Flexible Tactile Electronic Skin Sensor with 3D Force Detection Based on Porous CNTs/PDMS Nanocomposites
Corresponding Author: Ning Xue
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 57
Abstract
Flexible tactile sensors have broad applications in human physiological monitoring, robotic operation and human–machine interaction. However, the research of wearable and flexible tactile sensors with high sensitivity, wide sensing range and ability to detect three-dimensional (3D) force is still very challenging. Herein, a flexible tactile electronic skin sensor based on carbon nanotubes (CNTs)/polydimethylsiloxane (PDMS) nanocomposites is presented for 3D contact force detection. The 3D forces were acquired from combination of four specially designed cells in a sensing element. Contributed from the double-sided rough porous structure and specific surface morphology of nanocomposites, the piezoresistive sensor possesses high sensitivity of 12.1 kPa−1 within the range of 600 Pa and 0.68 kPa−1 in the regime exceeding 1 kPa for normal pressure, as well as 59.9 N−1 in the scope of < 0.05 N and > 2.3 N−1 in the region of < 0.6 N for tangential force with ultra-low response time of 3.1 ms. In addition, multi-functional detection in human body monitoring was employed with single sensing cell and the sensor array was integrated into a robotic arm for objects grasping control, indicating the capacities in intelligent robot applications.
Highlights:
1 Flexible sensitive carbon nanotubes/polydimethylsiloxane (CNTs/PDMS) nanocomposite with novel double-side rough porous structure was proposed by simple manufacturing methods.
2 Three-dimensional (3D) force tactile electronic skin sensor based on CNTs/PDMS nanocompositions exhibited high sensitivity, good consistency and fast response.
3 A promising strategy for low-cost multi-functional detection in human body monitoring and intelligent robot grasping applications was provided.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Alfadhel, J. Kosel, Magnetic nanocomposite cilia tactile sensor. Adv. Mater. 27(47), 7888–7892 (2015). https://doi.org/10.1002/adma.201504015
- J. Park, Y. Lee, J. Hong, M. Ha, Y.D. Jung, H. Lim, S.Y. Kim, H. Ko, Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 8(5), 4689–4697 (2014). https://doi.org/10.1021/nn500441k
- D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin et al., Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222–226 (2014). https://doi.org/10.1038/nature14002
- J. Kim, M. Lee, H.J. Shim, R. Ghaffari, H.R. Cho et al., Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5, 5747 (2014). https://doi.org/10.1038/ncomms6747
- H. Kim, G. Kim, T. Kim, S. Lee, D. Kang et al., Transparent, flexible, conformal capacitive pressure sensors with nanoparticles. Small 14(8), 1703432 (2018). https://doi.org/10.1002/smll.201703432
- L. Xie, X. Chen, Z. Wen, Y. Yang, J. Shi et al., Spiral steel wire based fiber-shaped stretchable and tailorable triboelectric nanogenerator for wearable power source and active gesture sensor. Nano-Micro Lett. 11, 39 (2019). https://doi.org/10.1007/s40820-019-0271-3
- Q. Hua, J. Sun, H. Liu, R. Bao, R. Yu et al., Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 9, 244 (2018). https://doi.org/10.1038/s41467-017-02685-9
- H. Chen, Y. Song, H. Guo, L. Miao, X. Chen, Z. Su, H. Zhang, Hybrid porous micro structured finger skin inspired self-powered electronic skin system for pressure sensing and sliding detection. Nano Energy 51, 496–503 (2018). https://doi.org/10.1016/j.nanoen.2018.07.001
- Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360(6392), 998–1003 (2018). https://doi.org/10.1126/science.aao0098
- S. Bai, S. Zhang, W. Zhou, D. Ma, Y. Ma, P. Joshi, A. Hu, Laser-assisted reduction of highly conductive circuits based on copper nitrate for flexible printed sensors. Nano-Micro Lett. 9(4), 42 (2017). https://doi.org/10.1007/s40820-017-0139-3
- Z. Tao, Y. Huang, X. Liu, J. Chen, W. Lei et al., High-performance photo-modulated thin-film transistor based on quantum dots/reduced graphene oxide fragment-decorated ZnO nanowires. Nano-Micro Lett. 8(3), 247–253 (2016). https://doi.org/10.1007/s40820-016-0083-7
- W. Liu, N. Liu, Y. Yue, J. Rao, F. Cheng, J. Su, Z. Liu, Y. Gao, Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film. Small 14(15), 1704149 (2018). https://doi.org/10.1002/smll.201704149
- X. Sun, C. Wang, C. Chi, N. Xue, C. Liu, A highly-sensitive flexible tactile sensor array utilizing piezoresistive carbon nanotube–polydimethylsiloxane composite. J. Micromech. Microeng. 28(10), 105011 (2018). https://doi.org/10.1088/1361-6439/aaceb9
- T. Li, H. Luo, L. Qin, X. Wang, Z. Xiong et al., Flexible capacitive tactile sensor based on micropatterned dielectric layer. Small 12(36), 5042–5048 (2016). https://doi.org/10.1002/smll.201600760
- D. Choi, S. Jang, J.S. Kim, H.J. Kim, D.H. Kim, J.Y. Kwon, A highly sensitive tactile sensor using a pyramid-plug structure for detecting pressure, shear force, and torsion. Adv. Mater. Technol. (2018). https://doi.org/10.1002/admt.201800284
- Y. Shu, H. Tian, Y. Yang, C. Li, Y. Cui et al., Surface-modified piezoresistive nanocomposite flexible pressure sensors with high sensitivity and wide linearity. Nanoscale 7(18), 8636–8644 (2015). https://doi.org/10.1039/C5NR01259G
- C.S. Park, J. Park, D.W. Lee, A piezoresistive tactile sensor based on carbon fibers and polymer substrates. Microelectron. Eng. 86(4–6), 1250–1253 (2009). https://doi.org/10.1016/j.mee.2008.12.072
- L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R. Dauskardt, Z. Bao, An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 5, 3002 (2014). https://doi.org/10.1038/ncomms4002
- Z. Tang, S. Jia, S. Shi, F. Wang, B. Li, Coaxial carbon nanotube/polymer fibers as wearable piezoresistive sensors. Sensors Actuat. A 284(1), 85–95 (2018). https://doi.org/10.1016/j.sna.2018.10.012
- J.A. Dobrzynska, M.A.M. Gijs, Polymer-based flexible capacitive sensor for three-axial force measurements. J. Micromech. Microeng. 23(1), 015009 (2013). https://doi.org/10.1088/0960-1317/23/1/015009
- M.S. Kim, H.R. Ahn, S. Lee, C. Kim, Y.J. Kim, A dome-shaped piezoelectric tactile sensor arrays fabricated by an air inflation technique. Sensors Actuat. A 212(1), 151–158 (2014). https://doi.org/10.1016/j.sna.2014.02.023
- R. Ahmadi, M. Packirisamy, J. Dargahi, R. Cecere, Discretely loaded beam-type optical fiber tactile sensor for tissue manipulation and palpation in minimally invasive robotic surgery. IEEE Sens. J. 12(1), 22–32 (2012). https://doi.org/10.1109/JSEN.2011.2113394
- X. Li, W. Huang, G. Yao, M. Gao, X. Wei et al., Highly sensitive flexible tactile sensors based on microstructured multiwall carbon nanotube arrays. Scr. Mater. 129(1), 61–64 (2017). https://doi.org/10.1016/j.scriptamat.2016.10.037
- S.A. Ul Hasan, Y. Jung, S. Kim, C.L. Jung, S. Oh, J. Kim, H. Lim, A sensitivity enhanced MWCNT/PDMS tactile sensor using micropillars and low energy Ar + ion beam treatment. Sensors 16(1), 93 (2016). https://doi.org/10.3390/s16010093
