Natural Stibnite for Lithium-/Sodium-Ion Batteries: Carbon Dots Evoked High Initial Coulombic Efficiency
Corresponding Author: Hongshuai Hou
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 136
Abstract
The application of Sb2S3 with marvelous theoretical capacity for alkali metal-ion batteries is seriously limited by its poor electrical conductivity and low initial coulombic efficiency (ICE). In this work, natural stibnite modified by carbon dots (Sb2S3@xCDs) is elaborately designed with high ICE. Greatly, chemical processes of local oxidation–partial reduction–deep coupling for stibnite reduction of CDs are clearly demonstrated, confirmed with in situ high-temperature X-ray diffraction. More impressively, the ICE for lithium-ion batteries (LIBs) is enhanced to 85%, through the effect of oxygen-rich carbon matrix on C–S bonds which inhibit the conversion of sulfur to sulfite, well supported by X-ray photoelectron spectroscopy characterization of solid electrolyte interphase layers helped with density functional theory calculations. Not than less, it is found that Sb–O–C bonds existed in the interface effectively promote the electronic conductivity and expedite ion transmission by reducing the bandgap and restraining the slip of the dislocation. As a result, the optimal sample delivers a tremendous reversible capacity of 660 mAh g−1 in LIBs at a high current rate of 5 A g−1. This work provides a new methodology for enhancing the electrochemical energy storage performance of metal sulfides, especially for improving the ICE.
Highlights:
1 The chemical process of local oxidation–partial reduction–deep coupling for stibnite reduction of carbon dots (CDs) is revealed by in-situ high-temperature X-ray diffraction.
2 Sb2S3@xCDs anode delivers high initial coulombic efficiency in lithium ion batteries (85.2%) and sodium ion batteries (82.9%), respectively.
3 C–S bond influenced by oxygen-rich carbon matrix can restrain the conversion of sulfur to sulfite, well confirmed by X-ray photoelectron spectroscopy characterization of solid electrolyte interphase layers helped with density functional theory calculations.
4 CDs-induced Sb–O–C bond is proved to effectively regulate the interfacial electronic structure.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Ru, X. Chen, B. Wang, Q. Guo, Z. Wang et al., Biological carbon skeleton of lotus-pollen surrounded by rod-like Sb2S3 as anode material in lithium ion battery. Mater. Lett. 198, 57–60 (2017). https://doi.org/10.1016/j.matlet.2017.03.180
- W. Zhan, M. Zhu, J. Lan, H. Wang, H. Yuan et al., 1D Sb2S3@nitrogen-doped carbon coaxial nanotubes uniformly encapsulated within 3D porous graphene aerogel for fast and stable sodium storage. Chem. Eng. J. 408, 128007 (2021). https://doi.org/10.1016/j.cej.2020.128007
- Y. Zhu, J. Li, X. Yun, G. Zhao, P. Ge et al., Graphitic carbon quantum dots modified nickel cobalt sulfide as cathode materials for alkaline aqueous batteries. Nano-Micro Lett. 12, 16 (2020). https://doi.org/10.1007/s40820-019-0355-0
- S. Wang, Y. Cheng, H. Xue, W. Liu, Z. Yi et al., Multifunctional sulfur-mediated strategy enabling fast-charging Sb2S3 micro-package anode for lithium-ion storage. J. Mater. Chem. A 9(12), 7838–7847 (2021). https://doi.org/10.1039/d0ta11954g
