
- G. Cai, M. Cui, V. Kumar, P. Darmawan, J. Wang et al., Ultra-large optical modulation of electrochromic porous WO3 film and the local monitoring of redox activity. Chem. Sci. 7(2), 1373–1382 (2016). https://doi.org/10.1039/C5SC03727A
- M.A. Arvizu, G.A. Niklasson, C.G. Granqvist, Electrochromic W1–x–yTixMoyO3 thin films made by sputter deposition: Large optical modulation, good cycling durability, and approximate color neutrality. Chem. Mater. 29(5), 2246–2253 (2017). https://doi.org/10.1021/acs.chemmater.6b05198
- Y. Yin, T. Gao, Q. Xu, G. Cao, Q. Chen et al., Electrochromic and energy storage bifunctional gd-doped WO3/Ag/WO3 films. J. Mater. Chem. A 8(21), 10973–10982 (2020). https://doi.org/10.1039/D0TA02079F
- J. Kim, G.K. Ong, Y. Wang, G. LeBlanc, T.E. Williams et al., Nanocomposite architecture for rapid, spectrally-selective electrochromic modulation of solar transmittance. Nano Lett. 15(8), 5574–5579 (2015). https://doi.org/10.1021/acs.nanolett.5b02197
- H. Qu, X. Zhang, H. Zhang, Y. Tian, N. Li et al., Highly robust and flexible WO3·2H2O/PEDOT films for improved electrochromic performance in near-infrared region. Sol. Energy Mater. Sol. C 163, 23–30 (2017). https://doi.org/10.1016/j.solmat.2016.12.030
- X. Huo, H. Zhang, W. Shen, X. Miao, M. Zhang et al., Bifunctional aligned hexagonal/amorphous tungsten oxide core/shell nanorod arrays with enhanced electrochromic and pseudocapacitive performance. J. Mater. Chem. A 7(28), 16867–16875 (2019). https://doi.org/10.1039/C9TA03725J
- C. Fu, C. Foo, P.S. Lee, One-step facile electrochemical preparation of WO3/graphene nanocomposites with improved electrochromic properties. Electrochim. Acta 117, 139–144 (2014). https://doi.org/10.1016/j.electacta.2013.11.123
- M. Zhi, W. Huang, Q. Shi, M. Wang, Q. Wang, Sol–gel fabrication of WO3/rGO nanocomposite film with enhanced electrochromic performance. RSC Adv. 6(72), 67488–67494 (2016). https://doi.org/10.1039/C6RA13947G
- X. Chang, S. Sun, L. Dong, X. Hu, Y. Yin, Tungsten oxide nanowires grown on graphene oxide sheets as high-performance electrochromic material. Electrochim. Acta 129, 40–46 (2014). https://doi.org/10.1016/j.electacta.2014.02.065
- C.K. Lin, S.C. Tseng, C.H. Cheng, C.Y. Chen, C.C. Chen, Electrochromic performance of hybrid tungsten oxide films with multiwalled-CNT additions. Thin Solid Films 520(5), 1375–1378 (2011). https://doi.org/10.1016/j.tsf.2011.08.074
- S. Liu, W. Wang, Improved electrochromic performances of WO3-based thin films via addition of CNTs. J. Sol-Gel Sci. Techn. 80(2), 480–486 (2016). https://doi.org/10.1007/s10971-016-4093-1
- X. Chang, R. Hu, S. Sun, T. Lu, Y. Zhu, Efficient synthesis of tungsten oxide hydrate-based nanocomposites for applications in bifunctional electrochromic-energy storage devices. Nanotechnology 29(18), 185707 (2018). https://doi.org/10.1088/1361-6528/aab07b
- J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48(1), 72–133 (2019). https://doi.org/10.1039/C8CS00324F
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- P.M. Kadam, N.L. Tarwal, S.S. Mali, H.P. Deshmukh, P.S. Patil, Enhanced electrochromic performance of f-MWCNT-WO3 composite. Electrochim. Acta 58, 556–561 (2011). https://doi.org/10.1016/j.electacta.2011.09.082
- Y. Dong, H. Shi, Z.S. Wu, Recent advances and promise of MXene-based nanostructures for high-performance metal ion batteries. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202000706
