Atomically Precise Cu Nanoclusters: Recent Advances, Challenges, and Perspectives in Synthesis and Catalytic Applications
Corresponding Author: Zhenghua Tang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 83
Abstract
Atomically precise metal nanoclusters are an emerging type of nanomaterial which has diverse interfacial metal–ligand coordination motifs that can significantly affect their physicochemical properties and functionalities. Among that, Cu nanoclusters have been gaining continuous increasing research attentions, thanks to the low cost, diversified structures, and superior catalytic performance for various reactions. In this review, we first summarize the recent progress regarding the synthetic methods of atomically precise Cu nanoclusters and the coordination modes between Cu and several typical ligands and then discuss the catalytic applications of these Cu nanoclusters with some explicit examples to explain the atomical-level structure–performance relationship. Finally, the current challenges and future research perspectives with some critical thoughts are elaborated. We hope this review can not only provide a whole picture of the current advances regarding the synthesis and catalytic applications of atomically precise Cu nanoclusters, but also points out some future research visions in this rapidly booming field.
Highlights:
1 Summarizing recent advances on synthesis and catalytic applications of Cu nanoclusters.
2 The structure–property–functionality relationship is clearly elucidated.
3 Critical analysis of the current challenges and future perspectives.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Jin, C. Zeng, M. Zhou, Y. Chen, Atomically precise colloidal metal nanoclusters and nanops: fundamentals and opportunities. Chem. Rev. 116, 10346–10413 (2016). https://doi.org/10.1021/acs.chemrev.5b00703
- Y. Lv, T. Jiang, Q. Zhang, H. Yu, M. Zhu, Recent progress in atomically precise Ag/Cu-based hydride clusters. Polyoxometalates 3, 9140050 (2024). https://doi.org/10.26599/pom.2023.9140050
- X.-M. Luo, Y.-K. Li, X.-Y. Dong, S.-Q. Zang, Platonic and Archimedean solids in discrete metal-containing clusters. Chem. Soc. Rev. 52, 383–444 (2023). https://doi.org/10.1039/d2cs00582d
- R.W. Murray, Nanoelectrochemistry: metal nanops, nanoelectrodes, and nanopores. Chem. Rev. 108, 2688–2720 (2008). https://doi.org/10.1021/cr068077e
- P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell, R.D. Kornberg, Structure of a thiol monolayer-protected gold nanop at 1.1 A resolution. Science 318, 430–433 (2007). https://doi.org/10.1126/science.1148624
- L. Shang, J. Xu, G. Nienhaus, Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis. Nano Today 28, 100767 (2019). https://doi.org/10.1016/j.nantod.2019.100767
- S. Qian, Z. Wang, Z. Zuo, X. Wang, Q. Wang et al., Engineering luminescent metal nanoclusters for sensing applications. Coord. Chem. Rev. 451, 214268 (2022). https://doi.org/10.1016/j.ccr.2021.214268
- Y. Jin, C. Zhang, X.-Y. Dong, S.-Q. Zang, T.C.W. Mak, Shell engineering to achieve modification and assembly of atomically-precise silver clusters. Chem. Soc. Rev. 50, 2297–2319 (2021). https://doi.org/10.1039/d0cs01393e
- Q. Yao, L. Liu, S. Malola, M. Ge, H. Xu et al., Supercrystal engineering of atomically precise gold nanops promoted by surface dynamics. Nat. Chem. 15, 230–239 (2023). https://doi.org/10.1038/s41557-022-01079-9
- W. Jing, H. Shen, R. Qin, Q. Wu, K. Liu et al., Surface and interface coordination chemistry learned from model heterogeneous metal nanocatalysts: from atomically dispersed catalysts to atomically precise clusters. Chem. Rev. 123, 5948–6002 (2023). https://doi.org/10.1021/acs.chemrev.2c00569
- M.S. Bootharaju, C.W. Lee, G. Deng, H. Kim, K. Lee et al., Atom-precise heteroatom core-tailoring of nanoclusters for enhanced solar hydrogen generation. Adv. Mater. 35, e2207765 (2023). https://doi.org/10.1002/adma.202207765
- H. Shan, J. Shi, T. Chen, Y. Cao, Q. Yao et al., Modulating catalytic activity and stability of atomically precise gold nanoclusters as peroxidase mimics via ligand engineering. ACS Nano 17, 2368–2377 (2023). https://doi.org/10.1021/acsnano.2c09238
- Y.-S.Chen, H. Choi, P.V. Kamat, Metal-cluster-sensitized solar cells. A new class of thiolated gold sensitizers delivering efficiency greater than 2%. J. Am. Chem. Soc. 135, 8822–8825 (2013). https://doi.org/10.1021/ja403807f
- Y.-S. Chen, P.V. Kamat, Glutathione-capped gold nanoclusters as photosensitizers. Visible light-induced hydrogen generation in neutral water. J. Am. Chem. Soc. 136, 6075–6082 (2014). https://doi.org/10.1021/ja5017365
- B. Du, X. Jiang, A. Das, Q. Zhou, M. Yu et al., Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 12, 1096–1102 (2017). https://doi.org/10.1038/nnano.2017.170
- Y. Hua, J.-H. Huang, Z.-H. Shao, X.-M. Luo, Z.-Y. Wang et al., Composition-dependent enzyme mimicking activity and radiosensitizing effect of bimetallic clusters to modulate tumor hypoxia for enhanced cancer therapy. Adv. Mater. 34, 2203734 (2022). https://doi.org/10.1002/adma.202203734
- T.-T. Jia, G. Yang, S.-J. Mo, Z.-Y. Wang, B.-J. Li et al., Atomically precise gold–levonorgestrel nanocluster as a radiosensitizer for enhanced cancer therapy. ACS Nano 13, 8320–8328 (2019). https://doi.org/10.1021/acsnano.9b03767
- M. Walter, J. Akola, O. Lopez-Acevedo, P.D. Jadzinsky, G. Calero et al., A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl. Acad. Sci. U.S.A. 105, 9157–9162 (2008). https://doi.org/10.1073/pnas.0801001105
- M.G. Taylor, G. Mpourmpakis, Thermodynamic stability of ligand-protected metal nanoclusters. Nat. Commun. 8, 15988 (2017). https://doi.org/10.1038/ncomms15988
- S.-Y. Kang, Z.-A. Nan, Q.-M. Wang, Superatomic orbital splitting in coinage metal nanoclusters. J. Phys. Chem. Lett. 13, 291–295 (2022). https://doi.org/10.1021/acs.jpclett.1c03563
- J.D. Schneider, B.A. Smith, G.A. Williams, D.R. Powell, F. Perez et al., Synthesis and characterization of Cu(II) and mixed-valence Cu(I)Cu(II) clusters supported by pyridylamide ligands. Inorg. Chem. 59, 5433–5446 (2020). https://doi.org/10.1021/acs.inorgchem.0c00008
- L.L.-M. Zhang, W.-Y. Wong, Atomically precise copper nanoclusters as ultrasmall molecular aggregates: appealing compositions, structures, properties, and applications. Aggregate 4, e266 (2023). https://doi.org/10.1002/agt2.266
- J. Sang, P. Wei, T. Liu, H. Lv, X. Ni et al., A reconstructed Cu2P2O7 catalyst for selective CO2 electroreduction to multicarbon products. Angew. Chem. Int. Ed. 61, e202114238 (2022). https://doi.org/10.1002/anie.202114238
- C. Sun, K. Liu, J. Zhang, Q. Liu, X.J. Liu et al., In situ transmission electron microscopy and three-dimensional electron tomography for catalyst studies. Chin. J. Struct. Chem. 41, 2210056–2210076 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0187
- H. Sun, L. Lin, W. Hua, X. Xie, Q. Mu et al., Atomically dispersed Co−Cu alloy reconstructed from metal-organic framework to promote electrochemical CO2 methanation. Nano Res. 16, 3680–3686 (2023). https://doi.org/10.1007/s12274-022-4728-1
- X. Gong, Z.-H. Liu, Q. Xu, L. Wang, Q. Guo et al., Single-molecule manipulation of copper nanoclusters for modulating nonlinear optics. Polyoxometalates 4, 9140072 (2025). https://doi.org/10.26599/pom.2024.9140072
- Q.-J. Wu, D.-H. Si, P.-P. Sun, Y.-L. Dong, S. Zheng et al., Atomically precise copper nanoclusters for highly efficient electroreduction of CO2 towards hydrocarbons via breaking the coordination symmetry of Cu site. Angew. Chem. Int. Ed. 62, e202306822 (2023). https://doi.org/10.1002/anie.202306822
- S. Zhao, N. Austin, M. Li, Y. Song, S.D. House et al., Influence of atomic-level morphology on catalysis: the case of sphere and rod-like gold nanoclusters for CO2 electroreduction. ACS Catal. 8, 4996–5001 (2018). https://doi.org/10.1021/acscatal.8b00365
