Fully Printed High-Performance n-Type Metal Oxide Thin-Film Transistors Utilizing Coffee-Ring Effect
Corresponding Author: Bowen Zhu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 164
Abstract
Metal oxide thin-films transistors (TFTs) produced from solution-based printing techniques can lead to large-area electronics with low cost. However, the performance of current printed devices is inferior to those from vacuum-based methods due to poor film uniformity induced by the “coffee-ring” effect. Here, we report a novel approach to print high-performance indium tin oxide (ITO)-based TFTs and logic inverters by taking advantage of such notorious effect. ITO has high electrical conductivity and is generally used as an electrode material. However, by reducing the film thickness down to nanometers scale, the carrier concentration of ITO can be effectively reduced to enable new applications as active channels in transistors. The ultrathin (~10-nm-thick) ITO film in the center of the coffee-ring worked as semiconducting channels, while the thick ITO ridges (>18-nm-thick) served as the contact electrodes. The fully inkjet-printed ITO TFTs exhibited a high saturation mobility of 34.9 cm2 V−1 s−1 and a low subthreshold swing of 105 mV dec−1. In addition, the devices exhibited excellent electrical stability under positive bias illumination stress (PBIS, ΔVth = 0.31 V) and negative bias illuminaiton stress (NBIS, ΔVth = −0.29 V) after 10,000 s voltage bias tests. More remarkably, fully printed n-type metal–oxide–semiconductor (NMOS) inverter based on ITO TFTs exhibited an extremely high gain of 181 at a low-supply voltage of 3 V, promising for advanced electronics applications.
Highlights:
1 Fully inkjet-printed transparent high-performance thin-film transistors (TFTs) with ultrathin indium tin oxide (ITO) as semiconducting channels were achieved.
2 The energy band alignment at ITO/Al2O3 channel/dielectric interface was investigated by in-depth spectroscopy analysis.
3 Fully printed n-type metal–oxide–semiconductor inverters based on ITO TFTs exhibited extremely high gain of 181 at a low-supply voltage of 3 V, promising for applications in advanced electronic devices and circuits.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432(7016), 488–492 (2004). https://doi.org/10.1038/nature03090
- S. Lee, A. Nathan, Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain. Science 354(6310), 302–304 (2016). https://doi.org/10.1126/science.aah5035
- N. Nakatsuka, K.-A. Yang, J.M. Abendroth, K. Cheung, X. Xu et al., Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 362(6412), 319–324 (2018). https://doi.org/10.1126/science.aao6750
- M. Sugiyama, T. Uemura, M. Kondo, M. Akiyama, N. Namba et al., An ultraflexible organic differential amplifier for recording electrocardiograms. Nat. Electron. 2(8), 351–360 (2019). https://doi.org/10.1038/s41928-019-0283-5
- L. Petti, N. Münzenrieder, C. Vogt, H. Faber, L. Büthe et al., Metal oxide semiconductor thin-film transistors for flexible electronics. Appl. Phys. Rev. 3(2), 021303 (2016). https://doi.org/10.1063/1.4953034
- Y.S. Rim, H. Chen, B. Zhu, S.H. Bae, S. Zhu et al., Interface engineering of metal oxide semiconductors for biosensing applications. Adv. Mater. Interfaces 4(10), 1700020 (2017). https://doi.org/10.1002/admi.201700020
- X. Yu, T.J. Marks, A. Facchetti, Metal oxides for optoelectronic applications. Nat. Mater. 15(4), 383–396 (2016). https://doi.org/10.1038/nmat4599
- E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24(22), 2945–2986 (2012). https://doi.org/10.1002/adma.201103228
- Y.-H. Kim, J.-S. Heo, T.-H. Kim, S. Park, M.-H. Yoon et al., Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature 489(7414), 128–132 (2012). https://doi.org/10.1038/nature11434
- S. Choi, S.I. Han, D. Kim, T. Hyeon, D.-H. Kim, High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem. Soc. Rev. 48(6), 1566–1595 (2019). https://doi.org/10.1039/C8CS00706C