- H. Kim, Z. Wang, H.N. Alshareef, Mxetronics: Electronic and photonic applications of MXenes. Nano Energy 60, 179–197 (2019). https://doi.org/10.1016/j.nanoen.2019.03.020
- S. Zhao, C. Chen, X. Zhao, X. Chu, F. Du et al., Flexible Nb4C3Tx film with large interlayer spacing for high-performance supercapacitors. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202000815
- Y. Wu, P. Nie, J. Wang, H. Dou, X. Zhang, Few-layer MXenes delaminated via high-energy mechanical milling for enhanced sodium-ion batteries performance. ACS Appl. Mater. Interfaces 9(45), 39610–39617 (2017). https://doi.org/10.1021/acsami.7b12155
- J. Li, B. Rui, W. Wei, P. Nie, L. Chang et al., Nanosheets assembled layered MoS2/MXene as high performance anode materials for potassium ion batteries. J. Power Sources 449, 227481 (2020). https://doi.org/10.1016/j.jpowsour.2019.227481
- K. Hantanasirisakul, M.Q. Zhao, P. Urbankowski, J. Halim, B. Anasori et al., Fabrication of Ti3C2Tx mxene transparent thin films with tunable optoelectronic properties. Adv. Electron. Mater. 2(6), 1600050 (2016). https://doi.org/10.1002/aelm.201600050
- X. Wang, X. Shen, Y. Gao, Z. Wang, R. Yu et al., Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. J. Am. Chem. Soc. 137(7), 2715–2721 (2015). https://doi.org/10.1021/ja512820k
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Two-dimensional materials: 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 26(7), 982–982 (2014). https://doi.org/10.1002/adma.201470041
- H. Fang, P. Zheng, R. Ma, C. Xu, G. Yang et al., Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards. Mater. Horiz. 5(5), 1000–1007 (2018). https://doi.org/10.1039/c8mh00856f
- A. Cremonesi, D. Bersani, P.P. Lottici, Y. Djaoued, P.V. Ashrit, WO3 thin films by sol–gel for electrochromic applications. J. Non-Crystalline Solids 345–346, 500–504 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.08.073
- X.H. Guan, Z.W. Zhang, L. Yang, G.S. Wang, One-pot hydrothermal synthesis of hexagonal WO3 nanorods/graphene composites as high-performance electrodes for supercapacitors. ChemPlusChem 82, 1174–1181 (2017). https://doi.org/10.1002/cplu.201700288
- S. Zhang, S. Cao, T. Zhang, A. Fisher, J.Y. Lee, Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy Environ. Sci. 11(10), 2884–2892 (2018). https://doi.org/10.1039/c8ee01718b
- G. Cai, P. Darmawan, M. Cui, J. Chen, X. Wang et al., Inkjet-printed all solid-state electrochromic devices based on NiO/WO3 nanoparticle complementary electrodes. Nanoscale 8(1), 348 (2015). https://doi.org/10.1039/C5NR06995E
- J. Zhou, Y. Wei, L. Gui, J. Zheng, C. Xu, Electrochromic properties of vertically aligned Ni-doped WO3 nanostructure films and their application in complementary electrochromic devices. J. Mater. Chem. C 4(8), 1613–1622 (2016). https://doi.org/10.1039/C5TC03750F
- X. Yu, J. Wang, C. Wang, Z. Shi, A novel electrolyte used in high working voltage application for electrical double-layer capacitor using spiro-(1,1′)-bipyrrolidinium tetrafluoroborate in mixtures solvents. Electrochim. Acta 182, 1166–1174 (2015). https://doi.org/10.1016/j.electacta.2016.03.113
- Z. Shi, X. Yu, J. Wang, H. Hu, C. Wu, Excellent low temperature performance electrolyte of spiro-(1,1′)-bipyrrolidinium tetrafluoroborate by tunable mixtures solvents for electric double layer capacitor. Electrochim. Acta 174, 215–220 (2015). https://doi.org/10.1016/j.electacta.2015.05.133