- L. Qin, F. Sun, X. Ma, G. Ma, Y. Tang et al., Homoleptic alkynyl-protected Ag15 nanocluster with atomic precision: structural analysis and electrocatalytic performance toward CO2 reduction. Angew. Chem. Int. Ed. 60, 26136–26141 (2021). https://doi.org/10.1002/anie.202110330
- X.-K. Wan, J.-Q. Wang, Q.-M. Wang, Ligand-protected au55 with a novel structure and remarkable CO2 electroreduction performance. Angew. Chem. Int. Ed. 60, 20748–20753 (2021). https://doi.org/10.1002/anie.202108207
- S.-F. Yuan, R.-L. He, X.-S. Han, J.-Q. Wang, Z.-J. Guan et al., Robust gold nanocluster protected with amidinates for electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 60, 14345–14349 (2021). https://doi.org/10.1002/anie.202103060
- L. Chen, F. Sun, Q. Shen, L. Qin, Y. Liu et al., Homoleptic alkynyl-protected Ag32 nanocluster with atomic precision: probing the ligand effect toward CO2 electroreduction and 4-nitrophenol reduction. Nano Res. 15, 8908–8913 (2022). https://doi.org/10.1007/s12274-022-4812-6
- J. Wang, F. Xu, Z.-Y. Wang, S.-Q. Zang, T.C.W. Mak, Ligand-shell engineering of a Au28 nanocluster boosts electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 61, e202207492 (2022). https://doi.org/10.1002/anie.202207492
- S. Li, A.V. Nagarajan, X. Du, Y. Li, Z. Liu et al., Dissecting critical factors for electrochemical CO2 reduction on atomically precise Au nanoclusters. Angew. Chem. Int. Ed. 61, e202211771 (2022). https://doi.org/10.1002/anie.202211771
- T.-A D. Nguyen, Z.R. Jones, D.F. Leto, G. Wu, S.L. Scott et al., Ligand-exchange-induced growth of an atomically precise Cu29 nanocluster from a smaller cluster. Chem. Mater. 28, 8385–8390 (2016). https://doi.org/10.1021/acs.chemmater.6b03879
- A.W. Cook, Z.R. Jones, G. Wu, S.L. Scott, T.W. Hayton, An organometallic Cu20 nanocluster: synthesis, characterization, immobilization on silica, and click chemistry. J. Am. Chem. Soc. 140, 394–400 (2018). https://doi.org/10.1021/jacs.7b10960
- M. Qu, F.-Q. Zhang, D.-H. Wang, H. Li, J.-J. Hou et al., Observation of non-FCC copper in alkynyl-protected Cu53 nanoclusters. Angew. Chem. Int. Ed. 59, 6507–6512 (2020). https://doi.org/10.1002/anie.202001185
- S. Li, X. Yan, J. Tang, D. Cao, X. Sun et al., Cu26 nanoclusters with quintuple ligand shells for CO2 electrocatalytic reduction. Chem. Mater. 35, 6123–6132 (2023). https://doi.org/10.1021/acs.chemmater.3c01247
- S. Lee, M.S. Bootharaju, G. Deng, S. Malola, W. Baek et al., Cu32(PET)24H8Cl2](PPh4)2: a copper hydride nanocluster with a bisquare antiprismatic core. J. Am. Chem. Soc. 142, 13974–13981 (2020). https://doi.org/10.1021/jacs.0c06577
- T.-A D. Nguyen, Z.R. Jones, B.R. Goldsmith, W.R. Buratto, G. Wu et al., A Cu25 nanocluster with partial Cu(0) character. J. Am. Chem. Soc. 137, 13319–13324 (2015). https://doi.org/10.1021/jacs.5b07574
- N. Zhang, Y. Li, S. Han, Y. Wei, H. Hu et al., Cluster light-emitting diodes containing copper iodine cube with 100% exciton utilization using host-cluster synergy. Angew. Chem. Int. Ed. 62, e202305018 (2023). https://doi.org/10.1002/anie.202305018
- A.K. Das, S. Biswas, V.S. Wani, A.S. Nair, B. Pathak et al., Cu18H3(S-adm)12(PPh3)4Cl2]: fusion of Platonic and Johnson solids through a Cu(0) center and its photophysical properties. Chem. Sci. 13, 7616–7625 (2022). https://doi.org/10.1039/d2sc02544b
- T. Jia, Z.-J. Guan, C. Zhang, X.-Z. Zhu, Y.-X. Chen et al., Eight-electron superatomic Cu31 nanocluster with chiral kernel and NIR-II emission. J. Am. Chem. Soc. 145, 10355–10363 (2023). https://doi.org/10.1021/jacs.3c02215
- X.-Z. Zhu, T. Jia, Z.-J. Guan, Q. Zhang, Y. Yang, Elongation of a trigonal-prismatic copper cluster by diphosphine ligands with longer spacers. Inorg. Chem. 61, 15144–15151 (2022). https://doi.org/10.1021/acs.inorgchem.2c02306
- J. Sun, X. Tang, Z.-H. Liu, Z. Xie, B. Yan et al., Labile ligands protected Cu50 nanoclusters with tailorable optical limiting effect. ACS Mater. Lett. 6, 281–289 (2024). https://doi.org/10.1021/acsmaterialslett.3c01305
- J. Sun, X. Tang, X. Yan, W. Jing, Z. Xie et al., Atomically precise Cu41 clusters as model catalysts: open metal sites matter. Next Mater. 3, 100091 (2024). https://doi.org/10.1016/j.nxmate.2023.100091
- B.-L. Han, Z. Liu, L. Feng, Z. Wang, R.K. Gupta et al., Polymorphism in atomically precise Cu23 nanocluster incorporating tetrahedral[Cu4]0 kernel. J. Am. Chem. Soc. 142, 5834–5841 (2020). https://doi.org/10.1021/jacs.0c01053
- P. Yuan, R. Chen, X. Zhang, F. Chen, J. Yan et al., Ether-soluble Cu53 nanoclusters as an effective precursor of high-quality CuI films for optoelectronic applications. Angew. Chem. Int. Ed. 58, 835–839 (2019). https://doi.org/10.1002/anie.201812236
- C. Zhang, Z. Wang, W.-D. Si, L. Wang, J.-M. Dou et al., Solvent-induced isomeric Cu13 nanoclusters: chlorine to copper charge transfer boosting molecular oxygen activation in sulfide selective oxidation. ACS Nano 16, 9598–9607 (2022). https://doi.org/10.1021/acsnano.2c02885
- L. Qin, G. Ma, L. Wang, Z. Tang, Atomically precise metal nanoclusters for (photo)electroreduction of CO2: recent advances, challenges and opportunities. J. Energy Chem. 57, 359–370 (2021). https://doi.org/10.1016/j.jechem.2020.09.003
- Q. Tang, Y. Lee, D.-Y. Li, W. Choi, C.W. Liu et al., Lattice-hydride mechanism in electrocatalytic CO2 reduction by structurally precise copper-hydride nanoclusters. J. Am. Chem. Soc. 139, 9728–9736 (2017). https://doi.org/10.1021/jacs.7b05591
- L.-J. Liu, Z.-Y. Wang, Z.-Y. Wang, R. Wang, S.-Q. Zang et al., Mediating CO2 electroreduction activity and selectivity over atomically precise copper clusters. Angew. Chem. Int. Ed. 61, e202205626 (2022). https://doi.org/10.1002/anie.202205626
- J. Wang, J. Cai, K.-X. Ren, L. Liu, S.-J. Zheng et al., Stepwise structural evolution toward robust carboranealkynyl-protected copper nanocluster catalysts for nitrate electroreduction. Sci. Adv. 10, eadn7556 (2024). https://doi.org/10.1126/sciadv.adn7556
- J.-P. Dong, Y. Xu, X.-G. Zhang, H. Zhang, L. Yao et al., Copper-sulfur-nitrogen cluster providing a local proton for efficient carbon dioxide photoreduction. Angew. Chem. Int. Ed. 62, e202313648 (2023). https://doi.org/10.1002/anie.202313648
- A. Sagadevan, A. Ghosh, P. Maity, O.F. Mohammed, O.M. Bakr et al., Visible-light copper nanocluster catalysis for the C-N coupling of aryl chlorides at room temperature. J. Am. Chem. Soc. 144, 12052–12061 (2022). https://doi.org/10.1021/jacs.2c02218
- G.-G. Luo, Z.-H. Pan, B.-L. Han, G.-L. Dong, C.-L. Deng et al., Total structure, electronic structure and catalytic hydrogenation activity of metal-deficient chiral polyhydride Cu57 nanoclusters. Angew. Chem. Int. Ed. 62, e202306849 (2023). https://doi.org/10.1002/anie.202306849
- C. Dong, R.-W. Huang, A. Sagadevan, P. Yuan, L. Gutiérrez-Arzaluz et al., Isostructural nanocluster manipulation reveals pivotal role of one surface atom in click chemistry. Angew. Chem. Int. Ed. 62, e202307140 (2023). https://doi.org/10.1002/anie.202307140
- S. Nematulloev, A. Sagadevan, B. Alamer, A. Shkurenko, R. Huang et al., Atomically precise defective copper nanocluster catalysts for highly selective C-C cross-coupling reactions. Angew. Chem. Int. Ed. 62, e202303572 (2023). https://doi.org/10.1002/anie.202303572
- S. Biswas, A. Pal, M.K. Jena, S. Hossain, S. Jin et al., Luminescent hydride-free[Cu7(SC5H9)7(PPh3)3]nanocluster: facilitating highly selective C-C bond formation. J. Am. Chem. Soc. 146, 20937–20944 (2024). https://doi.org/10.1021/jacs.4c05678
- T. Jia, Y.-X. Li, X.-H. Ma, M.-M. Zhang, X.-Y. Dong et al., Atomically precise ultrasmall copper cluster for room-temperature highly regioselective dehydrogenative coupling. Nat. Commun. 14, 6877 (2023). https://doi.org/10.1038/s41467-023-42688-3
- X. Xu, Y. Liu, F. Sun, Y. Jia, Q. Xu et al., Array-based clusters of copper with largely exposed metal sites for promoting catalysis. Chem. Mater. 35, 7588–7596 (2023). https://doi.org/10.1021/acs.chemmater.3c01277