- J.J. Wang, C.E. Lu, J.L. Huang, R. Chen, W. Fang, Nanocomposite rubber elastomer with piezoresistive detection for flexible tactile sense application. In: IEEE International Conference on Micro Electro Mechanical Systems (MEMS) 2, 720 − 723 (2017). https://doi.org/10.1109/MEMSYS.2017.7863509
- S. Chun, A. Hong, Y. Choi, C. Ha, W. Park, A tactile sensor using a conductive graphene-sponge composite. Nanoscale 8(17), 9185–9192 (2016). https://doi.org/10.1039/c6nr00774k
- J. Zhang, L.J. Zhou, H.M. Zhang, Z.X. Zhao, S.L. Dong et al., Highly sensitive flexible three-axis tactile sensors based on the interface contact resistance of microstructured graphene. Nanoscale 10(16), 7387–7395 (2018). https://doi.org/10.1039/c7nr09149d
- Z. Pei, H. Hu, G. Liang, C. Ye, Carbon-based flexible and all-solid-state micro-supercapacitors fabricated by inkjet printing with enhanced performance. Nano-Micro Lett. 9(2), 19 (2017). https://doi.org/10.1007/s40820-016-0119-z
- J. Wang, J. Jiu, T. Araki, M. Nogi, T. Sugahara et al., Silver nanowire electrodes: conductivity improvement without post-treatment and application in capacitive pressure sensors. Nano-Micro Lett. 7(1), 51–58 (2015). https://doi.org/10.1007/s40820-014-0018-0
- Y. Sun, J. Sun, M. Liu, Q. Chen, Mechanical strength of carbon nanotube–nickel nanocomposites. Nanotechnology 18(50), 505704 (2007). https://doi.org/10.1088/0957-4484/18/50/505704
- M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584), 678–680 (1996). https://doi.org/10.1038/381678a0
- Z. Tang, S. Jia, F. Wang, C. Bian, Y. Chen, Y. Wang, B. Li, Highly stretchable core–sheath fibers via wet-spinning for wearable strain sensors. ACS Appl. Mater. Interfaces 10(7), 6624–6635 (2018). https://doi.org/10.1021/acsami.7b18677
- M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013). https://doi.org/10.1126/science.1222453
- A. Muhulet, F. Miculescu, S. Ioan, F. Schütt, V. Kumar, Y. Kumar, Fundamentals and scopes of doped carbon nanotubes towards energy and biosensing applications. Mater. Today Energy 9, 154–186 (2018). https://doi.org/10.1016/j.mtener.2018.05.002
- S. Kumar, R. Rani, N. Dilbaghi, K. Tankeshwar, Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem. Soc. Rev. 46(1), 158–196 (2017). https://doi.org/10.1039/C6CS00517A
- A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 9(1), 393 (2014). https://doi.org/10.1186/1556-276X-9-393
- X. Wang, G. Li, R. Liu, H. Ding, T. Zhang, Reproducible layer-by-layer exfoliation for free-standing ultrathin films of single-walled carbon nanotubes. J. Mater. Chem. 22(41), 21824 (2012). https://doi.org/10.1039/c2jm34262f
- H. Chen, L. Miao, Z. Su, Y. Song, M. Han et al., Fingertip-inspired electronic skin based on triboelectric sliding sensing and porous piezoresistive pressure detection. Nano Energy 40, 65–72 (2017). https://doi.org/10.1016/j.nanoen.2017.08.001
- B. Zhu, Z. Niu, H. Wang, W.R. Leow, H. Wang et al., Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small 10(18), 3625–3631 (2014). https://doi.org/10.1002/smll.201401207
- Y. Cao, T. Li, Y. Gu, H. Luo, S. Wang, T. Zhang, Fingerprint-inspired flexible tactile sensor for accurately discerning surface texture. Small 14(16), 1703902 (2018). https://doi.org/10.1002/smll.201703902
- Q. Shao, Z. Niu, M. Hirtz, L. Jiang, Y. Liu, Z. Wang, X. Chen, High-performance and tailorable pressure sensor based on ultrathin conductive polymer film. Small 10(8), 1466–1472 (2014). https://doi.org/10.1002/smll.201303601
