Direct Growth of Graphene on Silicon by Metal-Free Chemical Vapor Deposition
Corresponding Author: Xiaolong Li
Nano-Micro Letters,
Vol. 10 No. 2 (2018), Article Number: 20
Abstract
The metal-free synthesis of graphene on single-crystal silicon substrates, the most common commercial semiconductor, is of paramount significance for many technological applications. In this work, we report the growth of graphene directly on an upside-down placed, single-crystal silicon substrate using metal-free, ambient-pressure chemical vapor deposition. By controlling the growth temperature, in-plane propagation, edge-propagation, and core-propagation, the process of graphene growth on silicon can be identified. This process produces atomically flat monolayer or bilayer graphene domains, concave bilayer graphene domains, and bulging few-layer graphene domains. This work would be a significant step toward the synthesis of large-area and layer-controlled, high-quality graphene on single-crystal silicon substrates.
Highlights:
1 Graphene was successfully grown on single-crystal silicon substrates using metal-free, ambient-pressure chemical vapor deposition.
2 Atomically flat monolayer or bilayer graphene domains, concave bilayer graphene domains, and bulging few-layer graphene domains can be produced by controlling the growth temperature.
3 In-plane propagation, edge-propagation, and core-propagation processes are proposed to evaluate the sequentially changing graphene domains.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.K. Geim, K.S. Novoselov, The rise of grapheme. Nat. Mater. 6(3), 183–191 (2007). https://doi.org/10.1038/nmat1849
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- X. Li, W. Cai, L. Colombo, R.S. Ruoff, Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9(12), 4268–4272 (2009). https://doi.org/10.1021/nl902515k
- K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009). https://doi.org/10.1038/nature07719
- L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang et al., Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 3, 699 (2012). https://doi.org/10.1038/ncomms1702
- Y. Liu, M. Xu, X. Zhu, M. Xie, Y. Su, N. Hu, Z. Yang, Y.F. Zhang, Synthesis of carbon nanotubes on graphene quantum dot surface by catalyst free chemical vapor deposition. Carbon 68, 399–405 (2014). https://doi.org/10.1016/j.carbon.2013.11.016
- X. Li, W. Cai, J. An, S. Kim, J. Nah et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009). https://doi.org/10.1126/science.1171245
- Y. Jia, X. Gong, P. Peng, Z. Wang, Z. Tian, L. Ren, Y. Fu, H. Zhang, Toward high carrier mobility and low contact resistance: laser cleaning of PMMA residues on graphene surfaces. Nano Micro Lett. 8(4), 336–346 (2016). https://doi.org/10.1007/s40820-016-0093-5
- J.-H. Lee, E.K. Lee, W.-J. Joo, Y. Jang, B.-S. Kim et al., Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344(6181), 286–289 (2014). https://doi.org/10.1126/science.1252268
- A.M. Scaparro, V. Miseikis, C. Coletti, A. Notargiacomo, M. Pea, M. De Seta, L. Di Gaspare, Investigating the CVD synthesis of graphene on Ge (100): toward layer-by-layer growth. ACS Appl. Mater. Interfaces 8(48), 33083–33090 (2016). https://doi.org/10.1021/acsami.6b11701
- S. Tongay, T. Schumann, X. Miao, B.R. Appleton, A.F. Hebard, Tuning Schottky diodes at the many-layer-graphene/semiconductor interface by doping. Carbon 49(6), 2033–2038 (2011). https://doi.org/10.1016/j.carbon.2011.01.029
- S. Tongay, M. Lemaitre, X. Miao, B. Gila, B.R. Appleton, A.F. Hebard, Rectification at graphene–semiconductor interfaces: zero-gap semiconductor-based diodes. Phys. Rev. X 2(1), 011002 (2012). https://doi.org/10.1103/PhysRevX.2.011002
- Y. Lin, X. Li, D. Xie, T. Feng, Y. Chen et al., Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function. Energy Environ. Sci. 6(1), 108–115 (2013). https://doi.org/10.1039/C2EE23538B