- Y.-M. Wang, X.-C. Lin, K.-M. Mo, M. Xie, Y.-L. Huang et al., An atomically precise pyrazolate-protected copper nanocluster exhibiting exceptional stability and catalytic activity. Angew. Chem. Int. Ed. 62, e202218369 (2023). https://doi.org/10.1002/anie.202218369
- G. Dong, Z. Pan, B. Han, Y. Tao, X. Chen et al., Multi-layer 3D chirality and double-helical assembly in a copper nanocluster with a triple-helical Cu15 core. Angew. Chem. Int. Ed. 62, e202302595 (2023). https://doi.org/10.1002/anie.202302595
- X. Sun, Y. Wang, Q. Wu, Y.-Z. Han, X. Gong et al., Cu66 nanoclusters from hierarchical square motifs: synthesis, assembly, and catalysis. Aggregate, e651 (2024). https://doi.org/10.1002/agt2.651
- C.-Y. Liu, T.-Y. Liu, Z.-J. Guan, S. Wang, Y.-Y. Dong et al., Dramatic difference between Cu20H8 and Cu20H9 Clusters in catalysis. CCS Chem. 6, 1581–1590 (2024). https://doi.org/10.31635/ccschem.023.202303448
- B. Yan, X. You, X. Tang, J. Sun, Q. Xu et al., Carboxylate-protected “isostructural” Cu20 nanoclusters as a model system: carboxylate effect on controlling catalysis. Chem. Mater. 36, 1004–1012 (2024). https://doi.org/10.1021/acs.chemmater.3c03131
- Y. Li, R. Jin, Seeing ligands on nanoclusters and in their assemblies by X-ray crystallography: atomically precise nanochemistry and beyond. J. Am. Chem. Soc. 142, 13627–13644 (2020). https://doi.org/10.1021/jacs.0c05866
- B. Zhang, J. Chen, Y. Cao, O.J.H. Chai, J. Xie, Ligand design in ligand-protected gold nanoclusters. Small 17, e2004381 (2021). https://doi.org/10.1002/smll.202004381
- Z.-J. Guan, R.-L. He, S.-F. Yuan, J.-J. Li, F. Hu et al., Ligand engineering toward the trade-off between stability and activity in cluster catalysis. Angew. Chem. Int. Ed. 61, e202116965 (2022). https://doi.org/10.1002/anie.202116965
- W. Fei, Y. Tao, Y. Qiao, S.-Y. Tang, M.-B. Li, Structural modification and performance regulation of atomically precise metal nanoclusters by phosphine. Polyoxometalates 2, 9140043 (2023). https://doi.org/10.26599/pom.2023.9140043
- S.-F. Yuan, W.-D. Liu, C.-Y. Liu, Z.-J. Guan, Q.-M. Wang, Nitrogen donor protection for atomically precise metal nanoclusters. Chemistry 28, e202104445 (2022). https://doi.org/10.1002/chem.202104445
- Z. Lei, X.-K. Wan, S.-F. Yuan, Z.-J. Guan, Q.-M. Wang, Alkynyl approach toward the protection of metal nanoclusters. Acc. Chem. Res. 51, 2465–2474 (2018). https://doi.org/10.1021/acs.accounts.8b00359
- L. Chen, L. Wang, Q. Shen, Y. Liu, Z. Tang, All-alkynyl-protected coinage metal nanoclusters: from synthesis to electrocatalytic CO2 reduction applications. Mater. Chem. Front. 7, 1482–1495 (2023). https://doi.org/10.1039/d2qm01282k
- R.W. Huang, J. Yin, C. Dong, A. Ghosh, M.J. Alhilaly et al., Cu81(PhS)46(tBuNH2)10(H)32]3+ reveals the coexistence of large planar cores and hemispherical shells in high-nuclearity copper nanoclusters. J. Am. Chem. Soc. 142, 8696–8705 (2020). https://doi.org/10.1021/jacs.0c00541
- P.-P. Sun, B.-L. Han, H.-G. Li, C.-K. Zhang, X. Xin et al., Real-time fluorescent monitoring of kinetically controlled supramolecular self-assembly of atom-precise Cu8 nanocluster. Angew. Chem. Int. Ed. 61, e202200180 (2022). https://doi.org/10.1002/anie.202200180
- Q.-Q. Huang, M.-Y. Hu, Y.-L. Li, N.-N. Chen, Y. Li et al., Novel ultrabright luminescent copper nanoclusters and application in light-emitting devices. Chem. Commun. 57, 9890–9893 (2021). https://doi.org/10.1039/d1cc03799d
- M.K. Osei, S. Mirzaei, X. Bogetti, E. Castro, M.A. Rahman et al., Synthesis of square planar Cu4 clusters. Angew. Chem. Int. Ed. 61, e202209529 (2022). https://doi.org/10.1002/anie.202209529
- C.-Y. Liu, S.-F. Yuan, S. Wang, Z.-J. Guan, D.-E. Jiang et al., Structural transformation and catalytic hydrogenation activity of amidinate-protected copper hydride clusters. Nat. Commun. 13, 2082 (2022). https://doi.org/10.1038/s41467-022-29819-y
- H.-Y. Zhuo, H.-F. Su, Z.-Z. Cao, W. Liu, S.-A. Wang et al., High-nuclear organometallic copper(I)-alkynide clusters: thermochromic near-infrared luminescence and solution stability. Chemistry 22, 17619–17626 (2016). https://doi.org/10.1002/chem.201603797
- M.-M. Zhang, X.-Y. Dong, Z.-Y. Wang, H.-Y. Li, S.-J. Li et al., AIE triggers the circularly polarized luminescence of atomically precise enantiomeric copper(I) alkynyl clusters. Angew. Chem. Int. Ed. 59, 10052–10058 (2020). https://doi.org/10.1002/anie.201908909
- M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, Synthesis of thiol-derivatised gold nanops in a two-phase Liquid–Liquid system. J. Chem. Soc., Chem. Commun., 801–802 (1994). https://doi.org/10.1039/c39940000801
- M. Brust, J. Fink, D. Bethell, D.J. Schiffrin, C. Kiely, Synthesis and reactions of functionalised gold nanops. J. Chem. Soc., Chem. Commun., 1655 (1995). https://doi.org/10.1039/c39950001655
- R. Jin, H. Qian, Z. Wu, Y. Zhu, M. Zhu et al., Size focusing: a methodology for synthesizing atomically precise gold nanoclusters. J. Phys. Chem. Lett. 1, 2903–2910 (2010). https://doi.org/10.1021/jz100944k
- Q. Yao, T. Chen, X. Yuan, J. Xie, Toward total synthesis of thiolate-protected metal nanoclusters. Acc. Chem. Res. 51, 1338–1348 (2018). https://doi.org/10.1021/acs.accounts.8b00065
- X. Yuan, L.L. Chng, J. Yang, J.Y. Ying, Miscible-solvent-assisted two-phase synthesis of monolayer-ligand-protected metal nanoclusters with various sizes. Adv. Mater. 32, e1906063 (2020). https://doi.org/10.1002/adma.201906063
- Z. Wang, X. Pan, S. Qian, G. Yang, F. Du et al., The beauty of binary phases: a facile strategy for synthesis, processing, functionalization, and application of ultrasmall metal nanoclusters. Coord. Chem. Rev. 438, 213900 (2021). https://doi.org/10.1016/j.ccr.2021.213900
- Y. Li, M. Zhou, R. Jin, Programmable metal nanoclusters with atomic precision. Adv. Mater. 33, e2006591 (2021). https://doi.org/10.1002/adma.202006591
- X. Ma, G. Ma, L. Qin, G. Chen, S. Chen et al., A synchronous nucleation and passivation strategy for controllable synthesis of Au36(PA)24: unveiling the formation process and the role of Au22(PA)18 intermediate. Sci. China Chem. 63, 1777–1784 (2020). https://doi.org/10.1007/s11426-020-9819-4
- X. Ma, Z. Tang, L. Qin, J. Peng, L. Li et al., Unravelling the formation mechanism of alkynyl protected gold clusters: a case study of phenylacetylene stabilized Au144 molecules. Nanoscale 12, 2980–2986 (2020). https://doi.org/10.1039/c9nr10930g
- X. Ma, F. Sun, L. Qin, Y. Liu, X. Kang et al., Electrochemical CO2 reduction catalyzed by atomically precise alkynyl-protected Au7Ag8, Ag9Cu6, and Au2Ag8Cu5 nanoclusters: probing the effect of multi-metal core on selectivity. Chem. Sci. 13, 10149–10158 (2022). https://doi.org/10.1039/d2sc02886g
- Y. Tang, F. Sun, X. Ma, L. Qin, G. Ma et al., Alkynyl and halogen co-protected (AuAg)44 nanoclusters: a comparative study on their optical absorbance, structure, and hydrogen evolution performance. Dalton Trans. 51, 7845–7850 (2022). https://doi.org/10.1039/d2dt00634k
- G. Ma, Y. Tang, L. Chen, L. Qin, Q. Shen et al., A homoleptic alkynyl-protected Au(I)9-Ag(I)9 cluster: structure analysis, optical properties, and catalytic implications. Eur. J. Inorg. Chem. 2022, e202200176 (2022). https://doi.org/10.1002/ejic.202200176
- L. Qin, F. Sun, Z. Gong, G. Ma, Y. Chen et al., Electrochemical NO3- reduction catalyzed by atomically precise Ag30Pd4 bimetallic nanocluster: synergistic catalysis or tandem catalysis? ACS Nano 17, 12747–12758 (2023). https://doi.org/10.1021/acsnano.3c03692
- L. Chen, F. Sun, Q. Shen, L. Wang, Y. Liu et al., Structure, optical properties, and catalytic applications of alkynyl-protected M4Rh2 (M = Ag/Au) nanoclusters with atomic precision: a comparative study. Dalton Trans. 52, 9441–9447 (2023). https://doi.org/10.1039/d3dt01326j