- J. Park, Y. Lee, J. Hong, Y. Lee, M. Ha et al., Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano 8(12), 12020–12029 (2014). https://doi.org/10.1021/nn505953t
- S. Guo, K. Qiu, F. Meng, S.H. Park, M.C. Mcalpine, 3D printed stretchable tactile sensors. Adv. Mater. 29(27), 1701218 (2017). https://doi.org/10.1002/adma.201701218
- X. Wang, Y. Zhang, X. Zhang, Z. Huo, X. Li et al., A Highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics. Adv. Mater. 30(12), 1706738 (2018). https://doi.org/10.1002/adma.201706738
- M. Park, Y.J. Park, X. Chen, Y. Park, M. Kim, J.-H. Ahn, MoS2-based tactile sensor for electronic skin applications. Adv. Mater. 28(13), 2556–2562 (2016). https://doi.org/10.1002/adma.201505124
- J.C. Yeo, J. Yu, Z.M. Koh, Z. Wang, C.T. Lim, Wearable tactile sensor based on flexible microfluidics. Lab Chip 16(17), 3244–3250 (2016). https://doi.org/10.1039/C6LC00579A
- G.H. Büscher, R. Kõiva, C. Schürmann, R. Haschke, H.J. Ritter, Flexible and stretchable fabric-based tactile sensor. Rob. Auton. Syst. 63, 244–252 (2015). https://doi.org/10.1016/j.robot.2014.09.007
- L. Viry, A. Levi, M. Totaro, A. Mondini, V. Mattoli, B. Mazzolai, L. Beccai, Flexible three-axial force sensor for soft and highly sensitive artificial touch. Adv. Mater. 26(17), 2659–2664 (2014). https://doi.org/10.1002/adma.201305064
- H. Lee, J. Chung, S. Chang, E. Yoon, Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors. J. Microelectromech. Syst. 17(4), 934–942 (2008). https://doi.org/10.1109/JMEMS.2008.921727
- K. Noda, K. Matsumoto, I. Shimoyama, Stretchable tri-axis force sensor using conductive liquid. Sensors Actuat. A 215(15), 123–129 (2014). https://doi.org/10.1016/j.sna.2013.09.031
- D. Stauffer, A. Aharony, Introduction to Percolation Theory, 2nd edn. (CRC Press, London, 1994). https://doi.org/10.1201/9781315274386
- D. Rangaprakash, D.N. Dutt, Study of wrist pulse signals using time domain spatial features. Comput. Electr. Eng. 45, 100–107 (2015). https://doi.org/10.1016/j.compeleceng.2014.12.016
- Y. Chen, L. Zhang, D. Zhang, D. Zhang, Wrist pulse signal diagnosis using modified Gaussian models and Fuzzy c-means classification. Med. Eng. Phys. 31(10), 1283–1289 (2009). https://doi.org/10.1016/j.medengphy.2009.08.008
- C.W. Ma, L.S. Hsu, J.C. Kuo, Y.J. Yang, A flexible tactile and shear sensing array fabricated using a novel buckypaper patterning technique. Sensors Actuat. A 231, 21–27 (2015). https://doi.org/10.1016/j.sna.2014.09.016
- C.F. Hu, W.S. Su, W. Fang, Development of patterned carbon nanotubes on a 3D polymer substrate for the flexible tactile sensor application. J. Micromech. Microeng. 21(11), 115012 (2011). https://doi.org/10.1088/0960-1317/21/11/115012
References
A. Alfadhel, J. Kosel, Magnetic nanocomposite cilia tactile sensor. Adv. Mater. 27(47), 7888–7892 (2015). https://doi.org/10.1002/adma.201504015
J. Park, Y. Lee, J. Hong, M. Ha, Y.D. Jung, H. Lim, S.Y. Kim, H. Ko, Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 8(5), 4689–4697 (2014). https://doi.org/10.1021/nn500441k
D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin et al., Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222–226 (2014). https://doi.org/10.1038/nature14002
J. Kim, M. Lee, H.J. Shim, R. Ghaffari, H.R. Cho et al., Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5, 5747 (2014). https://doi.org/10.1038/ncomms6747