- H.M. Kao, P.C. Chang, S.W. Chao, C.H. Lee, 7Li NMR, ionic conductivity and self-diffusion coefficients of lithium ion and solvent of plasticized organic–inorganic hybrid electrolyte based on PPG-PEG-PPG diamine and alkoxysilanes. Electrochim. Acta 52(3), 1015–1027 (2006). https://doi.org/10.1016/j.electacta.2006.06.042
- S.A. Agnihotry, P. Pradeep, S.S. Sekhon, PMMA based gel electrolyte for EC smart windows. Electrochim. Acta 44(18), 3121–3126 (1999). https://doi.org/10.1016/S0013-4686(99)00029-8
- G. Cai, L.S. Eh, J. Lin, P.S. Lee, Recent advances in electrochromic smart fenestration. Adv. Sustain. Syst. 1(12), 1700074 (2017). https://doi.org/10.1002/adsu.201700074
- M. Naguib, J. Come, B. Dyatkin, V. Presser, P.L. Taberna et al., MXene: A promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 16(1), 61–64 (2012). https://doi.org/10.1016/j.elecom.2012.01.002
- P. Salles, D. Pinto, K. Hantanasirisakul, K. Maleski, C.E. Shuck et al., Electrochromic effect in titanium carbide MXene thin films produced by dip-coating. Adv. Funct. Mater. 29(17), 1809223 (2019). https://doi.org/10.1002/adfm.201809223
- R.T. Wen, M.A. Arvizu, M. Morales-Luna, C.G. Granqvist, G.A. Niklasson, Ion trapping and detrapping in amorphous tungsten oxide thin films observed by real-time electro-optical monitoring. Chem. Mater. 28(13), 4670–4676 (2016). https://doi.org/10.1021/acs.chemmater.6b01503
- P. He, X.X. Wang, Y.Z. Cai, J.C. Shu, Q.L. Zhao et al., Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale 11(13), 6080–6088 (2019). https://doi.org/10.1039/C8NR10489A
- X.Y. Fang, X.X. Yu, H.M. Zheng, H.B. Jin, L. Wang et al., Temperature- and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets. Phys. Lett. A 379(37), 2245–2251 (2015). https://doi.org/10.1016/j.physleta.2015.06.063
- L. Han, L. Liang, P.S. Lee, D. Mandler, X. Lu, Layer-by-layer assembly of PEDOT:PSS and WO3 nanoparticles: Enhanced electrochromic coloration efficiency and mechanism studies by scanning electrochemical microscopy. Electrochim. Acta 174(1), 57–65 (2015). https://doi.org/10.1016/j.electacta.2015.05.147
- Y. Liu, G. Yuan, C. Hua, Y. Zhang, G. Han et al., Improvement of electrochromic performance by embedding ITO nanocrystals in amorphous WO3 film. ECS J. Solid State Sci. Technol. 8(1), 1–6 (2019). https://doi.org/10.1149/2.0021901jss
- M. Meenakshi, V. Gowthami, P. Perumal, R. Sivakumar, C. Sanjeeviraja, Influence of dopant concentration on the electrochromic properties of tungsten oxide thin films. Electrochim. Acta 174, 302–314 (2015). https://doi.org/10.1016/j.electacta.2015.05.187
- P. Salles, E. Quain, N. Kurra, A. Sarycheva, Y. Gogotsi, Automated scalpel patterning of solution processed thin films for fabrication of transparent MXene microsupercapacitors. Small 14(44), 1802864 (2018). https://doi.org/10.1002/smll.201802864
- M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
- D. Wohlmuth, V. Epp, P. Bottke, I. Hanzu, B. Bitschnau et al., Order versus disorder—a huge increase in ionic conductivity of nanocrystalline LiAlO2 embedded in an amorphous-like matrix of lithium aluminate. J. Mater. Chem. A 2(47), 20295–20306 (2014). https://doi.org/10.1039/C4TA02923B