- L. Wang, L. Chen, L. Qin, Y. Liu, Z. Tang, Alkynyl-protected Ag20 Rh2 nanocluster with atomic precision: structure analysis and tri-functionality catalytic application. Chem. Asian J. 18, e202300685 (2023). https://doi.org/10.1002/asia.202300685
- X. Ma, Y. Tang, G. Ma, L. Qin, Z. Tang, Controllable synthesis and formation mechanism study of homoleptic alkynyl-protected Au nanoclusters: recent advances, grand challenges, and great opportunities. Nanoscale 13, 602–614 (2021). https://doi.org/10.1039/d0nr07499c
- X. Yuan, B. Zhang, Z. Luo, Q. Yao, D.T. Leong et al., Balancing the rate of cluster growth and etching for gram-scale synthesis of thiolate-protected Au25 nanoclusters with atomic precision. Angew. Chem. Int. Ed. 53, 4623–4627 (2014). https://doi.org/10.1002/anie.201311177
- Z. Wu, J. Suhan, R. Jin, One-pot synthesis of atomically monodisperse, thiol-functionalized Au25nanoclusters. J. Mater. Chem. 19, 622–626 (2009). https://doi.org/10.1039/b815983a
- A.C. Dharmaratne, T. Krick, A. Dass, Nanocluster size evolution studied by mass spectrometry in room temperature Au25(SR)18 synthesis. J. Am. Chem. Soc. 131, 13604–13605 (2009). https://doi.org/10.1021/ja906087a
- S. Ito, S. Takano, T. Tsukuda, Alkynyl-protected Au22(C≡CR)18 clusters featuring new interfacial motifs and R-dependent photoluminescence. J. Phys. Chem. Lett. 10, 6892–6896 (2019). https://doi.org/10.1021/acs.jpclett.9b02920
- Z.-J. Guan, F. Hu, J.-J. Li, Z.-R. Wen, Y.-M. Lin et al., Isomerization in alkynyl-protected gold nanoclusters. J. Am. Chem. Soc. 142, 2995–3001 (2020). https://doi.org/10.1021/jacs.9b11836
- Y.-J. Zhong, J.-H. Liao, T.-H. Chiu, S. Kahlal, C.-J. Lin et al., A two-electron silver superatom isolated from thermally induced internal redox reaction of A silver(I) hydride. Angew. Chem. Int. Ed. 60, 12712–12716 (2021). https://doi.org/10.1002/anie.202100965
- K.K. Chakrahari, J.H. Liao, S. Kahlal, Y.C. Liu, M.H. Chiang et al., Cu13{S2 CNn Bu2}6 (acetylide)4]+: a two-electron superatom. Angew. Chem. Int. Ed. 55, 14704–14708 (2016). https://doi.org/10.1002/anie.201608609
- F. Sun, Q. Tang, D-e. Jiang Theoretical advances in understanding and designing the active sites for hydrogen evolution reaction. ACS Catal. 12, 8404–8433 (2022). https://doi.org/10.1021/acscatal.2c02081
- Y. Wang, X. Zheng, D. Wang, Design concept for electrocatalysts. Nano Res. 15, 1730–1752 (2022). https://doi.org/10.1007/s12274-021-3794-0
- X.L. Tian, J.Y. Li, L.X. Zhang, Y. Chen, Structural chemistry in energy relevant-catalysis reaction. Chin. J. Struct. Chem. 41, 2207001–2207001 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0160
- Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017). https://doi.org/10.1126/science.aad4998
- O.S. Bushuyev, P. De Luna, C.T. Dinh, L. Tao, G. Saur et al., What should we make with CO2 and how can we make it? Joule 2, 825–832 (2018). https://doi.org/10.1016/j.joule.2017.09.003
- M. Lu, M. Zhang, J. Liu, Y. Chen, J.-P. Liao et al., Covalent organic framework based functional materials: important catalysts for efficient CO2 utilization. Angew. Chem. Int. Ed. 61, e202200003 (2022). https://doi.org/10.1002/anie.202200003
- Y. Quan, J. Zhu, G. Zheng, Electrocatalytic reactions for converting CO2 to value-added products. Small Sci. 1, 2100043 (2021). https://doi.org/10.1002/smsc.202100043
- Y. Li, T.-B. Lu, Coupling electrochemical CO2 reduction with value-added anodic oxidation reactions: progress and challenges. Mater. Chem. Front. 8, 341–353 (2024). https://doi.org/10.1039/d3qm00625e
- G. Ma, L. Qin, Y. Liu, H. Fan, L. Qiao et al., A review of CO2 reduction reaction catalyzed by atomical-level Ag nanomaterials: atom-precise nanoclusters and atomically dispersed catalysts. Surf. Interfaces 36, 102555 (2023). https://doi.org/10.1016/j.surfin.2022.102555
- G. Wang, J. Chen, Y. Ding, P. Cai, L. Yi et al., Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem. Soc. Rev. 50, 4993–5061 (2021). https://doi.org/10.1039/d0cs00071j
- H. Liu, Y. Zhu, J. Ma, Z. Zhang, W. Hu, Atomically thin catalysts: recent advances in atomic-level engineering of nanostructured catalysts for electrochemical CO2 reduction. Adv. Funct. Mater. 30, 2070107 (2020). https://doi.org/10.1002/adfm.202070107
- B. Pan, Y. Wang, Y. Li, Understanding and leveraging the effect of cations in the electrical double layer for electrochemical CO2 reduction. Chem Catal. 2, 1267–1276 (2022). https://doi.org/10.1016/j.checat.2022.03.012
- L. Zhou, R. Lv, Rational catalyst design and interface engineering for electrochemical CO2 reduction to high-valued alcohols. J. Energy Chem. 70, 310–331 (2022). https://doi.org/10.1016/j.jechem.2022.02.033
- S. Ji, Y. Chen, X. Wang, Z. Zhang, D. Wang et al., Chemical synthesis of single atomic site catalysts. Chem. Rev. 120, 11900–11955 (2020). https://doi.org/10.1021/acs.chemrev.9b00818
- J. Duan, T. Liu, Y. Zhao, R. Yang, Y. Zhao et al., Active and conductive layer stacked superlattices for highly selective CO2 electroreduction. Nat. Commun. 13, 2039 (2022). https://doi.org/10.1038/s41467-022-29699-2
- Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec et al., Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 141, 7646–7659 (2019). https://doi.org/10.1021/jacs.9b02124
- J. Wang, H.-Y. Tan, Y. Zhu, H. Chu, H.M. Chen, Linking the dynamic chemical state of catalysts with the product profile of electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 60, 17254–17267 (2021). https://doi.org/10.1002/anie.202017181
- S. Liu, B. Zhang, L. Zhang, J. Sun, Rational design strategies of Cu-based electrocatalysts for CO2 electroreduction to C2 products. J. Energy Chem. 71, 63–82 (2022). https://doi.org/10.1016/j.jechem.2022.03.041
- Y. Fang, L. Han, S. Che, Electrocatalytic reduction of CO2 on chiral Cu surfaces. Chin. J. Struct. Chem. 42, 100107 (2023). https://doi.org/10.1016/j.cjsc.2023.100107
- S. Nitopi, E. Bertheussen, S.B. Scott, X. Liu, A.K. Engstfeld et al., Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019). https://doi.org/10.1021/acs.chemrev.8b00705
- T.K. Todorova, M.W. Schreiber, M. Fontecave, Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts. ACS Catal. 10, 1754–1768 (2020). https://doi.org/10.1021/acscatal.9b04746
- D. Karapinar, C.E. Creissen, J.G. Rivera de la Cruz, M.W. Schreiber, M. Fontecave, Electrochemical CO2 reduction to ethanol with copper-based catalysts. ACS Energy Lett. 6, 694–706 (2021). https://doi.org/10.1021/acsenergylett.0c02610
- A. Ma, J. Wang, Y. Wang, Y. Zuo, Y. Ren et al., Atomically precise M15 (M = Au/Ag/Cu) alloy nanoclusters: structural analysis, optical and electrocatalytic CO2 reduction properties. Polyoxometalates 3, 9140054 (2024). https://doi.org/10.26599/pom.2024.9140054
- Y.-F. Lu, L.-Z. Dong, J. Liu, R.-X. Yang, J.-J. Liu et al., Predesign of catalytically active sites via stable coordination cluster model system for electroreduction of CO2 to ethylene. Angew. Chem. Int. Ed. 60, 26210–26217 (2021). https://doi.org/10.1002/anie.202111265
- C.P. Wan, J.D. Yi, R. Cao, Y.B. Huang Conductive metal/covalent organic frameworks for CO2 electroreduction. Chin. J. Struct. Chem. 41, 2205001–2205014 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0075
- K. Yao, J. Li, H. Wang, R. Lu, X. Yang et al., Mechanistic insights into OC-COH coupling in CO2 electroreduction on fragmented copper. J. Am. Chem. Soc. 144, 14005–14011 (2022). https://doi.org/10.1021/jacs.2c01044
- Y.-L. Yang, Y.-R. Wang, L.-Z. Dong, Q. Li, L. Zhang et al., A honeycomb-like porous crystalline hetero-electrocatalyst for efficient electrocatalytic CO2 reduction. Adv. Mater. 34, 2206706 (2022). https://doi.org/10.1002/adma.202206706
- Y.-M. Wang, J. Cai, Q.-Y. Wang, Y. Li, Z. Han et al., Electropolymerization of metal clusters establishing a versatile platform for enhanced catalysis performance. Angew. Chem. Int. Ed. 61, e202114538 (2022). https://doi.org/10.1002/anie.202114538