H. Kim, G. Kim, T. Kim, S. Lee, D. Kang et al., Transparent, flexible, conformal capacitive pressure sensors with nanoparticles. Small 14(8), 1703432 (2018). https://doi.org/10.1002/smll.201703432
L. Xie, X. Chen, Z. Wen, Y. Yang, J. Shi et al., Spiral steel wire based fiber-shaped stretchable and tailorable triboelectric nanogenerator for wearable power source and active gesture sensor. Nano-Micro Lett. 11, 39 (2019). https://doi.org/10.1007/s40820-019-0271-3
Q. Hua, J. Sun, H. Liu, R. Bao, R. Yu et al., Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 9, 244 (2018). https://doi.org/10.1038/s41467-017-02685-9
H. Chen, Y. Song, H. Guo, L. Miao, X. Chen, Z. Su, H. Zhang, Hybrid porous micro structured finger skin inspired self-powered electronic skin system for pressure sensing and sliding detection. Nano Energy 51, 496–503 (2018). https://doi.org/10.1016/j.nanoen.2018.07.001
Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360(6392), 998–1003 (2018). https://doi.org/10.1126/science.aao0098
S. Bai, S. Zhang, W. Zhou, D. Ma, Y. Ma, P. Joshi, A. Hu, Laser-assisted reduction of highly conductive circuits based on copper nitrate for flexible printed sensors. Nano-Micro Lett. 9(4), 42 (2017). https://doi.org/10.1007/s40820-017-0139-3
Z. Tao, Y. Huang, X. Liu, J. Chen, W. Lei et al., High-performance photo-modulated thin-film transistor based on quantum dots/reduced graphene oxide fragment-decorated ZnO nanowires. Nano-Micro Lett. 8(3), 247–253 (2016). https://doi.org/10.1007/s40820-016-0083-7
W. Liu, N. Liu, Y. Yue, J. Rao, F. Cheng, J. Su, Z. Liu, Y. Gao, Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film. Small 14(15), 1704149 (2018). https://doi.org/10.1002/smll.201704149
X. Sun, C. Wang, C. Chi, N. Xue, C. Liu, A highly-sensitive flexible tactile sensor array utilizing piezoresistive carbon nanotube–polydimethylsiloxane composite. J. Micromech. Microeng. 28(10), 105011 (2018). https://doi.org/10.1088/1361-6439/aaceb9
T. Li, H. Luo, L. Qin, X. Wang, Z. Xiong et al., Flexible capacitive tactile sensor based on micropatterned dielectric layer. Small 12(36), 5042–5048 (2016). https://doi.org/10.1002/smll.201600760
D. Choi, S. Jang, J.S. Kim, H.J. Kim, D.H. Kim, J.Y. Kwon, A highly sensitive tactile sensor using a pyramid-plug structure for detecting pressure, shear force, and torsion. Adv. Mater. Technol. (2018). https://doi.org/10.1002/admt.201800284
Y. Shu, H. Tian, Y. Yang, C. Li, Y. Cui et al., Surface-modified piezoresistive nanocomposite flexible pressure sensors with high sensitivity and wide linearity. Nanoscale 7(18), 8636–8644 (2015). https://doi.org/10.1039/C5NR01259G
C.S. Park, J. Park, D.W. Lee, A piezoresistive tactile sensor based on carbon fibers and polymer substrates. Microelectron. Eng. 86(4–6), 1250–1253 (2009). https://doi.org/10.1016/j.mee.2008.12.072
L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R. Dauskardt, Z. Bao, An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 5, 3002 (2014). https://doi.org/10.1038/ncomms4002
Z. Tang, S. Jia, S. Shi, F. Wang, B. Li, Coaxial carbon nanotube/polymer fibers as wearable piezoresistive sensors. Sensors Actuat. A 284(1), 85–95 (2018). https://doi.org/10.1016/j.sna.2018.10.012
J.A. Dobrzynska, M.A.M. Gijs, Polymer-based flexible capacitive sensor for three-axial force measurements. J. Micromech. Microeng. 23(1), 015009 (2013). https://doi.org/10.1088/0960-1317/23/1/015009