- L. Anna, G. Guillermo, G. Jaume, D.J. Milliron, Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500(7462), 323–326 (2013). https://doi.org/10.1038/nature12398
- J. Bisquert, V.S. Vikhrenko, Analysis of the kinetics of ion intercalation Two state model describing the coupling of solid state ion diffusion and ion binding processes. Electrochim. Acta 47(24), 3977–3988 (2002). https://doi.org/10.1016/S0013-4686(02)00372-9
- X. Huo, X. Miao, X. Han, S. Tang, M. Zhang et al., High-performance electrochromo-supercapacitors based on the synergetic effect between aqueous Al3+ and ordered hexagonal tungsten oxide nanorod arrays. J. Mater. Chem. A 8, 9927–9938 (2020). https://doi.org/10.1039/D0TA01808B
- Y. Liu, L. Sun, G. Sikha, J. Isidorsson, S. Lim et al., 2-D mathematical modeling for a large electrochromic window—part I. Sol. Energy Mater. Sol. C 120, 1–8 (2014). https://doi.org/10.1016/j.solmat.2013.07.030
- M. Rakibuddin, H. Kim, Fabrication of MoS2/WO3 nanocomposite films for enhanced electro-chromic performance. New J. Chem. 41(24), 15327–15333 (2017). https://doi.org/10.1039/c7nj03011h
References
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). https://doi.org/10.1038/nmat2297
C.G. Granqvist, M.A. Arvizu, İ Bayrak Pehlivan, H.Y. Qu, R.T. Wen et al., Electrochromic materials and devices for energy efficiency and human comfort in buildings: A critical review. Electrochim. Acta 259, 1170–1182 (2018). https://doi.org/10.1016/j.electacta.2017.11.169
Y. Wang, E.L. Runnerstrom, D.J. Milliron, Switchable materials for smart windows. Annu. Rev. Chem. Biomol. 7(1), 283–304 (2016). https://doi.org/10.1146/annurev-chembioeng-080615-034647
G. Cai, A.S. Eh, L. Ji, P.S. Lee, Recent advances in electrochromic smart fenestration. Adv. Sustain. Syst. 1(12), 1700074 (2017). https://doi.org/10.1002/adsu.201700074
H. Khandelwal, A.P.H.J. Schenning, M.G. Debije, Infrared regulating smart window based on organic materials. Adv. Energy Mater. 7(14), 1602209 (2017). https://doi.org/10.1002/aenm.201602209
H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. , Kalantar-zadeh Nanostructured tungsten oxide-properties, synthesis, and applications. Adv. Funct. Mater. 21(12), 2175–2196 (2011). https://doi.org/10.1002/adfm.201002477
J.Z. Chen, W.Y. Ko, Y.C. Yen, P.H. Chen, K.J. Lin, Hydrothermally processed TiO2 nanowire electrodes with antireflective and electrochromic properties. ACS Nano 6(8), 6633–6639 (2012). https://doi.org/10.1021/nn300787r
Y. Wang, B. Chen, Y. Zhu, L. Fu, Y. Wu, T.V. Ree, 13-Metal oxides in energy-saving smart windows. pp. 341–360 (2018). Doi: https://doi.org/10.1016/B978-0-12-811167-3.00013-4
X. Liu, A. Zhou, Y. Dou, T. Pan, M. Shao et al., Ultrafast switching of an electrochromic device based on layered double hydroxide/prussian blue multilayered films. Nanoscale 7(40), 17088–17095 (2015). https://doi.org/10.1039/C5NR04458H
G. Cai, X. Cheng, M. Layani, A.W.M. Tan, S. Li et al., Direct inkjet-patterning of energy efficient flexible electrochromics. Nano Energy 49, 147–154 (2018). https://doi.org/10.1016/j.nanoen.2018.04.017
L. Wu, H. Fang, C. Zheng, Q. Wang, H. Wang, A multifunctional smart window: Detecting ultraviolet radiation and regulating the spectrum automatically. J. Mater. Chem. C 7(34), 10446–10453 (2019). https://doi.org/10.1039/C9TC03398J