- J. Yang, X. Wang, W. Dai, X. Lian, X. Cui et al., From micropores to ultra-micropores inside hard carbon: toward enhanced capacity in room-/low-temperature sodium-ion storage. Nano-Micro Lett. 13, 98 (2021). https://doi.org/10.1007/s40820-020-00587-y
- J. Xie, L. Liu, J. Xia, Y. Zhang, M. Li et al., Template-free synthesis of Sb2S3 hollow microspheres as anode materials for lithium-ion and sodium-ion batteries. Nano-Micro Lett. 10, 12 (2018). https://doi.org/10.1007/s40820-017-0165-1
- S. Liu, X.Z. Li, B. Huang, J.W. Yang, Q.Q. Chen et al., Controllable construction of yolk–shell Sn–Co@void@C and its advantages in Na-ion storage. Rare Met. 40, 2392–2401 (2021). https://doi.org/10.1007/s12598-021-01729-w
- Z. Yang, W. Li, G. Zhang, J. Wang, J. Zuo et al., Constructing Sb-O-C bond to improve the alloying reaction reversibility of free-standing Sb2Se3 nanorods for potassium-ion batteries. Nano Energy 93, 106764 (2022). https://doi.org/10.1016/j.nanoen.2021.106764
- W. Luo, F. Li, J.J. Gaumet, P. Magri, S. Diliberto et al., Bottom-up confined synthesis of nanorod-in-nanotube structured Sb@N-C for durable lithium and sodium storage. Adv. Energy Mater. 8(19), 1703237 (2018). https://doi.org/10.1002/aenm.201703237
- L. Kong, C. Tang, H.J. Peng, J.Q. Huang, Q. Zhang, Advanced energy materials for flexible batteries in energy storage: a review. SmartMat 1(1), 1–35 (2020). https://doi.org/10.1002/smm2.1007
- L. Zhao, Z. Liu, D. Chen, F. Liu, Z. Yang et al., Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett. 13, 49 (2021). https://doi.org/10.1007/s40820-020-00577-0
- Z. Song, G. Zhang, X. Deng, K. Zou, X. Xiao et al., Ultra-low-dose pre-metallation strategy served for commercial metal-ion capacitors. Nano-Micro Lett. 14, 53 (2022). https://doi.org/10.1007/s40820-022-00792-x
- X. Xiong, G. Wang, Y. Lin, Y. Wang, X. Ou et al., Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets. ACS Nano 10(12), 10953–10959 (2016). https://doi.org/10.1021/acsnano.6b05653
- P. Ge, L. Zhang, W. Zhao, Y. Yang, W. Sun et al., Interfacial bonding of metal-sulfides with double carbon for improving reversibility of advanced alkali-ion batteries. Adv. Funct. Mater. 30(16), 1910599 (2020). https://doi.org/10.1002/adfm.201910599
- L. Ji, M. Gu, Y. Shao, X. Li, M.H. Engelhard et al., Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv. Mater. 26(18), 2901–2908 (2014). https://doi.org/10.1002/adma.201304962
- N. Weadock, N. Varongchayakul, J. Wan, S. Lee, J. Seog et al., Determination of mechanical properties of the SEI in sodium ion batteries via colloidal probe microscopy. Nano Energy 2, 713–719 (2013). https://doi.org/10.1016/j.nanoen.2013.08.005
- R. Cheng, Y. Xiang, R. Guo, L. Li, G. Zou et al., Structure and interface modification of carbon dots for electrochemical energy application. Small 17(40), 2102091 (2021). https://doi.org/10.1002/smll.202102091
- P. Ge, H. Hou, X. Cao, S. Li, G. Zhao et al., Multidimensional evolution of carbon structures underpinned by temperature-induced intermediate of chloride for sodium-ion batteries. Adv. Sci. 5(6), 1800080 (2018). https://doi.org/10.1002/advs.201800080
- L. Li, Y. Li, Y. Ye, R. Guo, A. Wang et al., Kilogram-scale synthesis and functionalization of carbon dots for superior electrochemical potassium storage. ACS Nano 15(4), 6872–6885 (2021). https://doi.org/10.1021/acsnano.0c10624