M.S. Kim, H.R. Ahn, S. Lee, C. Kim, Y.J. Kim, A dome-shaped piezoelectric tactile sensor arrays fabricated by an air inflation technique. Sensors Actuat. A 212(1), 151–158 (2014). https://doi.org/10.1016/j.sna.2014.02.023
R. Ahmadi, M. Packirisamy, J. Dargahi, R. Cecere, Discretely loaded beam-type optical fiber tactile sensor for tissue manipulation and palpation in minimally invasive robotic surgery. IEEE Sens. J. 12(1), 22–32 (2012). https://doi.org/10.1109/JSEN.2011.2113394
X. Li, W. Huang, G. Yao, M. Gao, X. Wei et al., Highly sensitive flexible tactile sensors based on microstructured multiwall carbon nanotube arrays. Scr. Mater. 129(1), 61–64 (2017). https://doi.org/10.1016/j.scriptamat.2016.10.037
S.A. Ul Hasan, Y. Jung, S. Kim, C.L. Jung, S. Oh, J. Kim, H. Lim, A sensitivity enhanced MWCNT/PDMS tactile sensor using micropillars and low energy Ar + ion beam treatment. Sensors 16(1), 93 (2016). https://doi.org/10.3390/s16010093
J.J. Wang, C.E. Lu, J.L. Huang, R. Chen, W. Fang, Nanocomposite rubber elastomer with piezoresistive detection for flexible tactile sense application. In: IEEE International Conference on Micro Electro Mechanical Systems (MEMS) 2, 720 − 723 (2017). https://doi.org/10.1109/MEMSYS.2017.7863509
S. Chun, A. Hong, Y. Choi, C. Ha, W. Park, A tactile sensor using a conductive graphene-sponge composite. Nanoscale 8(17), 9185–9192 (2016). https://doi.org/10.1039/c6nr00774k
J. Zhang, L.J. Zhou, H.M. Zhang, Z.X. Zhao, S.L. Dong et al., Highly sensitive flexible three-axis tactile sensors based on the interface contact resistance of microstructured graphene. Nanoscale 10(16), 7387–7395 (2018). https://doi.org/10.1039/c7nr09149d
Z. Pei, H. Hu, G. Liang, C. Ye, Carbon-based flexible and all-solid-state micro-supercapacitors fabricated by inkjet printing with enhanced performance. Nano-Micro Lett. 9(2), 19 (2017). https://doi.org/10.1007/s40820-016-0119-z
J. Wang, J. Jiu, T. Araki, M. Nogi, T. Sugahara et al., Silver nanowire electrodes: conductivity improvement without post-treatment and application in capacitive pressure sensors. Nano-Micro Lett. 7(1), 51–58 (2015). https://doi.org/10.1007/s40820-014-0018-0
Y. Sun, J. Sun, M. Liu, Q. Chen, Mechanical strength of carbon nanotube–nickel nanocomposites. Nanotechnology 18(50), 505704 (2007). https://doi.org/10.1088/0957-4484/18/50/505704
M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584), 678–680 (1996). https://doi.org/10.1038/381678a0
Z. Tang, S. Jia, F. Wang, C. Bian, Y. Chen, Y. Wang, B. Li, Highly stretchable core–sheath fibers via wet-spinning for wearable strain sensors. ACS Appl. Mater. Interfaces 10(7), 6624–6635 (2018). https://doi.org/10.1021/acsami.7b18677
M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013). https://doi.org/10.1126/science.1222453
A. Muhulet, F. Miculescu, S. Ioan, F. Schütt, V. Kumar, Y. Kumar, Fundamentals and scopes of doped carbon nanotubes towards energy and biosensing applications. Mater. Today Energy 9, 154–186 (2018). https://doi.org/10.1016/j.mtener.2018.05.002
S. Kumar, R. Rani, N. Dilbaghi, K. Tankeshwar, Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem. Soc. Rev. 46(1), 158–196 (2017). https://doi.org/10.1039/C6CS00517A
A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 9(1), 393 (2014). https://doi.org/10.1186/1556-276X-9-393
X. Wang, G. Li, R. Liu, H. Ding, T. Zhang, Reproducible layer-by-layer exfoliation for free-standing ultrathin films of single-walled carbon nanotubes. J. Mater. Chem. 22(41), 21824 (2012). https://doi.org/10.1039/c2jm34262f