- G. Ma, F. Sun, L. Qiao, Q. Shen, L. Wang et al., Atomically precise alkynyl-protected Ag20Cu12 nanocluster: structure analysis and electrocatalytic performance toward nitrate reduction for NH3 synthesis. Nano Res. 16, 10867–10872 (2023). https://doi.org/10.1007/s12274-023-5885-6
- S. Wu, N. Salmon, M.M.-J. Li, R. Bañares-Alcántara, S.C.E. Tsang, Energy decarbonization via green H2 or NH3? ACS Energy Lett. 7, 1021–1033 (2022). https://doi.org/10.1021/acsenergylett.1c02816
- A. Valera-Medina, F. Amer-Hatem, A.K. Azad, I.C. Dedoussi, M. de Joannon et al., Review on ammonia as a potential fuel: from synthesis to economics. Energy Fuels 35, 6964–7029 (2021). https://doi.org/10.1021/acs.energyfuels.0c03685
- C. Lv, J. Liu, C. Lee, Q. Zhu, J. Xu et al., Emerging p-block-element-based electrocatalysts for sustainable nitrogen conversion. ACS Nano 16, 15512–15527 (2022). https://doi.org/10.1021/acsnano.2c07260
- X. Zhang, Y. Wang, C. Liu, Y. Yu, S. Lu et al., Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 403, 126269 (2021). https://doi.org/10.1016/j.cej.2020.126269
- L. Gu, H. Luo, Y. Zhang, Y. Cong, M. Kuang et al., Engineering interfacial architectures toward nitrate electrocatalysis and nitrogen neutral cycle. Mater. Chem. Front. 8, 1015–1035 (2024). https://doi.org/10.1039/d3qm01038d
- S. Zhang, Y. Zha, Y. Ye, K. Li, Y. Lin et al., Oxygen-coordinated single Mn sites for efficient electrocatalytic nitrate reduction to ammonia. Nano-Micro Lett. 16, 9 (2023). https://doi.org/10.1007/s40820-023-01217-z
- G. Luo, M. Song, Q. Zhang, L. An, T. Shen et al., Advances of synergistic electrocatalysis between single atoms and nanops/clusters. Nano-Micro Lett. 16, 241 (2024). https://doi.org/10.1007/s40820-024-01463-9
- T. Wang, H.-J. Wang, J.-S. Lin, J.-L. Yang, F.-L. Zhang et al., Plasmonic photocatalysis: Mechanism, applications and perspectives. Chin. J. Struct. Chem. 42, 100066 (2023). https://doi.org/10.1016/j.cjsc.2023.100066
- K. Sun, Y. Qian, H.-L. Jiang, Metal-organic frameworks for photocatalytic water splitting and CO2 reduction. Angew. Chem. Int. Ed. 62, e202217565 (2023). https://doi.org/10.1002/anie.202217565
- J. Chen, L. Lin, P. Lin, L. Xiao, L. Zhang et al., A direct Z-scheme Bi2WO6/La2Ti2O7 photocatalyst for selective reduction of CO2 to CO. Chin. J. Struct. Chem. 42, 100010 (2023). https://doi.org/10.1016/j.cjsc.2022.100010
- C. Li, J. Wang, L. Tong, Y. Wang, P. Zhang et al., Recent progress and challenges of photocatalytic CO2 conversion into value-added multi-carbon products. Coord. Chem. Rev. 502, 215623 (2024). https://doi.org/10.1016/j.ccr.2023.215623
- M. Sayed, J. Yu, G. Liu, M. Jaroniec, Non-noble plasmonic metal-based photocatalysts. Chem. Rev. 122, 10484–10537 (2022). https://doi.org/10.1021/acs.chemrev.1c00473
- L. Zhang, J. Zhang, H. Yu, J. Yu, Emerging S-scheme photocatalyst. Adv. Mater. 34, e2107668 (2022). https://doi.org/10.1002/adma.202107668
- C. Ban, Y. Duan, Y. Wang, J. Ma, K. Wang et al., Isotype heterojunction-boosted CO2 photoreduction to CO. Nano-Micro Lett. 14, 74 (2022). https://doi.org/10.1007/s40820-022-00821-9
- M. Gao, F. Tian, X. Zhang, Z. Chen, W. Yang et al., Improved plasmonic hot-electron capture in Au nanop/polymeric carbon nitride by Pt single atoms for broad-spectrum photocatalytic H2 evolution. Nano-Micro Lett. 15, 129 (2023). https://doi.org/10.1007/s40820-023-01098-2
- M. Lu, M. Zhang, J. Liu, T.-Y. Yu, J.-N. Chang et al., Confining and highly dispersing single polyoxometalate clusters in covalent organic frameworks by covalent linkages for CO2 photoreduction. J. Am. Chem. Soc. 144, 1861–1871 (2022). https://doi.org/10.1021/jacs.1c11987
- S. Tao, S. Wan, Q. Huang, C. Li, J. Yu et al., Molecular engineering of g-C3N4 with dibenzothiophene groups as electron donor for enhanced photocatalytic H2-production. Chin. J. Struct. Chem. 41, 48–54 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0068
- J.G. Yu, X. Li,, Z.L. Jin,, H.Tang,, E.Z. Liu, Preface to solar photocatalysis. Chin. J. Struct. Chem. 41, 2206001–2206002 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0158
- R. Jin, G. Li, S. Sharma, Y. Li, X. Du, Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem. Rev. 121, 567–648 (2021). https://doi.org/10.1021/acs.chemrev.0c00495
- Y. Du, H. Sheng, D. Astruc, M. Zhu, Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chem. Rev. 120, 526–622 (2020). https://doi.org/10.1021/acs.chemrev.8b00726
- S. Wang, L. Tang, B. Cai, Z. Yin, Y. Li et al., Ligand modification of Au25 nanoclusters for near-infrared photocatalytic oxidative functionalization. J. Am. Chem. Soc. 144, 3787–3792 (2022). https://doi.org/10.1021/jacs.2c01570
- Y. Liu, Y. Wang, N. Pinna, Atomically precise metal nanoclusters for photocatalytic water splitting. ACS Mater. Lett. 6, 2995–3006 (2024). https://doi.org/10.1021/acsmaterialslett.4c00622
- K.P.S. Cheung, S. Sarkar, V. Gevorgyan, Visible light-induced transition metal catalysis. Chem. Rev. 122, 1543–1625 (2022). https://doi.org/10.1021/acs.chemrev.1c00403
- O. Reiser Shining light on copper: unique opportunities for visible-light-catalyzed atom transfer radical addition reactions and related processes. Acc. Chem. Res. 49, 1990–1996 (2016). https://doi.org/10.1021/acs.accounts.6b00296
- A. Hossain, A. Bhattacharyya, O. Reiser, Copper’s rapid ascent in visible-light photoredox catalysis. Science 364, eaav9713 (2019). https://doi.org/10.1126/science.aav9713
- Y. Yun, L. Li, M. Zhou, M. Li, N. Sun et al., Atomically precise coreless AuCu bimetallic nanoclusters for Ullmann C-O coupling. Nano Res. 16, 10756–10762 (2023). https://doi.org/10.1007/s12274-023-5755-2
- Z.-J. Guan, J.-J. Li, F. Hu, Q.-M. Wang, Structural engineering toward gold nanocluster catalysis. Angew. Chem. Int. Ed. 61, e202209725 (2022). https://doi.org/10.1002/anie.202209725
- S. Zhao, R. Jin, R. Jin, Opportunities and challenges in CO2 reduction by gold- and silver-based electrocatalysts: from bulk metals to nanops and atomically precise nanoclusters. ACS Energy Lett. 3, 452–462 (2018). https://doi.org/10.1021/acsenergylett.7b01104
- Z. Wu, D.-E. Jiang, A.K.P. Mann, D.R. Mullins, Z.-A. Qiao et al., Thiolate ligands as a double-edged sword for CO oxidation on CeO2 supported Au25(SCH2CH2Ph)18 nanoclusters. J. Am. Chem. Soc. 136, 6111–6122 (2014). https://doi.org/10.1021/ja5018706
- Z. Lei, Q.-M. Wang, Homo and heterometallic gold(I) clusters with hypercoordinated carbon. Coord. Chem. Rev. 378, 382–394 (2019). https://doi.org/10.1016/j.ccr.2017.11.001
- A. Ghosh, O.F. Mohammed, O.M. Bakr, Atomic-level doping of metal clusters. Acc. Chem. Res. 51, 3094–3103 (2018). https://doi.org/10.1021/acs.accounts.8b00412
- R. Chinchilla, C. Nájera, Recent advances in sonogashira reactions. Chem. Soc. Rev. 40, 5084–5121 (2011). https://doi.org/10.1039/c1cs15071e
- B.V. Rokade, J. Barker, P.J. Guiry, Development of and recent advances in asymmetric A3 coupling. Chem. Soc. Rev. 48, 4766–4790 (2019). https://doi.org/10.1039/c9cs00253g
- C. Zhang, C. Tang, N. Jiao, Recent advances in copper-catalyzed dehydrogenative functionalization via a single electron transfer (SET) process. Chem. Soc. Rev. 41, 3464–3484 (2012). https://doi.org/10.1039/c2cs15323h
- R.G. Pearson, Hard and soft acids and bases, HSAB, part 1: fundamental principles. J. Chem. Educ. 45(9), 581 (1968). https://doi.org/10.1021/ed045p581
- T. He, Z. Huang, S. Yuan, X.-L. Lv, X.-J. Kong et al., Kinetically controlled reticular assembly of a chemically stable mesoporous Ni(II)-pyrazolate metal–organic framework. J. Am. Chem. Soc. 142, 13491–13499 (2020). https://doi.org/10.1021/jacs.0c05074
- P. Hervés, M. Pérez-Lorenzo, L.M. Liz-Marzán, J. Dzubiella, Y. Lu et al., Catalysis by metallic nanops in aqueous solution: model reactions. Chem. Soc. Rev. 41, 5577–5587 (2012). https://doi.org/10.1039/c2cs35029g