- G. Kresse, J. Furthmüler, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
- T.D. Kuhne, M. Iannuzzi, M.D. Ben, V.V. Rybkin, P. Seewald et al., CP2K: an electronic structure and molecular dynamics software package - quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020). https://doi.org/10.1063/5.0007045
- A. Wang, W. Hong, L. Li, R. Guo, Y. Xiang et al., Hierarchical bismuth composite for fast lithium storage: carbon dots tuned interfacial interaction. Energy Storage Mater. 44, 145–155 (2022). https://doi.org/10.1016/j.ensm.2021.10.019
- Z.Z. Chen, J.G. Hou, J. Zhou, P. Huang, H.Q. Wang et al., Carbon shell coated hollow NiCoSex composite as high-performance anode for lithium storage. Rare Met. 40, 3185–3194 (2021). https://doi.org/10.1007/s12598-021-01748-7
- H. Li, K. Qian, X. Qin, D. Liu, R. Shi et al., The different Li/Na ion storage mechanisms of nano Sb2O3 anchored on graphene. J. Power Sources 385, 114–121 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.031
- B. Wang, Z. Deng, Y. Xia, J. Hu, H. Li et al., Realizing reversible conversion-alloying of Sb(V) in polyantimonic acid for fast and durable lithium- and potassium-ion storage. Adv. Energy Mater. 10(1), 1903119 (2019). https://doi.org/10.1002/aenm.201903119
- Y. Li, Y.S. Hu, H. Li, L. Chen, X. Huang, A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J. Mater. Chem. A 4(1), 96–104 (2016). https://doi.org/10.1039/c5ta08601a
- S. Li, J. Qiu, C. Lai, M. Ling, H. Zhao et al., Surface capacitive contributions: towards high rate anode materials for sodium ion batteries. Nano Energy 12, 224–230 (2015). https://doi.org/10.1016/j.nanoen.2014.12.032
- H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 27(47), 7861–7866 (2015). https://doi.org/10.1002/adma.201503816
- S. Wen, J. Zhao, Y. Zhao, T. Xu, J. Xu, Reduced graphene oxide (RGO) decorated Sb2S3 nanorods as anode material for sodium-ion batteries. Chem. Phys. Lett. 716, 171–176 (2019). https://doi.org/10.1016/j.cplett.2018.12.031
- R. Yang, X.J. Zhang, T.F. Fan, D.P. Jiang, Q. Wang, Improved electrochemical performance of ternary Sn–Sb–Cu nanospheres as anode materials for lithium-ion batteries. Rare Met. 39, 1159–1164 (2014). https://doi.org/10.1007/s12598-014-0303-6
- L. Xia, Z. Yang, B. Tang, F. Li, J. Wei et al., Carbon nanofibers with embedded Sb2Se3 nanops as highly reversible anodes for Na-ion batteries. Small 17(4), e2006016 (2021). https://doi.org/10.1002/smll.202006016
- T. Qiu, L. Yang, Y. Xiang, Y. Ye, G. Zou et al., Heterogeneous interface design for enhanced sodium storage: Sb quantum dots confined by functional carbon. Small Methods 5, 2100188 (2021). https://doi.org/10.1002/smtd.202100188
- T. Wu, C. Zhang, G. Zou, J. Hu, L. Zhu et al., The bond evolution mechanism of covalent sulfurized carbon during electrochemical sodium storage process. Sci. China Mater. 62, 1127–1138 (2019). https://doi.org/10.1007/s40843-019-9418-8
- S. Sarkar, S.C. Peter, An overview on Sb-based intermetallics and alloys for sodium-ion batteries: trends, challenges and future prospects from material synthesis to battery performance. J. Mater. Chem. A 9(9), 5164–5196 (2021). https://doi.org/10.1039/d0ta12063d