L. Zhou, P. Wei, H. Fang, W. Wu, L. Wu et al., Self-doped tungsten oxide films induced by in situ carbothermal reduction for high performance electrochromic devices. J. Mater. Chem. C (2020). https://doi.org/10.1039/D0TC03103H
V.R. Buch, A.K. Chawla, S.K. Rawal, Review on electrochromic property for WO3 thin films using different deposition techniques. Mater. Today Proceed. 3(6), 1429–1437 (2016). https://doi.org/10.1016/j.matpr.2016.04.025
X. Han, W. Du, M. Chen, X. Wang, X. Zhang et al., Visualization recording and storage of pressure distribution through a smart matrix based on the piezotronic effect. Adv. Mater. 29(26), 1701253 (2017). https://doi.org/10.1002/adma.201701253
S.H. Lee, H. Cheong, J.G. Zhang, A. Mascarenhas, D. Benson et al., Electrochromic mechanism in a-WO3−y thin films. Appl. Phys. Lett. (1999). https://doi.org/10.1063/1.123268
Y. Tian, W. Zhang, S. Cong, Y. Zheng, F. Geng, Z. Zhao, Unconventional aluminum ion intercalation/deintercalation for fast switching and highly stable electrochromism. Adv. Funct. Mater. 25(36), 5833–5839 (2015). https://doi.org/10.1002/adfm.201502638
J. Zhao, G. Wang, Q. Zhang, W. Rui, C. Qu et al., An underlying intercalation ion for fast-switching and stable electrochromism. J. Mater. Sci. 30(13), 12753–12756 (2019). https://doi.org/10.1007/s10854-019-01640-2
H. Li, L. McRae, C.J. Firby, A.Y. Elezzabi, Rechargeable aqueous electrochromic batteries utilizing ti-substituted tungsten molybdenum oxide based Zn2+ ion intercalation cathodes. Adv. Mater. 31(15), 1807065 (2019). https://doi.org/10.1002/adma.201807065
Y.Y. Yang, P. Gong, W.D. Ma, Y.L. Li, X.Y. Fang et al., Different substitutions lead to differences in the transport and recombination properties of group v doped SiCNTs. Phys. Lett. A 384(25), 126602 (2020). https://doi.org/10.1016/j.physleta.2020.126602
D. Qiu, H. Ji, X. Zhang, H. Zhang, H. Cao et al., Electrochromism of nanocrystal-in-glass tungsten oxide thin films under various conduction cations. Inorg. Chem. 58(3), 2089–2098 (2019). https://doi.org/10.1021/acs.inorgchem.8b03178
B.R. Koo, M.H. Jo, K.H. Kim, H.J. Ahn, Multifunctional electrochromic energy storage devices by chemical cross-linking: Impact of a WO3·H2O nanoparticle-embedded chitosan thin film on amorphous WO3 films. NPG Asia Mater. (2020). https://doi.org/10.1038/s41427-019-0193-z
S. Cong, Y. Tian, Q. Li, Z. Zhao, F. Geng, Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Adv. Mater. 26(25), 4260–4267 (2014). https://doi.org/10.1002/adma.201400447
G. Cai, M. Cui, V. Kumar, P. Darmawan, J. Wang et al., Ultra-large optical modulation of electrochromic porous WO3 film and the local monitoring of redox activity. Chem. Sci. 7(2), 1373–1382 (2016). https://doi.org/10.1039/C5SC03727A
M.A. Arvizu, G.A. Niklasson, C.G. Granqvist, Electrochromic W1–x–yTixMoyO3 thin films made by sputter deposition: Large optical modulation, good cycling durability, and approximate color neutrality. Chem. Mater. 29(5), 2246–2253 (2017). https://doi.org/10.1021/acs.chemmater.6b05198
Y. Yin, T. Gao, Q. Xu, G. Cao, Q. Chen et al., Electrochromic and energy storage bifunctional gd-doped WO3/Ag/WO3 films. J. Mater. Chem. A 8(21), 10973–10982 (2020). https://doi.org/10.1039/D0TA02079F
J. Kim, G.K. Ong, Y. Wang, G. LeBlanc, T.E. Williams et al., Nanocomposite architecture for rapid, spectrally-selective electrochromic modulation of solar transmittance. Nano Lett. 15(8), 5574–5579 (2015). https://doi.org/10.1021/acs.nanolett.5b02197