- M. Coll, J. Fontcuberta, M. Althammer, M. Bibes, H. Boschker et al., Towards oxide electronics: a roadmap. Appl. Surf. Sci. 482, 1–93 (2019). https://doi.org/10.1016/j.apsusc.2019.03.312
- R. Chen, L. Lan, Solution-processed metal-oxide thin-film transistors: a review of recent developments. Nanotechnology 30(31), 312001 (2019). https://doi.org/10.1088/1361-6528/ab1860
- M.-G. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 10(5), 382–388 (2011). https://doi.org/10.1038/nmat3011
- Y.S. Rim, H. Chen, Y. Liu, S.-H. Bae, H.J. Kim et al., Direct light pattern integration of low-temperature solution-processed all-oxide flexible electronics. ACS Nano 8(9), 9680–9686 (2014). https://doi.org/10.1021/nn504420r
- D. Li, M. Zhao, K. Liang, H. Ren, Q. Wu et al., Flexible low-power source-gated transistors with solution-processed metal-oxide semiconductors. Nanoscale 12(42), 21610–21616 (2020). https://doi.org/10.1039/D0NR06177H
- S. Chung, K. Cho, T. Lee, Recent progress in inkjet-printed thin-film transistors. Adv. Sci. 6(6), 27 (2019). https://doi.org/10.1002/advs.201801445
- F. Shao, Q. Wan, Recent progress on jet printing of oxide-based thin film transistors. J. Phys. D Appl. Phys. 52(14), 143002 (2019). https://doi.org/10.1088/1361-6463/aafd79
- S. Conti, L. Pimpolari, G. Calabrese, R. Worsley, S. Majee et al., Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper. Nat. Commun. 11(1), 3566 (2020). https://doi.org/10.1038/s41467-020-17297-z
- K. Fukuda, T. Someya, Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology. Adv. Mater. 29(25), 1602736 (2017). https://doi.org/10.1002/adma.201602736
- T. Sekitani, T. Yokota, K. Kuribara, M. Kaltenbrunner, T. Fukushima et al., Ultraflexible organic amplifier with biocompatible gel electrodes. Nat. Commun. 7(1), 11425 (2016). https://doi.org/10.1038/ncomms11425
- P.J. Yunker, T. Still, M.A. Lohr, A.G. Yodh, Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476(7360), 308–311 (2011). https://doi.org/10.1038/nature10344
- J. Jang, H. Kang, H.C.N. Chakravarthula, V. Subramanian, Fully inkjet-printed transparent oxide thin film transistors using a fugitive wettability switch. Adv. Electron. Mater. 1(7), 1500086 (2015). https://doi.org/10.1002/aelm.201500086
- X. Shen, C.-M. Ho, T.-S. Wong, Minimal size of coffee ring structure. J. Phys. Chem. B 114(16), 5269–5274 (2010). https://doi.org/10.1021/jp912190v
- R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel et al., Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827–829 (1997). https://doi.org/10.1038/39827
- R.D. Deegan, Pattern formation in drying drops. Phys. Rev. E 61(1), 475–485 (2000). https://doi.org/10.1103/PhysRevE.61.475
- J. Leppäniemi, K. Eiroma, H. Majumdar, A. Alastalo, Far-UV annealed inkjet-printed In2O3 semiconductor layers for thin-film transistors on a flexible polyethylene naphthalate substrate. ACS Appl. Mater. Interfaces 9(10), 8774–8782 (2017). https://doi.org/10.1021/acsami.6b14654
- Y. Li, L. Lan, S. Sun, Z. Lin, P. Gao et al., All inkjet-printed metal-oxide thin-film transistor array with good stability and uniformity using surface-energy patterns. ACS Appl. Mater. Interfaces 9(9), 8194–8200 (2017). https://doi.org/10.1021/acsami.7b00435
- Y. Li, L. Lan, S. Hu, P. Gao, X. Dai et al., Fully printed top-gate metal–oxide thin-film transistors based on scandium-zirconium-oxide dielectric. IEEE Trans. Electron Dev. 66(1), 445–450 (2019). https://doi.org/10.1109/TED.2018.2877979
- A. Zeumault, S. Ma, J. Holbery, Fully inkjet-printed metal-oxide thin-film transistors on plastic. Phys. Status Solidi A 213(8), 2189–2195 (2016). https://doi.org/10.1002/pssa.201600077
- P. Canhola, N. Martins, L. Raniero, S. Pereira, E. Fortunato et al., Role of annealing environment on the performances of large area ITO films produced by RF magnetron sputtering. Thin Solid Films 487(1–2), 271–276 (2005). https://doi.org/10.1016/j.tsf.2005.01.078