- N. Wang, Z. Bai, Y. Qian, J. Yang, One-dimensional yolk-shell Sb@Ti-O-P nanostructures as a high-capacity and high-rate anode material for sodium ion batteries. ACS Appl. Mater. Interfaces 9(1), 447–454 (2017). https://doi.org/10.1021/acsami.6b13193
- J. Lee, Y.M. Chen, Y. Zhu, B.D. Vogt, Tuning SEI formation on nanoporous carbon–titania composite sodium ion batteries anodes and performance with subtle processing changes. RSC Adv. 5, 99329–99338 (2015). https://doi.org/10.1039/c5ra14907j
- S. He, R. Tian, W. Wu, W.D. Li, D. Wang, Helium-ion-beam nanofabrication: extreme processes and applications. Int. J. Extreme Manuf. 3, 012001 (2021). https://doi.org/10.1088/2631-7990/abc673
- M. Wu, Y. Li, X. Liu, S. Yang, J. Ma et al., Perspective on solid-electrolyte interphase regulation for lithium metal batteries. SmartMat 2(1), 5–11 (2020). https://doi.org/10.1002/smm2.1015
- J. Chen, X. Fan, Q. Li, H. Yang, M.R. Khoshi et al., Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020). https://doi.org/10.1038/s41560-020-0601-1
- J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11(16), 2100046 (2021). https://doi.org/10.1002/aenm.202100046
- Y.B. He, M. Liu, Z.D. Huang, B. Zhang, Y. Yu et al., Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. J. Power Sources 239, 269–276 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.141
- Y. Wan, K. Song, W. Chen, C. Qin, X. Zhang et al., Ultra-high initial coulombic efficiency induced by interface engineering enables rapid, stable sodium storage. Angew. Chem. Int. Ed. 60(20), 11481–11486 (2021). https://doi.org/10.1002/anie.202102368
- J. Kong, H. Wei, D. Xia, P. Yu, High-performance Sb2S3/Sb anode materials for Li-ion batteries. Mater. Lett. 179, 114–117 (2016). https://doi.org/10.1016/j.matlet.2016.05.028
- J. Li, L. Han, X. Zhang, G. Zhu, T. Chen et al., Sb2O5/Co-containing carbon polyhedra as anode material for high-performance lithium-ion batteries. Chem. Eng. J. 370, 800–809 (2019). https://doi.org/10.1016/j.cej.2019.03.244
- M. Ihsan-Ul-Haq, H. Huang, J. Wu, N. Mubarak, A. Susca et al., Unveiling solid electrolyte interface morphology and electrochemical kinetics of amorphous Sb2Se3/CNT composite anodes for ultrafast sodium storage. Carbon 171, 119–129 (2021). https://doi.org/10.1016/j.carbon.2020.09.011
- B. Chen, L. Yang, X. Bai, Q. Wu, M. Liang et al., Heterostructure engineering of core-shelled Sb@Sb2O3 encapsulated in 3D N-doped carbon hollow-spheres for superior sodium/potassium storage. Small 17(6), 2006824 (2021). https://doi.org/10.1002/smll.202006824
- R. Fei, H. Wang, Q. Wang, R. Qiu, S. Tang et al., In situ hard-template synthesis of hollow bowl-like carbon: a potential versatile platform for sodium and zinc ion capacitors. Adv. Energy Mater. 10(47), 20002741 (2020). https://doi.org/10.1002/aenm.202002741
References
Q. Ru, X. Chen, B. Wang, Q. Guo, Z. Wang et al., Biological carbon skeleton of lotus-pollen surrounded by rod-like Sb2S3 as anode material in lithium ion battery. Mater. Lett. 198, 57–60 (2017). https://doi.org/10.1016/j.matlet.2017.03.180
W. Zhan, M. Zhu, J. Lan, H. Wang, H. Yuan et al., 1D Sb2S3@nitrogen-doped carbon coaxial nanotubes uniformly encapsulated within 3D porous graphene aerogel for fast and stable sodium storage. Chem. Eng. J. 408, 128007 (2021). https://doi.org/10.1016/j.cej.2020.128007