- C.-C. Chen, M. Aykol, C.-C. Chang, A.F.J. Levi, S.B. Cronin, Graphene–silicon Schottky diodes. Nano Lett. 11(5), 1863–1867 (2011). https://doi.org/10.1021/nl104364c
- X. An, F. Liu, Y.J. Jung, S. Kar, Tunable graphene–silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 13(3), 909–916 (2013). https://doi.org/10.1021/nl303682j
- K. Ruan, K. Ding, Y. Wang, S. Diao, Z. Shao, X. Zhang, J. Jie, Flexible graphene/silicon heterojunction solar cells. J. Mater. Chem. A 3(27), 14370–14377 (2015). https://doi.org/10.1039/C5TA03652F
- W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek et al., Graphene epitaxy by chemical vapor deposition on SiC. Nano Lett. 11(4), 1786–1791 (2011). https://doi.org/10.1021/nl200390e
- J. Chen, Y. Wen, Y. Guo, B. Wu, L. Huang et al., Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J. Am. Chem. Soc. 133(44), 17548–17551 (2011). https://doi.org/10.1021/ja2063633
- D. Wei, Y. Lu, C. Han, T. Niu, W. Chen, A.T.S. Wee, Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices. Angew. Chem. Int. Ed. 52(52), 14121–14126 (2013). https://doi.org/10.1002/anie.201306086
- Q. Wang, P. Zhang, Q. Zhuo, X. Lv, J. Wang, X. Sun, Direct synthesis of Co-doped graphene on dielectric substrates using solid carbon sources. Nano Micro Lett. 7(4), 368–373 (2015). https://doi.org/10.1007/s40820-015-0052-6
- Q.-Q. Zhuo, Q. Wang, Y.-P. Zhang, D. Zhang, Q.-L. Li et al., Transfer-free synthesis of doped and patterned graphene films. ACS Nano 9(1), 594–601 (2015). https://doi.org/10.1021/nn505913v
- W.T.E. Beld, A. Berga, J.C.T. Eijkela, Spatial control of direct chemical vapor deposition of graphene on silicon dioxide by directional copper dewetting. RSC Adv. 6(92), 89380–89386 (2016). https://doi.org/10.1039/C6RA16935J
- J. Sun, Y. Chen, M.K. Priydarshi, Z. Chen, A. Bachmatiuk et al., Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett. 15(9), 5846–5854 (2015). https://doi.org/10.1021/acs.nanolett.5b01936
- A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor, Y. Zhang, Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett. 10(5), 1542–1548 (2010). https://doi.org/10.1021/nl9037714
- M.A. Fanton, J.A. Robinson, C. Puls, Y. Liu, M.J. Hollander et al., Characterization of graphene films and transistors grown on sapphire by metal-free chemical vapor deposition. ACS Nano 5(10), 8062–8069 (2011). https://doi.org/10.1021/nn202643t
- J. Hwang, M. Kim, D. Campbell, H.A. Alsalman, J.Y. Kwak et al., Van der waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. ACS Nano 7(1), 385–395 (2012). https://doi.org/10.1021/nn305486x
- J. Chen, Y. Guo, Y. Wen, L. Huang, Y. Xue et al., Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates. Adv. Mater. 25(7), 992–997 (2013). https://doi.org/10.1002/adma.201202973
- J. Sun, T. Gao, X. Song, Y. Zhao, Y. Lin et al., Direct growth of high-quality graphene on high-κ dielectric SrTiO3 substrates. J. Am. Chem. Soc. 136(18), 6574–6577 (2014). https://doi.org/10.1021/ja5022602
- M. Wang, S.K. Jang, W.J. Jang, M. Kim, S.Y. Park et al., A platform for large-scale graphene electronics-CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv. Mater. 25(19), 2746–2752 (2013). https://doi.org/10.1002/adma.201204904
- S. Tang, G. Ding, X. Xie, J. Chen, C. Wang, X. Ding, F. Huang, W. Lu, M. Jiang, Nucleation and growth of single crystal graphene on hexagonal boron nitride. Carbon 50(1), 329–331 (2012). https://doi.org/10.1016/j.carbon.2011.07.062
- S. Tang, H. Wang, H.S. Wang, Q. Sun, X. Zhang et al., Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride. Nat. Commun. 6, 6499 (2015). https://doi.org/10.1038/ncomms7499
- J. Hackley, D. Ali, J. DiPasquale, J. Demaree, C. Richardson, Graphitic carbon growth on Si(111) using solid source molecular beam epitaxy. Appl. Phys. Lett. 95(13), 133114 (2009). https://doi.org/10.1063/1.3242029