- X. Kong, J. Liu, Influence of alumina binder content on catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone. Plos one 9, e101744 (2014). https://doi.org/10.1371/journal.pone.0101744
- Y. Kobayashi, S. Tada, M. Kondo, K. Fujiwara, H. Mizoguchi, Intermetallic YIr2 nanops with negatively charged Ir active sites for catalytic hydrogenation of cyclohexanone to cyclohexanol. Catal. Sci. Technol. 12, 3088–3093 (2022). https://doi.org/10.1039/d2cy00198e
- C. Sun, N. Mammen, S. Kaappa, P. Yuan, G. Deng et al., Atomically precise, thiolated copper-hydride nanoclusters as single-site hydrogenation catalysts for ketones in mild conditions. ACS Nano 13, 5975–5986 (2019). https://doi.org/10.1021/acsnano.9b02052
- Y. Li, Z. Tang, P.N. Prasad, M.R. Knecht, M.T. Swihart, Peptide-mediated synthesis of gold nanops: effects of peptide sequence and nature of binding on physicochemical properties. Nanoscale 6, 3165–3172 (2014). https://doi.org/10.1039/c3nr06201e
- G. Liao, Y. Gong, L. Zhong, J. Fang, L. Zhang et al., Unlocking the door to highly efficient Ag-based nanops catalysts for NaBH4-assisted nitrophenol reduction. Nano Res. 12, 2407–2436 (2019). https://doi.org/10.1007/s12274-019-2441-5
- S.-F. Yuan, Z.-J. Guan, Q.-M. Wang, Identification of the active species in bimetallic cluster catalyzed hydrogenation. J. Am. Chem. Soc. 144, 11405–11412 (2022). https://doi.org/10.1021/jacs.2c04156
- X. Chen, Z. Cai, X. Chen, M. Oyama, AuPd bimetallic nanops decorated on graphene nanosheets: their green synthesis, growth mechanism and high catalytic ability in 4-nitrophenol reduction. J. Mater. Chem. A 2, 5668–5674 (2014). https://doi.org/10.1039/c3ta15141g
- F. Hu, J.-J. Li, Z.-J. Guan, S.-F. Yuan, Q.-M. Wang, Formation of an alkynyl-protected Ag112 silver nanocluster as promoted by chloride released in situ from CH2Cl2. Angew. Chem. Int. Ed. 59, 5312–5315 (2020). https://doi.org/10.1002/anie.201915168
- Q. Zhu, F. Zhang, Y. Huang, H. Xiao, L. Zhao et al., An all-round AI-Chemist with a scientific mind. Natl. Sci. Rev. 9, nwac190 (2022). https://doi.org/10.1093/nsr/nwac190
- D. Lockey, C. Mathis, H.N. Miras, L. Cronin, Investigating the autocatalytically driven formation of Keggin-based polyoxometalate clusters. Matter 5, 302–313 (2022). https://doi.org/10.1016/j.matt.2021.11.030
- X. Li, S. Takano, T. Tsukuda, Ligand effects on the hydrogen evolution reaction catalyzed by Au13 and Pt@Au12: alkynyl vs thiolate. J. Phys. Chem. C 125, 23226–23230 (2021). https://doi.org/10.1021/acs.jpcc.1c08197
- J.-I. Nishigaki, R. Tsunoyama, H. Tsunoyama, N. Ichikuni, S. Yamazoe et al., A new binding motif of sterically demanding thiolates on a gold cluster. J. Am. Chem. Soc. 134, 14295–14297 (2012). https://doi.org/10.1021/ja305477a
- Z. Liu, H. Tan, B. Li, Z. Hu, D.-E. Jiang et al., Ligand effect on switching the rate-determining step of water oxidation in atomically precise metal nanoclusters. Nat. Commun. 14, 3374 (2023). https://doi.org/10.1038/s41467-023-38914-7
- S. Yoo, S. Yoo, G. Deng, F. Sun, K. Lee et al., Nanocluster surface microenvironment modulates electrocatalytic CO2 reduction. Adv. Mater. 36, e2313032 (2024). https://doi.org/10.1002/adma.202313032
- W.-Q. Shi, L. Zeng, R.-L. He, X.-S. Han, Z.-J. Guan et al., Near-unity NIR phosphorescent quantum yield from a room-temperature solvated metal nanocluster. Science 383, 326–330 (2024). https://doi.org/10.1126/science.adk6628
- S. Hossain, Y. Niihori, L.V. Nair, B. Kumar, W. Kurashige et al., Alloy clusters: precise synthesis and mixing effects. Acc. Chem. Res. 51, 3114–3124 (2018). https://doi.org/10.1021/acs.accounts.8b00453
- K. Kwak, W. Choi, Q. Tang, M. Kim, Y. Lee et al., A molecule-like PtAu24(SC6H13)18 nanocluster as an electrocatalyst for hydrogen production. Nat. Commun. 8, 14723 (2017). https://doi.org/10.1038/ncomms14723
- S. Li, D. Alfonso, A.V. Nagarajan, S.D. House, J.C. Yang et al., Monopalladium substitution in gold nanoclusters enhances CO2 electroreduction activity and selectivity. ACS Catal. 10, 12011–12016 (2020). https://doi.org/10.1021/acscatal.0c02266
- S. Li, A.V. Nagarajan, S. Zhao, G. Mpourmpakis, R. Jin, Understanding the single atom doping effects in oxygen reduction with atomically precise metal nanoclusters. J. Phys. Chem. C 125, 24831–24836 (2021). https://doi.org/10.1021/acs.jpcc.1c08356
- Z. Qin, S. Hu, W. Han, Z. Li, W.W. Xu et al., Tailoring optical and photocatalytic properties by single-Ag-atom exchange in Au13Ag12(PPh3))10Cl8 nanoclusters. Nano Res. 15, 2971–2976 (2022). https://doi.org/10.1007/s12274-021-3928-4
- W.L. Zhou, J.J. Jiang, W.R. Cheng, H. Su, Q.H. Liu, In-situ synchrotron radiation infrared spectroscopic identification of reactive intermediates over multiphase electrocatalytic interfaces. Chin. J. Struct. Chem. 41, 2210004–2210015 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0083
- L. Xie, C. Huang, Z. Liang, H. Wang, Z. Jiang et al., In-situ HP-STM and operando EC-STM studies of heterogeneous catalysis at interfaces. Chin. J. Struct. Chem. 41, 29–44 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0136
- Z. Xiao, Y.-C. Huang, C.-L. Dong, C. Xie, Z. Liu et al., operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 142, 12087–12095 (2020). https://doi.org/10.1021/jacs.0c00257
- Y. Yang, S. Louisia, S. Yu, J. Jin, I. Roh et al., operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 614, 262–269 (2023). https://doi.org/10.1038/s41586-022-05540-0
- M. Zhou, T. Higaki, G. Hu, M.Y. Sfeir, Y. Chen et al., Three-orders-of-magnitude variation of carrier lifetimes with crystal phase of gold nanoclusters. Science 364, 279–282 (2019). https://doi.org/10.1126/science.aaw8007
- D.-E. Jiang, W. Chen, R.L. Whetten, Z. Chen, What protects the core when the thiolated Au cluster is extremely small? J. Phys. Chem. C 113, 16983–16987 (2009). https://doi.org/10.1021/jp906823d
- F. Sun, L. Qin, Z. Tang, G. Deng, M.S. Bootharaju et al., -SR removal or -R removal? A mechanistic revisit on the puzzle of ligand etching of Au25(SR)18 nanoclusters during electrocatalysis. Chem. Sci. 14, 10532–10546 (2023). https://doi.org/10.1039/d3sc03018k
References
R. Jin, C. Zeng, M. Zhou, Y. Chen, Atomically precise colloidal metal nanoclusters and nanops: fundamentals and opportunities. Chem. Rev. 116, 10346–10413 (2016). https://doi.org/10.1021/acs.chemrev.5b00703
Y. Lv, T. Jiang, Q. Zhang, H. Yu, M. Zhu, Recent progress in atomically precise Ag/Cu-based hydride clusters. Polyoxometalates 3, 9140050 (2024). https://doi.org/10.26599/pom.2023.9140050
X.-M. Luo, Y.-K. Li, X.-Y. Dong, S.-Q. Zang, Platonic and Archimedean solids in discrete metal-containing clusters. Chem. Soc. Rev. 52, 383–444 (2023). https://doi.org/10.1039/d2cs00582d
R.W. Murray, Nanoelectrochemistry: metal nanops, nanoelectrodes, and nanopores. Chem. Rev. 108, 2688–2720 (2008). https://doi.org/10.1021/cr068077e
P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell, R.D. Kornberg, Structure of a thiol monolayer-protected gold nanop at 1.1 A resolution. Science 318, 430–433 (2007). https://doi.org/10.1126/science.1148624
L. Shang, J. Xu, G. Nienhaus, Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis. Nano Today 28, 100767 (2019). https://doi.org/10.1016/j.nantod.2019.100767
S. Qian, Z. Wang, Z. Zuo, X. Wang, Q. Wang et al., Engineering luminescent metal nanoclusters for sensing applications. Coord. Chem. Rev. 451, 214268 (2022). https://doi.org/10.1016/j.ccr.2021.214268
Y. Jin, C. Zhang, X.-Y. Dong, S.-Q. Zang, T.C.W. Mak, Shell engineering to achieve modification and assembly of atomically-precise silver clusters. Chem. Soc. Rev. 50, 2297–2319 (2021). https://doi.org/10.1039/d0cs01393e
Q. Yao, L. Liu, S. Malola, M. Ge, H. Xu et al., Supercrystal engineering of atomically precise gold nanops promoted by surface dynamics. Nat. Chem. 15, 230–239 (2023). https://doi.org/10.1038/s41557-022-01079-9