Y. Zhu, J. Li, X. Yun, G. Zhao, P. Ge et al., Graphitic carbon quantum dots modified nickel cobalt sulfide as cathode materials for alkaline aqueous batteries. Nano-Micro Lett. 12, 16 (2020). https://doi.org/10.1007/s40820-019-0355-0
S. Wang, Y. Cheng, H. Xue, W. Liu, Z. Yi et al., Multifunctional sulfur-mediated strategy enabling fast-charging Sb2S3 micro-package anode for lithium-ion storage. J. Mater. Chem. A 9(12), 7838–7847 (2021). https://doi.org/10.1039/d0ta11954g
J. Yang, X. Wang, W. Dai, X. Lian, X. Cui et al., From micropores to ultra-micropores inside hard carbon: toward enhanced capacity in room-/low-temperature sodium-ion storage. Nano-Micro Lett. 13, 98 (2021). https://doi.org/10.1007/s40820-020-00587-y
J. Xie, L. Liu, J. Xia, Y. Zhang, M. Li et al., Template-free synthesis of Sb2S3 hollow microspheres as anode materials for lithium-ion and sodium-ion batteries. Nano-Micro Lett. 10, 12 (2018). https://doi.org/10.1007/s40820-017-0165-1
S. Liu, X.Z. Li, B. Huang, J.W. Yang, Q.Q. Chen et al., Controllable construction of yolk–shell Sn–Co@void@C and its advantages in Na-ion storage. Rare Met. 40, 2392–2401 (2021). https://doi.org/10.1007/s12598-021-01729-w
Z. Yang, W. Li, G. Zhang, J. Wang, J. Zuo et al., Constructing Sb-O-C bond to improve the alloying reaction reversibility of free-standing Sb2Se3 nanorods for potassium-ion batteries. Nano Energy 93, 106764 (2022). https://doi.org/10.1016/j.nanoen.2021.106764
W. Luo, F. Li, J.J. Gaumet, P. Magri, S. Diliberto et al., Bottom-up confined synthesis of nanorod-in-nanotube structured Sb@N-C for durable lithium and sodium storage. Adv. Energy Mater. 8(19), 1703237 (2018). https://doi.org/10.1002/aenm.201703237
L. Kong, C. Tang, H.J. Peng, J.Q. Huang, Q. Zhang, Advanced energy materials for flexible batteries in energy storage: a review. SmartMat 1(1), 1–35 (2020). https://doi.org/10.1002/smm2.1007
L. Zhao, Z. Liu, D. Chen, F. Liu, Z. Yang et al., Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett. 13, 49 (2021). https://doi.org/10.1007/s40820-020-00577-0
Z. Song, G. Zhang, X. Deng, K. Zou, X. Xiao et al., Ultra-low-dose pre-metallation strategy served for commercial metal-ion capacitors. Nano-Micro Lett. 14, 53 (2022). https://doi.org/10.1007/s40820-022-00792-x
X. Xiong, G. Wang, Y. Lin, Y. Wang, X. Ou et al., Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets. ACS Nano 10(12), 10953–10959 (2016). https://doi.org/10.1021/acsnano.6b05653
P. Ge, L. Zhang, W. Zhao, Y. Yang, W. Sun et al., Interfacial bonding of metal-sulfides with double carbon for improving reversibility of advanced alkali-ion batteries. Adv. Funct. Mater. 30(16), 1910599 (2020). https://doi.org/10.1002/adfm.201910599
L. Ji, M. Gu, Y. Shao, X. Li, M.H. Engelhard et al., Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv. Mater. 26(18), 2901–2908 (2014). https://doi.org/10.1002/adma.201304962
N. Weadock, N. Varongchayakul, J. Wan, S. Lee, J. Seog et al., Determination of mechanical properties of the SEI in sodium ion batteries via colloidal probe microscopy. Nano Energy 2, 713–719 (2013). https://doi.org/10.1016/j.nanoen.2013.08.005