- J. Zhang, J. Wilson, G. Auton, Y. Wang, M. Xu et al., Extremely high-gain source-gated transistors. Proc. Natl. Acad. Sci. USA 116(11), 4843–4848 (2019). https://doi.org/10.1073/pnas.1820756116
- S. Li, M. Tian, Q. Gao, M. Wang, T. Li et al., Nanometre-thin indium tin oxide for advanced high-performance electronics. Nat. Mater. 18(10), 1091–1097 (2019). https://doi.org/10.1038/s41563-019-0455-8
- Y. Wang, Z. Wang, K. Huang, X. Liang, C. Liu et al., Solution-processed ITO thin-film transistors with doping of gallium oxide show high on-off ratios and work at 1 mM drain voltage. Appl. Phys. Lett. 116(14), 141604 (2020). https://doi.org/10.1063/1.5141140
- Y. Le, Y. Shao, X. Xiao, X. Xu, S. Zhang, Indium–tin–oxide thin-film transistors with in situ anodized Ta2O5 passivation layer. IEEE Electron. Device Lett. 37(5), 603–606 (2016). https://doi.org/10.1109/LED.2016.2548785
- A. Lu, J. Sun, J. Jiang, Q. Wan, Microporous SiO2 with huge electric-double-layer capacitance for low-voltage indium tin oxide thin-film transistors. Appl. Phys. Lett. 95(22), 222905 (2009). https://doi.org/10.1063/1.3271029
- T. Kamiya, K. Nomura, H. Hosono, Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping. J. Disp. Technol. 5(7), 273–288 (2009). https://doi.org/10.1109/jdt.2009.2021582
- A. Lyubchyk, A. Vicente, B. Soule, P.U. Alves, T. Mateus et al., Mapping the electrical properties of ZnO-based transparent conductive oxides grown at room temperature and improved by controlled postdeposition annealing. Adv. Electron. Mater. (2016). https://doi.org/10.1002/aelm.201500287
- H. Faber, S. Das, Y.-H. Lin, N. Pliatsikas, K. Zhao et al., Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution. Sci. Adv. 3(3), e1602640 (2017). https://doi.org/10.1126/sciadv.1602640
- Y.-H. Lin, H. Faber, J.G. Labram, E. Stratakis, L. Sygellou et al., High electron mobility thin-film transistors based on solution-processed semiconducting metal oxide heterojunctions and quasi-superlattices. Adv. Sci. 2(7), 1500058 (2015). https://doi.org/10.1002/advs.201500058
- J.S. Heo, S.-P. Jeon, I. Kim, W. Lee, Y.-H. Kim et al., Suppression of interfacial disorders in solution-processed metal oxide thin-film transistors by Mg doping. ACS Appl. Mater. Interfaces 11(51), 48054–48061 (2019). https://doi.org/10.1021/acsami.9b17642
- S.N. Luo, A. Kono, N. Nouchi, F. Shoji, Effective creation of oxygen vacancies as an electron carrier source in tin-doped indium oxide films by plasma sputtering. J. Appl. Phys. 100(11), 113701 (2006). https://doi.org/10.1063/1.2372571
- J. Jeong, G.J. Lee, J. Kim, J. Kim, B. Choi, Oxygen dispersive diffusion induced bias stress instability in thin active layer amorphous In–Ga–Zn–O thin-film transistors. Appl. Phys. Express. 6(3), 031101 (2013). https://doi.org/10.7567/apex.6.031101
- W. Wang, L. Li, C. Lu, Y. Liu, H. Lv et al., Analysis of the contact resistance in amorphous InGaZnO thin film transistors. Appl. Phys. Lett. (2015). https://doi.org/10.1063/1.4928626
- S.Y. Lee, J. Kim, A. Park, J. Park, H. Seo, Creation of a short-range ordered two-dimensional electron gas channel in Al2O3/In2O3 interfaces. ACS Nano 11(6), 6040–6047 (2017). https://doi.org/10.1021/acsnano.7b01964
References
K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432(7016), 488–492 (2004). https://doi.org/10.1038/nature03090
S. Lee, A. Nathan, Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain. Science 354(6310), 302–304 (2016). https://doi.org/10.1126/science.aah5035
N. Nakatsuka, K.-A. Yang, J.M. Abendroth, K. Cheung, X. Xu et al., Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 362(6412), 319–324 (2018). https://doi.org/10.1126/science.aao6750
M. Sugiyama, T. Uemura, M. Kondo, M. Akiyama, N. Namba et al., An ultraflexible organic differential amplifier for recording electrocardiograms. Nat. Electron. 2(8), 351–360 (2019). https://doi.org/10.1038/s41928-019-0283-5
L. Petti, N. Münzenrieder, C. Vogt, H. Faber, L. Büthe et al., Metal oxide semiconductor thin-film transistors for flexible electronics. Appl. Phys. Rev. 3(2), 021303 (2016). https://doi.org/10.1063/1.4953034