W. Jing, H. Shen, R. Qin, Q. Wu, K. Liu et al., Surface and interface coordination chemistry learned from model heterogeneous metal nanocatalysts: from atomically dispersed catalysts to atomically precise clusters. Chem. Rev. 123, 5948–6002 (2023). https://doi.org/10.1021/acs.chemrev.2c00569
M.S. Bootharaju, C.W. Lee, G. Deng, H. Kim, K. Lee et al., Atom-precise heteroatom core-tailoring of nanoclusters for enhanced solar hydrogen generation. Adv. Mater. 35, e2207765 (2023). https://doi.org/10.1002/adma.202207765
H. Shan, J. Shi, T. Chen, Y. Cao, Q. Yao et al., Modulating catalytic activity and stability of atomically precise gold nanoclusters as peroxidase mimics via ligand engineering. ACS Nano 17, 2368–2377 (2023). https://doi.org/10.1021/acsnano.2c09238
Y.-S.Chen, H. Choi, P.V. Kamat, Metal-cluster-sensitized solar cells. A new class of thiolated gold sensitizers delivering efficiency greater than 2%. J. Am. Chem. Soc. 135, 8822–8825 (2013). https://doi.org/10.1021/ja403807f
Y.-S. Chen, P.V. Kamat, Glutathione-capped gold nanoclusters as photosensitizers. Visible light-induced hydrogen generation in neutral water. J. Am. Chem. Soc. 136, 6075–6082 (2014). https://doi.org/10.1021/ja5017365
B. Du, X. Jiang, A. Das, Q. Zhou, M. Yu et al., Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 12, 1096–1102 (2017). https://doi.org/10.1038/nnano.2017.170
Y. Hua, J.-H. Huang, Z.-H. Shao, X.-M. Luo, Z.-Y. Wang et al., Composition-dependent enzyme mimicking activity and radiosensitizing effect of bimetallic clusters to modulate tumor hypoxia for enhanced cancer therapy. Adv. Mater. 34, 2203734 (2022). https://doi.org/10.1002/adma.202203734
T.-T. Jia, G. Yang, S.-J. Mo, Z.-Y. Wang, B.-J. Li et al., Atomically precise gold–levonorgestrel nanocluster as a radiosensitizer for enhanced cancer therapy. ACS Nano 13, 8320–8328 (2019). https://doi.org/10.1021/acsnano.9b03767
M. Walter, J. Akola, O. Lopez-Acevedo, P.D. Jadzinsky, G. Calero et al., A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl. Acad. Sci. U.S.A. 105, 9157–9162 (2008). https://doi.org/10.1073/pnas.0801001105
M.G. Taylor, G. Mpourmpakis, Thermodynamic stability of ligand-protected metal nanoclusters. Nat. Commun. 8, 15988 (2017). https://doi.org/10.1038/ncomms15988
S.-Y. Kang, Z.-A. Nan, Q.-M. Wang, Superatomic orbital splitting in coinage metal nanoclusters. J. Phys. Chem. Lett. 13, 291–295 (2022). https://doi.org/10.1021/acs.jpclett.1c03563
J.D. Schneider, B.A. Smith, G.A. Williams, D.R. Powell, F. Perez et al., Synthesis and characterization of Cu(II) and mixed-valence Cu(I)Cu(II) clusters supported by pyridylamide ligands. Inorg. Chem. 59, 5433–5446 (2020). https://doi.org/10.1021/acs.inorgchem.0c00008
L.L.-M. Zhang, W.-Y. Wong, Atomically precise copper nanoclusters as ultrasmall molecular aggregates: appealing compositions, structures, properties, and applications. Aggregate 4, e266 (2023). https://doi.org/10.1002/agt2.266
J. Sang, P. Wei, T. Liu, H. Lv, X. Ni et al., A reconstructed Cu2P2O7 catalyst for selective CO2 electroreduction to multicarbon products. Angew. Chem. Int. Ed. 61, e202114238 (2022). https://doi.org/10.1002/anie.202114238
C. Sun, K. Liu, J. Zhang, Q. Liu, X.J. Liu et al., In situ transmission electron microscopy and three-dimensional electron tomography for catalyst studies. Chin. J. Struct. Chem. 41, 2210056–2210076 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0187
H. Sun, L. Lin, W. Hua, X. Xie, Q. Mu et al., Atomically dispersed Co−Cu alloy reconstructed from metal-organic framework to promote electrochemical CO2 methanation. Nano Res. 16, 3680–3686 (2023). https://doi.org/10.1007/s12274-022-4728-1
X. Gong, Z.-H. Liu, Q. Xu, L. Wang, Q. Guo et al., Single-molecule manipulation of copper nanoclusters for modulating nonlinear optics. Polyoxometalates 4, 9140072 (2025). https://doi.org/10.26599/pom.2024.9140072
Q.-J. Wu, D.-H. Si, P.-P. Sun, Y.-L. Dong, S. Zheng et al., Atomically precise copper nanoclusters for highly efficient electroreduction of CO2 towards hydrocarbons via breaking the coordination symmetry of Cu site. Angew. Chem. Int. Ed. 62, e202306822 (2023). https://doi.org/10.1002/anie.202306822
S. Zhao, N. Austin, M. Li, Y. Song, S.D. House et al., Influence of atomic-level morphology on catalysis: the case of sphere and rod-like gold nanoclusters for CO2 electroreduction. ACS Catal. 8, 4996–5001 (2018). https://doi.org/10.1021/acscatal.8b00365
L. Qin, F. Sun, X. Ma, G. Ma, Y. Tang et al., Homoleptic alkynyl-protected Ag15 nanocluster with atomic precision: structural analysis and electrocatalytic performance toward CO2 reduction. Angew. Chem. Int. Ed. 60, 26136–26141 (2021). https://doi.org/10.1002/anie.202110330
X.-K. Wan, J.-Q. Wang, Q.-M. Wang, Ligand-protected au55 with a novel structure and remarkable CO2 electroreduction performance. Angew. Chem. Int. Ed. 60, 20748–20753 (2021). https://doi.org/10.1002/anie.202108207
S.-F. Yuan, R.-L. He, X.-S. Han, J.-Q. Wang, Z.-J. Guan et al., Robust gold nanocluster protected with amidinates for electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 60, 14345–14349 (2021). https://doi.org/10.1002/anie.202103060
L. Chen, F. Sun, Q. Shen, L. Qin, Y. Liu et al., Homoleptic alkynyl-protected Ag32 nanocluster with atomic precision: probing the ligand effect toward CO2 electroreduction and 4-nitrophenol reduction. Nano Res. 15, 8908–8913 (2022). https://doi.org/10.1007/s12274-022-4812-6
J. Wang, F. Xu, Z.-Y. Wang, S.-Q. Zang, T.C.W. Mak, Ligand-shell engineering of a Au28 nanocluster boosts electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 61, e202207492 (2022). https://doi.org/10.1002/anie.202207492
S. Li, A.V. Nagarajan, X. Du, Y. Li, Z. Liu et al., Dissecting critical factors for electrochemical CO2 reduction on atomically precise Au nanoclusters. Angew. Chem. Int. Ed. 61, e202211771 (2022). https://doi.org/10.1002/anie.202211771
T.-A D. Nguyen, Z.R. Jones, D.F. Leto, G. Wu, S.L. Scott et al., Ligand-exchange-induced growth of an atomically precise Cu29 nanocluster from a smaller cluster. Chem. Mater. 28, 8385–8390 (2016). https://doi.org/10.1021/acs.chemmater.6b03879
A.W. Cook, Z.R. Jones, G. Wu, S.L. Scott, T.W. Hayton, An organometallic Cu20 nanocluster: synthesis, characterization, immobilization on silica, and click chemistry. J. Am. Chem. Soc. 140, 394–400 (2018). https://doi.org/10.1021/jacs.7b10960
M. Qu, F.-Q. Zhang, D.-H. Wang, H. Li, J.-J. Hou et al., Observation of non-FCC copper in alkynyl-protected Cu53 nanoclusters. Angew. Chem. Int. Ed. 59, 6507–6512 (2020). https://doi.org/10.1002/anie.202001185
S. Li, X. Yan, J. Tang, D. Cao, X. Sun et al., Cu26 nanoclusters with quintuple ligand shells for CO2 electrocatalytic reduction. Chem. Mater. 35, 6123–6132 (2023). https://doi.org/10.1021/acs.chemmater.3c01247
S. Lee, M.S. Bootharaju, G. Deng, S. Malola, W. Baek et al., Cu32(PET)24H8Cl2](PPh4)2: a copper hydride nanocluster with a bisquare antiprismatic core. J. Am. Chem. Soc. 142, 13974–13981 (2020). https://doi.org/10.1021/jacs.0c06577
T.-A D. Nguyen, Z.R. Jones, B.R. Goldsmith, W.R. Buratto, G. Wu et al., A Cu25 nanocluster with partial Cu(0) character. J. Am. Chem. Soc. 137, 13319–13324 (2015). https://doi.org/10.1021/jacs.5b07574
N. Zhang, Y. Li, S. Han, Y. Wei, H. Hu et al., Cluster light-emitting diodes containing copper iodine cube with 100% exciton utilization using host-cluster synergy. Angew. Chem. Int. Ed. 62, e202305018 (2023). https://doi.org/10.1002/anie.202305018
A.K. Das, S. Biswas, V.S. Wani, A.S. Nair, B. Pathak et al., Cu18H3(S-adm)12(PPh3)4Cl2]: fusion of Platonic and Johnson solids through a Cu(0) center and its photophysical properties. Chem. Sci. 13, 7616–7625 (2022). https://doi.org/10.1039/d2sc02544b
T. Jia, Z.-J. Guan, C. Zhang, X.-Z. Zhu, Y.-X. Chen et al., Eight-electron superatomic Cu31 nanocluster with chiral kernel and NIR-II emission. J. Am. Chem. Soc. 145, 10355–10363 (2023). https://doi.org/10.1021/jacs.3c02215