- P.T. Trung, F. Joucken, J. Campos-Delgado, J.-P. Raskin, B. Hackens, R. Sporken, Direct growth of graphitic carbon on Si(111). Appl. Phys. Lett. 102(1), 013118 (2013). https://doi.org/10.1063/1.4773989
- K.B. Kim, C.M. Lee, J. Choi, Catalyst-free direct growth of triangular nano-graphene on all substrates. J. Phys. Chem. C 115(30), 14488–14493 (2011). https://doi.org/10.1021/jp2017709
- D. Zhu, H. Gao, X. Zhang, T. Yang, L. Li et al., Real-time observation of graphene layer growth: coupling of the interlayer spacing with thickness. Carbon 94, 775–780 (2015). https://doi.org/10.1016/j.carbon.2015.07.047
- H. Wang, X. Xu, J. Li, L. Lin, L. Sun et al., Surface monocrystallization of copper foil for fast growth of large single-crystal graphene under free molecular flow. Adv. Mater. 28(40), 8968–8974 (2016). https://doi.org/10.1002/adma.201603579
- G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts (Wiley, Chichester, 2004)
- A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamond like carbon. Phys. Rev. B 64(7), 075414 (2001). https://doi.org/10.1103/PhysRevB.64.075414
- Y. Hao, M.S. Bharathi, L. Wang, Y. Liu, H. Chen et al., The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342(6159), 720–723 (2013). https://doi.org/10.1126/science.1243879
- A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
- J. Lee, K.S. Novoselov, H.S. Shin, Interaction between metal and graphene: dependence on the layer number of graphene. ACS Nano 5(1), 608–612 (2011). https://doi.org/10.1021/nn103004c
- G. Lippert, J. Dabrowski, M. Lemme, C. Marcus, O. Seifarth, G. Lupina, Direct graphene growth on insulator. Phys. Status Solidi B 248(11), 2619–2622 (2011). https://doi.org/10.1002/pssb.201100052
- G. Hong, Q.H. Wu, J. Ren, S.T. Lee, Mechanism of non-metal catalytic growth of graphene on silicon. Appl. Phys. Lett. 100(23), 231604 (2012). https://doi.org/10.1063/1.4726114
- L. Huang, Y. Yu, C. Li, L. Cao, Substrate mediation in vapor deposition growth of layered chalcogenide nanoplates: a case study of SnSe2. J. Phys. Chem. C 117(12), 6469–6475 (2013). https://doi.org/10.1021/jp400274a
- M. Losurdo, M.M. Giangregorio, P. Capezzuto, G. Bruno, Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 13(46), 20836–20843 (2011). https://doi.org/10.1039/c1cp22347j
- L. Qi, J.Y. Huang, J. Feng, J. Li, In situ observations of the nucleation and growth of atomically sharp graphene bilayer edges. Carbon 48(8), 2354–2360 (2010). https://doi.org/10.1016/j.carbon.2010.03.018
- J.Y. Huang, F. Ding, B.I. Yakobson, P. Lu, L. Qi, J. Li, In situ observation of graphene sublimation and multi-layer edge reconstructions. Proc. Natl. Acad. Sci. 106(25), 10103–10108 (2009). https://doi.org/10.1073/pnas.0905193106
References
A.K. Geim, K.S. Novoselov, The rise of grapheme. Nat. Mater. 6(3), 183–191 (2007). https://doi.org/10.1038/nmat1849
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
X. Li, W. Cai, L. Colombo, R.S. Ruoff, Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9(12), 4268–4272 (2009). https://doi.org/10.1021/nl902515k
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009). https://doi.org/10.1038/nature07719
L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang et al., Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 3, 699 (2012). https://doi.org/10.1038/ncomms1702
Y. Liu, M. Xu, X. Zhu, M. Xie, Y. Su, N. Hu, Z. Yang, Y.F. Zhang, Synthesis of carbon nanotubes on graphene quantum dot surface by catalyst free chemical vapor deposition. Carbon 68, 399–405 (2014). https://doi.org/10.1016/j.carbon.2013.11.016
X. Li, W. Cai, J. An, S. Kim, J. Nah et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009). https://doi.org/10.1126/science.1171245
Y. Jia, X. Gong, P. Peng, Z. Wang, Z. Tian, L. Ren, Y. Fu, H. Zhang, Toward high carrier mobility and low contact resistance: laser cleaning of PMMA residues on graphene surfaces. Nano Micro Lett. 8(4), 336–346 (2016). https://doi.org/10.1007/s40820-016-0093-5