H. Chen, L. Miao, Z. Su, Y. Song, M. Han et al., Fingertip-inspired electronic skin based on triboelectric sliding sensing and porous piezoresistive pressure detection. Nano Energy 40, 65–72 (2017). https://doi.org/10.1016/j.nanoen.2017.08.001
B. Zhu, Z. Niu, H. Wang, W.R. Leow, H. Wang et al., Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small 10(18), 3625–3631 (2014). https://doi.org/10.1002/smll.201401207
Y. Cao, T. Li, Y. Gu, H. Luo, S. Wang, T. Zhang, Fingerprint-inspired flexible tactile sensor for accurately discerning surface texture. Small 14(16), 1703902 (2018). https://doi.org/10.1002/smll.201703902
Q. Shao, Z. Niu, M. Hirtz, L. Jiang, Y. Liu, Z. Wang, X. Chen, High-performance and tailorable pressure sensor based on ultrathin conductive polymer film. Small 10(8), 1466–1472 (2014). https://doi.org/10.1002/smll.201303601
J. Park, Y. Lee, J. Hong, Y. Lee, M. Ha et al., Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano 8(12), 12020–12029 (2014). https://doi.org/10.1021/nn505953t
S. Guo, K. Qiu, F. Meng, S.H. Park, M.C. Mcalpine, 3D printed stretchable tactile sensors. Adv. Mater. 29(27), 1701218 (2017). https://doi.org/10.1002/adma.201701218
X. Wang, Y. Zhang, X. Zhang, Z. Huo, X. Li et al., A Highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics. Adv. Mater. 30(12), 1706738 (2018). https://doi.org/10.1002/adma.201706738
M. Park, Y.J. Park, X. Chen, Y. Park, M. Kim, J.-H. Ahn, MoS2-based tactile sensor for electronic skin applications. Adv. Mater. 28(13), 2556–2562 (2016). https://doi.org/10.1002/adma.201505124
J.C. Yeo, J. Yu, Z.M. Koh, Z. Wang, C.T. Lim, Wearable tactile sensor based on flexible microfluidics. Lab Chip 16(17), 3244–3250 (2016). https://doi.org/10.1039/C6LC00579A
G.H. Büscher, R. Kõiva, C. Schürmann, R. Haschke, H.J. Ritter, Flexible and stretchable fabric-based tactile sensor. Rob. Auton. Syst. 63, 244–252 (2015). https://doi.org/10.1016/j.robot.2014.09.007
L. Viry, A. Levi, M. Totaro, A. Mondini, V. Mattoli, B. Mazzolai, L. Beccai, Flexible three-axial force sensor for soft and highly sensitive artificial touch. Adv. Mater. 26(17), 2659–2664 (2014). https://doi.org/10.1002/adma.201305064
H. Lee, J. Chung, S. Chang, E. Yoon, Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors. J. Microelectromech. Syst. 17(4), 934–942 (2008). https://doi.org/10.1109/JMEMS.2008.921727
K. Noda, K. Matsumoto, I. Shimoyama, Stretchable tri-axis force sensor using conductive liquid. Sensors Actuat. A 215(15), 123–129 (2014). https://doi.org/10.1016/j.sna.2013.09.031
D. Stauffer, A. Aharony, Introduction to Percolation Theory, 2nd edn. (CRC Press, London, 1994). https://doi.org/10.1201/9781315274386
D. Rangaprakash, D.N. Dutt, Study of wrist pulse signals using time domain spatial features. Comput. Electr. Eng. 45, 100–107 (2015). https://doi.org/10.1016/j.compeleceng.2014.12.016
Y. Chen, L. Zhang, D. Zhang, D. Zhang, Wrist pulse signal diagnosis using modified Gaussian models and Fuzzy c-means classification. Med. Eng. Phys. 31(10), 1283–1289 (2009). https://doi.org/10.1016/j.medengphy.2009.08.008
C.W. Ma, L.S. Hsu, J.C. Kuo, Y.J. Yang, A flexible tactile and shear sensing array fabricated using a novel buckypaper patterning technique. Sensors Actuat. A 231, 21–27 (2015). https://doi.org/10.1016/j.sna.2014.09.016
C.F. Hu, W.S. Su, W. Fang, Development of patterned carbon nanotubes on a 3D polymer substrate for the flexible tactile sensor application. J. Micromech. Microeng. 21(11), 115012 (2011). https://doi.org/10.1088/0960-1317/21/11/115012