R. Cheng, Y. Xiang, R. Guo, L. Li, G. Zou et al., Structure and interface modification of carbon dots for electrochemical energy application. Small 17(40), 2102091 (2021). https://doi.org/10.1002/smll.202102091
P. Ge, H. Hou, X. Cao, S. Li, G. Zhao et al., Multidimensional evolution of carbon structures underpinned by temperature-induced intermediate of chloride for sodium-ion batteries. Adv. Sci. 5(6), 1800080 (2018). https://doi.org/10.1002/advs.201800080
L. Li, Y. Li, Y. Ye, R. Guo, A. Wang et al., Kilogram-scale synthesis and functionalization of carbon dots for superior electrochemical potassium storage. ACS Nano 15(4), 6872–6885 (2021). https://doi.org/10.1021/acsnano.0c10624
G. Kresse, J. Furthmüler, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
T.D. Kuhne, M. Iannuzzi, M.D. Ben, V.V. Rybkin, P. Seewald et al., CP2K: an electronic structure and molecular dynamics software package - quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020). https://doi.org/10.1063/5.0007045
A. Wang, W. Hong, L. Li, R. Guo, Y. Xiang et al., Hierarchical bismuth composite for fast lithium storage: carbon dots tuned interfacial interaction. Energy Storage Mater. 44, 145–155 (2022). https://doi.org/10.1016/j.ensm.2021.10.019
Z.Z. Chen, J.G. Hou, J. Zhou, P. Huang, H.Q. Wang et al., Carbon shell coated hollow NiCoSex composite as high-performance anode for lithium storage. Rare Met. 40, 3185–3194 (2021). https://doi.org/10.1007/s12598-021-01748-7
H. Li, K. Qian, X. Qin, D. Liu, R. Shi et al., The different Li/Na ion storage mechanisms of nano Sb2O3 anchored on graphene. J. Power Sources 385, 114–121 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.031
B. Wang, Z. Deng, Y. Xia, J. Hu, H. Li et al., Realizing reversible conversion-alloying of Sb(V) in polyantimonic acid for fast and durable lithium- and potassium-ion storage. Adv. Energy Mater. 10(1), 1903119 (2019). https://doi.org/10.1002/aenm.201903119
Y. Li, Y.S. Hu, H. Li, L. Chen, X. Huang, A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J. Mater. Chem. A 4(1), 96–104 (2016). https://doi.org/10.1039/c5ta08601a
S. Li, J. Qiu, C. Lai, M. Ling, H. Zhao et al., Surface capacitive contributions: towards high rate anode materials for sodium ion batteries. Nano Energy 12, 224–230 (2015). https://doi.org/10.1016/j.nanoen.2014.12.032
H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 27(47), 7861–7866 (2015). https://doi.org/10.1002/adma.201503816
S. Wen, J. Zhao, Y. Zhao, T. Xu, J. Xu, Reduced graphene oxide (RGO) decorated Sb2S3 nanorods as anode material for sodium-ion batteries. Chem. Phys. Lett. 716, 171–176 (2019). https://doi.org/10.1016/j.cplett.2018.12.031
R. Yang, X.J. Zhang, T.F. Fan, D.P. Jiang, Q. Wang, Improved electrochemical performance of ternary Sn–Sb–Cu nanospheres as anode materials for lithium-ion batteries. Rare Met. 39, 1159–1164 (2014). https://doi.org/10.1007/s12598-014-0303-6
L. Xia, Z. Yang, B. Tang, F. Li, J. Wei et al., Carbon nanofibers with embedded Sb2Se3 nanops as highly reversible anodes for Na-ion batteries. Small 17(4), e2006016 (2021). https://doi.org/10.1002/smll.202006016
T. Qiu, L. Yang, Y. Xiang, Y. Ye, G. Zou et al., Heterogeneous interface design for enhanced sodium storage: Sb quantum dots confined by functional carbon. Small Methods 5, 2100188 (2021). https://doi.org/10.1002/smtd.202100188