Y.S. Rim, H. Chen, B. Zhu, S.H. Bae, S. Zhu et al., Interface engineering of metal oxide semiconductors for biosensing applications. Adv. Mater. Interfaces 4(10), 1700020 (2017). https://doi.org/10.1002/admi.201700020
X. Yu, T.J. Marks, A. Facchetti, Metal oxides for optoelectronic applications. Nat. Mater. 15(4), 383–396 (2016). https://doi.org/10.1038/nmat4599
E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24(22), 2945–2986 (2012). https://doi.org/10.1002/adma.201103228
Y.-H. Kim, J.-S. Heo, T.-H. Kim, S. Park, M.-H. Yoon et al., Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature 489(7414), 128–132 (2012). https://doi.org/10.1038/nature11434
S. Choi, S.I. Han, D. Kim, T. Hyeon, D.-H. Kim, High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem. Soc. Rev. 48(6), 1566–1595 (2019). https://doi.org/10.1039/C8CS00706C
M. Coll, J. Fontcuberta, M. Althammer, M. Bibes, H. Boschker et al., Towards oxide electronics: a roadmap. Appl. Surf. Sci. 482, 1–93 (2019). https://doi.org/10.1016/j.apsusc.2019.03.312
R. Chen, L. Lan, Solution-processed metal-oxide thin-film transistors: a review of recent developments. Nanotechnology 30(31), 312001 (2019). https://doi.org/10.1088/1361-6528/ab1860
M.-G. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 10(5), 382–388 (2011). https://doi.org/10.1038/nmat3011
Y.S. Rim, H. Chen, Y. Liu, S.-H. Bae, H.J. Kim et al., Direct light pattern integration of low-temperature solution-processed all-oxide flexible electronics. ACS Nano 8(9), 9680–9686 (2014). https://doi.org/10.1021/nn504420r
D. Li, M. Zhao, K. Liang, H. Ren, Q. Wu et al., Flexible low-power source-gated transistors with solution-processed metal-oxide semiconductors. Nanoscale 12(42), 21610–21616 (2020). https://doi.org/10.1039/D0NR06177H
S. Chung, K. Cho, T. Lee, Recent progress in inkjet-printed thin-film transistors. Adv. Sci. 6(6), 27 (2019). https://doi.org/10.1002/advs.201801445
F. Shao, Q. Wan, Recent progress on jet printing of oxide-based thin film transistors. J. Phys. D Appl. Phys. 52(14), 143002 (2019). https://doi.org/10.1088/1361-6463/aafd79
S. Conti, L. Pimpolari, G. Calabrese, R. Worsley, S. Majee et al., Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper. Nat. Commun. 11(1), 3566 (2020). https://doi.org/10.1038/s41467-020-17297-z
K. Fukuda, T. Someya, Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology. Adv. Mater. 29(25), 1602736 (2017). https://doi.org/10.1002/adma.201602736
T. Sekitani, T. Yokota, K. Kuribara, M. Kaltenbrunner, T. Fukushima et al., Ultraflexible organic amplifier with biocompatible gel electrodes. Nat. Commun. 7(1), 11425 (2016). https://doi.org/10.1038/ncomms11425
P.J. Yunker, T. Still, M.A. Lohr, A.G. Yodh, Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476(7360), 308–311 (2011). https://doi.org/10.1038/nature10344
J. Jang, H. Kang, H.C.N. Chakravarthula, V. Subramanian, Fully inkjet-printed transparent oxide thin film transistors using a fugitive wettability switch. Adv. Electron. Mater. 1(7), 1500086 (2015). https://doi.org/10.1002/aelm.201500086
X. Shen, C.-M. Ho, T.-S. Wong, Minimal size of coffee ring structure. J. Phys. Chem. B 114(16), 5269–5274 (2010). https://doi.org/10.1021/jp912190v
R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel et al., Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827–829 (1997). https://doi.org/10.1038/39827
R.D. Deegan, Pattern formation in drying drops. Phys. Rev. E 61(1), 475–485 (2000). https://doi.org/10.1103/PhysRevE.61.475
J. Leppäniemi, K. Eiroma, H. Majumdar, A. Alastalo, Far-UV annealed inkjet-printed In2O3 semiconductor layers for thin-film transistors on a flexible polyethylene naphthalate substrate. ACS Appl. Mater. Interfaces 9(10), 8774–8782 (2017). https://doi.org/10.1021/acsami.6b14654
Y. Li, L. Lan, S. Sun, Z. Lin, P. Gao et al., All inkjet-printed metal-oxide thin-film transistor array with good stability and uniformity using surface-energy patterns. ACS Appl. Mater. Interfaces 9(9), 8194–8200 (2017). https://doi.org/10.1021/acsami.7b00435