J.-H. Lee, E.K. Lee, W.-J. Joo, Y. Jang, B.-S. Kim et al., Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344(6181), 286–289 (2014). https://doi.org/10.1126/science.1252268
A.M. Scaparro, V. Miseikis, C. Coletti, A. Notargiacomo, M. Pea, M. De Seta, L. Di Gaspare, Investigating the CVD synthesis of graphene on Ge (100): toward layer-by-layer growth. ACS Appl. Mater. Interfaces 8(48), 33083–33090 (2016). https://doi.org/10.1021/acsami.6b11701
S. Tongay, T. Schumann, X. Miao, B.R. Appleton, A.F. Hebard, Tuning Schottky diodes at the many-layer-graphene/semiconductor interface by doping. Carbon 49(6), 2033–2038 (2011). https://doi.org/10.1016/j.carbon.2011.01.029
S. Tongay, M. Lemaitre, X. Miao, B. Gila, B.R. Appleton, A.F. Hebard, Rectification at graphene–semiconductor interfaces: zero-gap semiconductor-based diodes. Phys. Rev. X 2(1), 011002 (2012). https://doi.org/10.1103/PhysRevX.2.011002
Y. Lin, X. Li, D. Xie, T. Feng, Y. Chen et al., Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function. Energy Environ. Sci. 6(1), 108–115 (2013). https://doi.org/10.1039/C2EE23538B
C.-C. Chen, M. Aykol, C.-C. Chang, A.F.J. Levi, S.B. Cronin, Graphene–silicon Schottky diodes. Nano Lett. 11(5), 1863–1867 (2011). https://doi.org/10.1021/nl104364c
X. An, F. Liu, Y.J. Jung, S. Kar, Tunable graphene–silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 13(3), 909–916 (2013). https://doi.org/10.1021/nl303682j
K. Ruan, K. Ding, Y. Wang, S. Diao, Z. Shao, X. Zhang, J. Jie, Flexible graphene/silicon heterojunction solar cells. J. Mater. Chem. A 3(27), 14370–14377 (2015). https://doi.org/10.1039/C5TA03652F
W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek et al., Graphene epitaxy by chemical vapor deposition on SiC. Nano Lett. 11(4), 1786–1791 (2011). https://doi.org/10.1021/nl200390e
J. Chen, Y. Wen, Y. Guo, B. Wu, L. Huang et al., Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J. Am. Chem. Soc. 133(44), 17548–17551 (2011). https://doi.org/10.1021/ja2063633
D. Wei, Y. Lu, C. Han, T. Niu, W. Chen, A.T.S. Wee, Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices. Angew. Chem. Int. Ed. 52(52), 14121–14126 (2013). https://doi.org/10.1002/anie.201306086
Q. Wang, P. Zhang, Q. Zhuo, X. Lv, J. Wang, X. Sun, Direct synthesis of Co-doped graphene on dielectric substrates using solid carbon sources. Nano Micro Lett. 7(4), 368–373 (2015). https://doi.org/10.1007/s40820-015-0052-6
Q.-Q. Zhuo, Q. Wang, Y.-P. Zhang, D. Zhang, Q.-L. Li et al., Transfer-free synthesis of doped and patterned graphene films. ACS Nano 9(1), 594–601 (2015). https://doi.org/10.1021/nn505913v
W.T.E. Beld, A. Berga, J.C.T. Eijkela, Spatial control of direct chemical vapor deposition of graphene on silicon dioxide by directional copper dewetting. RSC Adv. 6(92), 89380–89386 (2016). https://doi.org/10.1039/C6RA16935J
J. Sun, Y. Chen, M.K. Priydarshi, Z. Chen, A. Bachmatiuk et al., Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett. 15(9), 5846–5854 (2015). https://doi.org/10.1021/acs.nanolett.5b01936
A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor, Y. Zhang, Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett. 10(5), 1542–1548 (2010). https://doi.org/10.1021/nl9037714
M.A. Fanton, J.A. Robinson, C. Puls, Y. Liu, M.J. Hollander et al., Characterization of graphene films and transistors grown on sapphire by metal-free chemical vapor deposition. ACS Nano 5(10), 8062–8069 (2011). https://doi.org/10.1021/nn202643t
J. Hwang, M. Kim, D. Campbell, H.A. Alsalman, J.Y. Kwak et al., Van der waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. ACS Nano 7(1), 385–395 (2012). https://doi.org/10.1021/nn305486x