T. Wu, C. Zhang, G. Zou, J. Hu, L. Zhu et al., The bond evolution mechanism of covalent sulfurized carbon during electrochemical sodium storage process. Sci. China Mater. 62, 1127–1138 (2019). https://doi.org/10.1007/s40843-019-9418-8
S. Sarkar, S.C. Peter, An overview on Sb-based intermetallics and alloys for sodium-ion batteries: trends, challenges and future prospects from material synthesis to battery performance. J. Mater. Chem. A 9(9), 5164–5196 (2021). https://doi.org/10.1039/d0ta12063d
N. Wang, Z. Bai, Y. Qian, J. Yang, One-dimensional yolk-shell Sb@Ti-O-P nanostructures as a high-capacity and high-rate anode material for sodium ion batteries. ACS Appl. Mater. Interfaces 9(1), 447–454 (2017). https://doi.org/10.1021/acsami.6b13193
J. Lee, Y.M. Chen, Y. Zhu, B.D. Vogt, Tuning SEI formation on nanoporous carbon–titania composite sodium ion batteries anodes and performance with subtle processing changes. RSC Adv. 5, 99329–99338 (2015). https://doi.org/10.1039/c5ra14907j
S. He, R. Tian, W. Wu, W.D. Li, D. Wang, Helium-ion-beam nanofabrication: extreme processes and applications. Int. J. Extreme Manuf. 3, 012001 (2021). https://doi.org/10.1088/2631-7990/abc673
M. Wu, Y. Li, X. Liu, S. Yang, J. Ma et al., Perspective on solid-electrolyte interphase regulation for lithium metal batteries. SmartMat 2(1), 5–11 (2020). https://doi.org/10.1002/smm2.1015
J. Chen, X. Fan, Q. Li, H. Yang, M.R. Khoshi et al., Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020). https://doi.org/10.1038/s41560-020-0601-1
J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11(16), 2100046 (2021). https://doi.org/10.1002/aenm.202100046
Y.B. He, M. Liu, Z.D. Huang, B. Zhang, Y. Yu et al., Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. J. Power Sources 239, 269–276 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.141
Y. Wan, K. Song, W. Chen, C. Qin, X. Zhang et al., Ultra-high initial coulombic efficiency induced by interface engineering enables rapid, stable sodium storage. Angew. Chem. Int. Ed. 60(20), 11481–11486 (2021). https://doi.org/10.1002/anie.202102368
J. Kong, H. Wei, D. Xia, P. Yu, High-performance Sb2S3/Sb anode materials for Li-ion batteries. Mater. Lett. 179, 114–117 (2016). https://doi.org/10.1016/j.matlet.2016.05.028
J. Li, L. Han, X. Zhang, G. Zhu, T. Chen et al., Sb2O5/Co-containing carbon polyhedra as anode material for high-performance lithium-ion batteries. Chem. Eng. J. 370, 800–809 (2019). https://doi.org/10.1016/j.cej.2019.03.244
M. Ihsan-Ul-Haq, H. Huang, J. Wu, N. Mubarak, A. Susca et al., Unveiling solid electrolyte interface morphology and electrochemical kinetics of amorphous Sb2Se3/CNT composite anodes for ultrafast sodium storage. Carbon 171, 119–129 (2021). https://doi.org/10.1016/j.carbon.2020.09.011
B. Chen, L. Yang, X. Bai, Q. Wu, M. Liang et al., Heterostructure engineering of core-shelled Sb@Sb2O3 encapsulated in 3D N-doped carbon hollow-spheres for superior sodium/potassium storage. Small 17(6), 2006824 (2021). https://doi.org/10.1002/smll.202006824
R. Fei, H. Wang, Q. Wang, R. Qiu, S. Tang et al., In situ hard-template synthesis of hollow bowl-like carbon: a potential versatile platform for sodium and zinc ion capacitors. Adv. Energy Mater. 10(47), 20002741 (2020). https://doi.org/10.1002/aenm.202002741