Y. Li, L. Lan, S. Hu, P. Gao, X. Dai et al., Fully printed top-gate metal–oxide thin-film transistors based on scandium-zirconium-oxide dielectric. IEEE Trans. Electron Dev. 66(1), 445–450 (2019). https://doi.org/10.1109/TED.2018.2877979
A. Zeumault, S. Ma, J. Holbery, Fully inkjet-printed metal-oxide thin-film transistors on plastic. Phys. Status Solidi A 213(8), 2189–2195 (2016). https://doi.org/10.1002/pssa.201600077
P. Canhola, N. Martins, L. Raniero, S. Pereira, E. Fortunato et al., Role of annealing environment on the performances of large area ITO films produced by RF magnetron sputtering. Thin Solid Films 487(1–2), 271–276 (2005). https://doi.org/10.1016/j.tsf.2005.01.078
J. Zhang, J. Wilson, G. Auton, Y. Wang, M. Xu et al., Extremely high-gain source-gated transistors. Proc. Natl. Acad. Sci. USA 116(11), 4843–4848 (2019). https://doi.org/10.1073/pnas.1820756116
S. Li, M. Tian, Q. Gao, M. Wang, T. Li et al., Nanometre-thin indium tin oxide for advanced high-performance electronics. Nat. Mater. 18(10), 1091–1097 (2019). https://doi.org/10.1038/s41563-019-0455-8
Y. Wang, Z. Wang, K. Huang, X. Liang, C. Liu et al., Solution-processed ITO thin-film transistors with doping of gallium oxide show high on-off ratios and work at 1 mM drain voltage. Appl. Phys. Lett. 116(14), 141604 (2020). https://doi.org/10.1063/1.5141140
Y. Le, Y. Shao, X. Xiao, X. Xu, S. Zhang, Indium–tin–oxide thin-film transistors with in situ anodized Ta2O5 passivation layer. IEEE Electron. Device Lett. 37(5), 603–606 (2016). https://doi.org/10.1109/LED.2016.2548785
A. Lu, J. Sun, J. Jiang, Q. Wan, Microporous SiO2 with huge electric-double-layer capacitance for low-voltage indium tin oxide thin-film transistors. Appl. Phys. Lett. 95(22), 222905 (2009). https://doi.org/10.1063/1.3271029
T. Kamiya, K. Nomura, H. Hosono, Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping. J. Disp. Technol. 5(7), 273–288 (2009). https://doi.org/10.1109/jdt.2009.2021582
A. Lyubchyk, A. Vicente, B. Soule, P.U. Alves, T. Mateus et al., Mapping the electrical properties of ZnO-based transparent conductive oxides grown at room temperature and improved by controlled postdeposition annealing. Adv. Electron. Mater. (2016). https://doi.org/10.1002/aelm.201500287
H. Faber, S. Das, Y.-H. Lin, N. Pliatsikas, K. Zhao et al., Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution. Sci. Adv. 3(3), e1602640 (2017). https://doi.org/10.1126/sciadv.1602640
Y.-H. Lin, H. Faber, J.G. Labram, E. Stratakis, L. Sygellou et al., High electron mobility thin-film transistors based on solution-processed semiconducting metal oxide heterojunctions and quasi-superlattices. Adv. Sci. 2(7), 1500058 (2015). https://doi.org/10.1002/advs.201500058
J.S. Heo, S.-P. Jeon, I. Kim, W. Lee, Y.-H. Kim et al., Suppression of interfacial disorders in solution-processed metal oxide thin-film transistors by Mg doping. ACS Appl. Mater. Interfaces 11(51), 48054–48061 (2019). https://doi.org/10.1021/acsami.9b17642
S.N. Luo, A. Kono, N. Nouchi, F. Shoji, Effective creation of oxygen vacancies as an electron carrier source in tin-doped indium oxide films by plasma sputtering. J. Appl. Phys. 100(11), 113701 (2006). https://doi.org/10.1063/1.2372571
J. Jeong, G.J. Lee, J. Kim, J. Kim, B. Choi, Oxygen dispersive diffusion induced bias stress instability in thin active layer amorphous In–Ga–Zn–O thin-film transistors. Appl. Phys. Express. 6(3), 031101 (2013). https://doi.org/10.7567/apex.6.031101
W. Wang, L. Li, C. Lu, Y. Liu, H. Lv et al., Analysis of the contact resistance in amorphous InGaZnO thin film transistors. Appl. Phys. Lett. (2015). https://doi.org/10.1063/1.4928626
S.Y. Lee, J. Kim, A. Park, J. Park, H. Seo, Creation of a short-range ordered two-dimensional electron gas channel in Al2O3/In2O3 interfaces. ACS Nano 11(6), 6040–6047 (2017). https://doi.org/10.1021/acsnano.7b01964