H. Qu, X. Zhang, H. Zhang, Y. Tian, N. Li et al., Highly robust and flexible WO3·2H2O/PEDOT films for improved electrochromic performance in near-infrared region. Sol. Energy Mater. Sol. C 163, 23–30 (2017). https://doi.org/10.1016/j.solmat.2016.12.030
X. Huo, H. Zhang, W. Shen, X. Miao, M. Zhang et al., Bifunctional aligned hexagonal/amorphous tungsten oxide core/shell nanorod arrays with enhanced electrochromic and pseudocapacitive performance. J. Mater. Chem. A 7(28), 16867–16875 (2019). https://doi.org/10.1039/C9TA03725J
C. Fu, C. Foo, P.S. Lee, One-step facile electrochemical preparation of WO3/graphene nanocomposites with improved electrochromic properties. Electrochim. Acta 117, 139–144 (2014). https://doi.org/10.1016/j.electacta.2013.11.123
M. Zhi, W. Huang, Q. Shi, M. Wang, Q. Wang, Sol–gel fabrication of WO3/rGO nanocomposite film with enhanced electrochromic performance. RSC Adv. 6(72), 67488–67494 (2016). https://doi.org/10.1039/C6RA13947G
X. Chang, S. Sun, L. Dong, X. Hu, Y. Yin, Tungsten oxide nanowires grown on graphene oxide sheets as high-performance electrochromic material. Electrochim. Acta 129, 40–46 (2014). https://doi.org/10.1016/j.electacta.2014.02.065
C.K. Lin, S.C. Tseng, C.H. Cheng, C.Y. Chen, C.C. Chen, Electrochromic performance of hybrid tungsten oxide films with multiwalled-CNT additions. Thin Solid Films 520(5), 1375–1378 (2011). https://doi.org/10.1016/j.tsf.2011.08.074
S. Liu, W. Wang, Improved electrochromic performances of WO3-based thin films via addition of CNTs. J. Sol-Gel Sci. Techn. 80(2), 480–486 (2016). https://doi.org/10.1007/s10971-016-4093-1
X. Chang, R. Hu, S. Sun, T. Lu, Y. Zhu, Efficient synthesis of tungsten oxide hydrate-based nanocomposites for applications in bifunctional electrochromic-energy storage devices. Nanotechnology 29(18), 185707 (2018). https://doi.org/10.1088/1361-6528/aab07b
J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48(1), 72–133 (2019). https://doi.org/10.1039/C8CS00324F
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
P.M. Kadam, N.L. Tarwal, S.S. Mali, H.P. Deshmukh, P.S. Patil, Enhanced electrochromic performance of f-MWCNT-WO3 composite. Electrochim. Acta 58, 556–561 (2011). https://doi.org/10.1016/j.electacta.2011.09.082
Y. Dong, H. Shi, Z.S. Wu, Recent advances and promise of MXene-based nanostructures for high-performance metal ion batteries. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202000706
H. Kim, Z. Wang, H.N. Alshareef, Mxetronics: Electronic and photonic applications of MXenes. Nano Energy 60, 179–197 (2019). https://doi.org/10.1016/j.nanoen.2019.03.020
S. Zhao, C. Chen, X. Zhao, X. Chu, F. Du et al., Flexible Nb4C3Tx film with large interlayer spacing for high-performance supercapacitors. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202000815
Y. Wu, P. Nie, J. Wang, H. Dou, X. Zhang, Few-layer MXenes delaminated via high-energy mechanical milling for enhanced sodium-ion batteries performance. ACS Appl. Mater. Interfaces 9(45), 39610–39617 (2017). https://doi.org/10.1021/acsami.7b12155
J. Li, B. Rui, W. Wei, P. Nie, L. Chang et al., Nanosheets assembled layered MoS2/MXene as high performance anode materials for potassium ion batteries. J. Power Sources 449, 227481 (2020). https://doi.org/10.1016/j.jpowsour.2019.227481