J. Chen, Y. Guo, Y. Wen, L. Huang, Y. Xue et al., Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates. Adv. Mater. 25(7), 992–997 (2013). https://doi.org/10.1002/adma.201202973
J. Sun, T. Gao, X. Song, Y. Zhao, Y. Lin et al., Direct growth of high-quality graphene on high-κ dielectric SrTiO3 substrates. J. Am. Chem. Soc. 136(18), 6574–6577 (2014). https://doi.org/10.1021/ja5022602
M. Wang, S.K. Jang, W.J. Jang, M. Kim, S.Y. Park et al., A platform for large-scale graphene electronics-CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv. Mater. 25(19), 2746–2752 (2013). https://doi.org/10.1002/adma.201204904
S. Tang, G. Ding, X. Xie, J. Chen, C. Wang, X. Ding, F. Huang, W. Lu, M. Jiang, Nucleation and growth of single crystal graphene on hexagonal boron nitride. Carbon 50(1), 329–331 (2012). https://doi.org/10.1016/j.carbon.2011.07.062
S. Tang, H. Wang, H.S. Wang, Q. Sun, X. Zhang et al., Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride. Nat. Commun. 6, 6499 (2015). https://doi.org/10.1038/ncomms7499
J. Hackley, D. Ali, J. DiPasquale, J. Demaree, C. Richardson, Graphitic carbon growth on Si(111) using solid source molecular beam epitaxy. Appl. Phys. Lett. 95(13), 133114 (2009). https://doi.org/10.1063/1.3242029
P.T. Trung, F. Joucken, J. Campos-Delgado, J.-P. Raskin, B. Hackens, R. Sporken, Direct growth of graphitic carbon on Si(111). Appl. Phys. Lett. 102(1), 013118 (2013). https://doi.org/10.1063/1.4773989
K.B. Kim, C.M. Lee, J. Choi, Catalyst-free direct growth of triangular nano-graphene on all substrates. J. Phys. Chem. C 115(30), 14488–14493 (2011). https://doi.org/10.1021/jp2017709
D. Zhu, H. Gao, X. Zhang, T. Yang, L. Li et al., Real-time observation of graphene layer growth: coupling of the interlayer spacing with thickness. Carbon 94, 775–780 (2015). https://doi.org/10.1016/j.carbon.2015.07.047
H. Wang, X. Xu, J. Li, L. Lin, L. Sun et al., Surface monocrystallization of copper foil for fast growth of large single-crystal graphene under free molecular flow. Adv. Mater. 28(40), 8968–8974 (2016). https://doi.org/10.1002/adma.201603579
G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts (Wiley, Chichester, 2004)
A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamond like carbon. Phys. Rev. B 64(7), 075414 (2001). https://doi.org/10.1103/PhysRevB.64.075414
Y. Hao, M.S. Bharathi, L. Wang, Y. Liu, H. Chen et al., The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342(6159), 720–723 (2013). https://doi.org/10.1126/science.1243879
A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
J. Lee, K.S. Novoselov, H.S. Shin, Interaction between metal and graphene: dependence on the layer number of graphene. ACS Nano 5(1), 608–612 (2011). https://doi.org/10.1021/nn103004c
G. Lippert, J. Dabrowski, M. Lemme, C. Marcus, O. Seifarth, G. Lupina, Direct graphene growth on insulator. Phys. Status Solidi B 248(11), 2619–2622 (2011). https://doi.org/10.1002/pssb.201100052
G. Hong, Q.H. Wu, J. Ren, S.T. Lee, Mechanism of non-metal catalytic growth of graphene on silicon. Appl. Phys. Lett. 100(23), 231604 (2012). https://doi.org/10.1063/1.4726114
L. Huang, Y. Yu, C. Li, L. Cao, Substrate mediation in vapor deposition growth of layered chalcogenide nanoplates: a case study of SnSe2. J. Phys. Chem. C 117(12), 6469–6475 (2013). https://doi.org/10.1021/jp400274a
M. Losurdo, M.M. Giangregorio, P. Capezzuto, G. Bruno, Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 13(46), 20836–20843 (2011). https://doi.org/10.1039/c1cp22347j
L. Qi, J.Y. Huang, J. Feng, J. Li, In situ observations of the nucleation and growth of atomically sharp graphene bilayer edges. Carbon 48(8), 2354–2360 (2010). https://doi.org/10.1016/j.carbon.2010.03.018
J.Y. Huang, F. Ding, B.I. Yakobson, P. Lu, L. Qi, J. Li, In situ observation of graphene sublimation and multi-layer edge reconstructions. Proc. Natl. Acad. Sci. 106(25), 10103–10108 (2009). https://doi.org/10.1073/pnas.0905193106