K. Hantanasirisakul, M.Q. Zhao, P. Urbankowski, J. Halim, B. Anasori et al., Fabrication of Ti3C2Tx mxene transparent thin films with tunable optoelectronic properties. Adv. Electron. Mater. 2(6), 1600050 (2016). https://doi.org/10.1002/aelm.201600050
X. Wang, X. Shen, Y. Gao, Z. Wang, R. Yu et al., Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. J. Am. Chem. Soc. 137(7), 2715–2721 (2015). https://doi.org/10.1021/ja512820k
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Two-dimensional materials: 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 26(7), 982–982 (2014). https://doi.org/10.1002/adma.201470041
H. Fang, P. Zheng, R. Ma, C. Xu, G. Yang et al., Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards. Mater. Horiz. 5(5), 1000–1007 (2018). https://doi.org/10.1039/c8mh00856f
A. Cremonesi, D. Bersani, P.P. Lottici, Y. Djaoued, P.V. Ashrit, WO3 thin films by sol–gel for electrochromic applications. J. Non-Crystalline Solids 345–346, 500–504 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.08.073
X.H. Guan, Z.W. Zhang, L. Yang, G.S. Wang, One-pot hydrothermal synthesis of hexagonal WO3 nanorods/graphene composites as high-performance electrodes for supercapacitors. ChemPlusChem 82, 1174–1181 (2017). https://doi.org/10.1002/cplu.201700288
S. Zhang, S. Cao, T. Zhang, A. Fisher, J.Y. Lee, Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy Environ. Sci. 11(10), 2884–2892 (2018). https://doi.org/10.1039/c8ee01718b
G. Cai, P. Darmawan, M. Cui, J. Chen, X. Wang et al., Inkjet-printed all solid-state electrochromic devices based on NiO/WO3 nanoparticle complementary electrodes. Nanoscale 8(1), 348 (2015). https://doi.org/10.1039/C5NR06995E
J. Zhou, Y. Wei, L. Gui, J. Zheng, C. Xu, Electrochromic properties of vertically aligned Ni-doped WO3 nanostructure films and their application in complementary electrochromic devices. J. Mater. Chem. C 4(8), 1613–1622 (2016). https://doi.org/10.1039/C5TC03750F
X. Yu, J. Wang, C. Wang, Z. Shi, A novel electrolyte used in high working voltage application for electrical double-layer capacitor using spiro-(1,1′)-bipyrrolidinium tetrafluoroborate in mixtures solvents. Electrochim. Acta 182, 1166–1174 (2015). https://doi.org/10.1016/j.electacta.2016.03.113
Z. Shi, X. Yu, J. Wang, H. Hu, C. Wu, Excellent low temperature performance electrolyte of spiro-(1,1′)-bipyrrolidinium tetrafluoroborate by tunable mixtures solvents for electric double layer capacitor. Electrochim. Acta 174, 215–220 (2015). https://doi.org/10.1016/j.electacta.2015.05.133
H.M. Kao, P.C. Chang, S.W. Chao, C.H. Lee, 7Li NMR, ionic conductivity and self-diffusion coefficients of lithium ion and solvent of plasticized organic–inorganic hybrid electrolyte based on PPG-PEG-PPG diamine and alkoxysilanes. Electrochim. Acta 52(3), 1015–1027 (2006). https://doi.org/10.1016/j.electacta.2006.06.042
S.A. Agnihotry, P. Pradeep, S.S. Sekhon, PMMA based gel electrolyte for EC smart windows. Electrochim. Acta 44(18), 3121–3126 (1999). https://doi.org/10.1016/S0013-4686(99)00029-8
G. Cai, L.S. Eh, J. Lin, P.S. Lee, Recent advances in electrochromic smart fenestration. Adv. Sustain. Syst. 1(12), 1700074 (2017). https://doi.org/10.1002/adsu.201700074
M. Naguib, J. Come, B. Dyatkin, V. Presser, P.L. Taberna et al., MXene: A promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 16(1), 61–64 (2012). https://doi.org/10.1016/j.elecom.2012.01.002
P. Salles, D. Pinto, K. Hantanasirisakul, K. Maleski, C.E. Shuck et al., Electrochromic effect in titanium carbide MXene thin films produced by dip-coating. Adv. Funct. Mater. 29(17), 1809223 (2019). https://doi.org/10.1002/adfm.201809223
R.T. Wen, M.A. Arvizu, M. Morales-Luna, C.G. Granqvist, G.A. Niklasson, Ion trapping and detrapping in amorphous tungsten oxide thin films observed by real-time electro-optical monitoring. Chem. Mater. 28(13), 4670–4676 (2016). https://doi.org/10.1021/acs.chemmater.6b01503
P. He, X.X. Wang, Y.Z. Cai, J.C. Shu, Q.L. Zhao et al., Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale 11(13), 6080–6088 (2019). https://doi.org/10.1039/C8NR10489A
X.Y. Fang, X.X. Yu, H.M. Zheng, H.B. Jin, L. Wang et al., Temperature- and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets. Phys. Lett. A 379(37), 2245–2251 (2015). https://doi.org/10.1016/j.physleta.2015.06.063
L. Han, L. Liang, P.S. Lee, D. Mandler, X. Lu, Layer-by-layer assembly of PEDOT:PSS and WO3 nanoparticles: Enhanced electrochromic coloration efficiency and mechanism studies by scanning electrochemical microscopy. Electrochim. Acta 174(1), 57–65 (2015). https://doi.org/10.1016/j.electacta.2015.05.147
Y. Liu, G. Yuan, C. Hua, Y. Zhang, G. Han et al., Improvement of electrochromic performance by embedding ITO nanocrystals in amorphous WO3 film. ECS J. Solid State Sci. Technol. 8(1), 1–6 (2019). https://doi.org/10.1149/2.0021901jss
M. Meenakshi, V. Gowthami, P. Perumal, R. Sivakumar, C. Sanjeeviraja, Influence of dopant concentration on the electrochromic properties of tungsten oxide thin films. Electrochim. Acta 174, 302–314 (2015). https://doi.org/10.1016/j.electacta.2015.05.187
P. Salles, E. Quain, N. Kurra, A. Sarycheva, Y. Gogotsi, Automated scalpel patterning of solution processed thin films for fabrication of transparent MXene microsupercapacitors. Small 14(44), 1802864 (2018). https://doi.org/10.1002/smll.201802864
M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
D. Wohlmuth, V. Epp, P. Bottke, I. Hanzu, B. Bitschnau et al., Order versus disorder—a huge increase in ionic conductivity of nanocrystalline LiAlO2 embedded in an amorphous-like matrix of lithium aluminate. J. Mater. Chem. A 2(47), 20295–20306 (2014). https://doi.org/10.1039/C4TA02923B
L. Anna, G. Guillermo, G. Jaume, D.J. Milliron, Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500(7462), 323–326 (2013). https://doi.org/10.1038/nature12398
J. Bisquert, V.S. Vikhrenko, Analysis of the kinetics of ion intercalation Two state model describing the coupling of solid state ion diffusion and ion binding processes. Electrochim. Acta 47(24), 3977–3988 (2002). https://doi.org/10.1016/S0013-4686(02)00372-9
X. Huo, X. Miao, X. Han, S. Tang, M. Zhang et al., High-performance electrochromo-supercapacitors based on the synergetic effect between aqueous Al3+ and ordered hexagonal tungsten oxide nanorod arrays. J. Mater. Chem. A 8, 9927–9938 (2020). https://doi.org/10.1039/D0TA01808B
Y. Liu, L. Sun, G. Sikha, J. Isidorsson, S. Lim et al., 2-D mathematical modeling for a large electrochromic window—part I. Sol. Energy Mater. Sol. C 120, 1–8 (2014). https://doi.org/10.1016/j.solmat.2013.07.030
M. Rakibuddin, H. Kim, Fabrication of MoS2/WO3 nanocomposite films for enhanced electro-chromic performance. New J. Chem. 41(24), 15327–15333 (2017). https://doi.org/10.1039/c7nj03011h