X.-Z. Zhu, T. Jia, Z.-J. Guan, Q. Zhang, Y. Yang, Elongation of a trigonal-prismatic copper cluster by diphosphine ligands with longer spacers. Inorg. Chem. 61, 15144–15151 (2022). https://doi.org/10.1021/acs.inorgchem.2c02306
J. Sun, X. Tang, Z.-H. Liu, Z. Xie, B. Yan et al., Labile ligands protected Cu50 nanoclusters with tailorable optical limiting effect. ACS Mater. Lett. 6, 281–289 (2024). https://doi.org/10.1021/acsmaterialslett.3c01305
J. Sun, X. Tang, X. Yan, W. Jing, Z. Xie et al., Atomically precise Cu41 clusters as model catalysts: open metal sites matter. Next Mater. 3, 100091 (2024). https://doi.org/10.1016/j.nxmate.2023.100091
B.-L. Han, Z. Liu, L. Feng, Z. Wang, R.K. Gupta et al., Polymorphism in atomically precise Cu23 nanocluster incorporating tetrahedral[Cu4]0 kernel. J. Am. Chem. Soc. 142, 5834–5841 (2020). https://doi.org/10.1021/jacs.0c01053
P. Yuan, R. Chen, X. Zhang, F. Chen, J. Yan et al., Ether-soluble Cu53 nanoclusters as an effective precursor of high-quality CuI films for optoelectronic applications. Angew. Chem. Int. Ed. 58, 835–839 (2019). https://doi.org/10.1002/anie.201812236
C. Zhang, Z. Wang, W.-D. Si, L. Wang, J.-M. Dou et al., Solvent-induced isomeric Cu13 nanoclusters: chlorine to copper charge transfer boosting molecular oxygen activation in sulfide selective oxidation. ACS Nano 16, 9598–9607 (2022). https://doi.org/10.1021/acsnano.2c02885
L. Qin, G. Ma, L. Wang, Z. Tang, Atomically precise metal nanoclusters for (photo)electroreduction of CO2: recent advances, challenges and opportunities. J. Energy Chem. 57, 359–370 (2021). https://doi.org/10.1016/j.jechem.2020.09.003
Q. Tang, Y. Lee, D.-Y. Li, W. Choi, C.W. Liu et al., Lattice-hydride mechanism in electrocatalytic CO2 reduction by structurally precise copper-hydride nanoclusters. J. Am. Chem. Soc. 139, 9728–9736 (2017). https://doi.org/10.1021/jacs.7b05591
L.-J. Liu, Z.-Y. Wang, Z.-Y. Wang, R. Wang, S.-Q. Zang et al., Mediating CO2 electroreduction activity and selectivity over atomically precise copper clusters. Angew. Chem. Int. Ed. 61, e202205626 (2022). https://doi.org/10.1002/anie.202205626
J. Wang, J. Cai, K.-X. Ren, L. Liu, S.-J. Zheng et al., Stepwise structural evolution toward robust carboranealkynyl-protected copper nanocluster catalysts for nitrate electroreduction. Sci. Adv. 10, eadn7556 (2024). https://doi.org/10.1126/sciadv.adn7556
J.-P. Dong, Y. Xu, X.-G. Zhang, H. Zhang, L. Yao et al., Copper-sulfur-nitrogen cluster providing a local proton for efficient carbon dioxide photoreduction. Angew. Chem. Int. Ed. 62, e202313648 (2023). https://doi.org/10.1002/anie.202313648
A. Sagadevan, A. Ghosh, P. Maity, O.F. Mohammed, O.M. Bakr et al., Visible-light copper nanocluster catalysis for the C-N coupling of aryl chlorides at room temperature. J. Am. Chem. Soc. 144, 12052–12061 (2022). https://doi.org/10.1021/jacs.2c02218
G.-G. Luo, Z.-H. Pan, B.-L. Han, G.-L. Dong, C.-L. Deng et al., Total structure, electronic structure and catalytic hydrogenation activity of metal-deficient chiral polyhydride Cu57 nanoclusters. Angew. Chem. Int. Ed. 62, e202306849 (2023). https://doi.org/10.1002/anie.202306849
C. Dong, R.-W. Huang, A. Sagadevan, P. Yuan, L. Gutiérrez-Arzaluz et al., Isostructural nanocluster manipulation reveals pivotal role of one surface atom in click chemistry. Angew. Chem. Int. Ed. 62, e202307140 (2023). https://doi.org/10.1002/anie.202307140
S. Nematulloev, A. Sagadevan, B. Alamer, A. Shkurenko, R. Huang et al., Atomically precise defective copper nanocluster catalysts for highly selective C-C cross-coupling reactions. Angew. Chem. Int. Ed. 62, e202303572 (2023). https://doi.org/10.1002/anie.202303572
S. Biswas, A. Pal, M.K. Jena, S. Hossain, S. Jin et al., Luminescent hydride-free[Cu7(SC5H9)7(PPh3)3]nanocluster: facilitating highly selective C-C bond formation. J. Am. Chem. Soc. 146, 20937–20944 (2024). https://doi.org/10.1021/jacs.4c05678
T. Jia, Y.-X. Li, X.-H. Ma, M.-M. Zhang, X.-Y. Dong et al., Atomically precise ultrasmall copper cluster for room-temperature highly regioselective dehydrogenative coupling. Nat. Commun. 14, 6877 (2023). https://doi.org/10.1038/s41467-023-42688-3
X. Xu, Y. Liu, F. Sun, Y. Jia, Q. Xu et al., Array-based clusters of copper with largely exposed metal sites for promoting catalysis. Chem. Mater. 35, 7588–7596 (2023). https://doi.org/10.1021/acs.chemmater.3c01277
Y.-M. Wang, X.-C. Lin, K.-M. Mo, M. Xie, Y.-L. Huang et al., An atomically precise pyrazolate-protected copper nanocluster exhibiting exceptional stability and catalytic activity. Angew. Chem. Int. Ed. 62, e202218369 (2023). https://doi.org/10.1002/anie.202218369
G. Dong, Z. Pan, B. Han, Y. Tao, X. Chen et al., Multi-layer 3D chirality and double-helical assembly in a copper nanocluster with a triple-helical Cu15 core. Angew. Chem. Int. Ed. 62, e202302595 (2023). https://doi.org/10.1002/anie.202302595
X. Sun, Y. Wang, Q. Wu, Y.-Z. Han, X. Gong et al., Cu66 nanoclusters from hierarchical square motifs: synthesis, assembly, and catalysis. Aggregate, e651 (2024). https://doi.org/10.1002/agt2.651
C.-Y. Liu, T.-Y. Liu, Z.-J. Guan, S. Wang, Y.-Y. Dong et al., Dramatic difference between Cu20H8 and Cu20H9 Clusters in catalysis. CCS Chem. 6, 1581–1590 (2024). https://doi.org/10.31635/ccschem.023.202303448
B. Yan, X. You, X. Tang, J. Sun, Q. Xu et al., Carboxylate-protected “isostructural” Cu20 nanoclusters as a model system: carboxylate effect on controlling catalysis. Chem. Mater. 36, 1004–1012 (2024). https://doi.org/10.1021/acs.chemmater.3c03131
Y. Li, R. Jin, Seeing ligands on nanoclusters and in their assemblies by X-ray crystallography: atomically precise nanochemistry and beyond. J. Am. Chem. Soc. 142, 13627–13644 (2020). https://doi.org/10.1021/jacs.0c05866
B. Zhang, J. Chen, Y. Cao, O.J.H. Chai, J. Xie, Ligand design in ligand-protected gold nanoclusters. Small 17, e2004381 (2021). https://doi.org/10.1002/smll.202004381
Z.-J. Guan, R.-L. He, S.-F. Yuan, J.-J. Li, F. Hu et al., Ligand engineering toward the trade-off between stability and activity in cluster catalysis. Angew. Chem. Int. Ed. 61, e202116965 (2022). https://doi.org/10.1002/anie.202116965
W. Fei, Y. Tao, Y. Qiao, S.-Y. Tang, M.-B. Li, Structural modification and performance regulation of atomically precise metal nanoclusters by phosphine. Polyoxometalates 2, 9140043 (2023). https://doi.org/10.26599/pom.2023.9140043
S.-F. Yuan, W.-D. Liu, C.-Y. Liu, Z.-J. Guan, Q.-M. Wang, Nitrogen donor protection for atomically precise metal nanoclusters. Chemistry 28, e202104445 (2022). https://doi.org/10.1002/chem.202104445
Z. Lei, X.-K. Wan, S.-F. Yuan, Z.-J. Guan, Q.-M. Wang, Alkynyl approach toward the protection of metal nanoclusters. Acc. Chem. Res. 51, 2465–2474 (2018). https://doi.org/10.1021/acs.accounts.8b00359
L. Chen, L. Wang, Q. Shen, Y. Liu, Z. Tang, All-alkynyl-protected coinage metal nanoclusters: from synthesis to electrocatalytic CO2 reduction applications. Mater. Chem. Front. 7, 1482–1495 (2023). https://doi.org/10.1039/d2qm01282k
R.W. Huang, J. Yin, C. Dong, A. Ghosh, M.J. Alhilaly et al., Cu81(PhS)46(tBuNH2)10(H)32]3+ reveals the coexistence of large planar cores and hemispherical shells in high-nuclearity copper nanoclusters. J. Am. Chem. Soc. 142, 8696–8705 (2020). https://doi.org/10.1021/jacs.0c00541
P.-P. Sun, B.-L. Han, H.-G. Li, C.-K. Zhang, X. Xin et al., Real-time fluorescent monitoring of kinetically controlled supramolecular self-assembly of atom-precise Cu8 nanocluster. Angew. Chem. Int. Ed. 61, e202200180 (2022). https://doi.org/10.1002/anie.202200180
Q.-Q. Huang, M.-Y. Hu, Y.-L. Li, N.-N. Chen, Y. Li et al., Novel ultrabright luminescent copper nanoclusters and application in light-emitting devices. Chem. Commun. 57, 9890–9893 (2021). https://doi.org/10.1039/d1cc03799d
M.K. Osei, S. Mirzaei, X. Bogetti, E. Castro, M.A. Rahman et al., Synthesis of square planar Cu4 clusters. Angew. Chem. Int. Ed. 61, e202209529 (2022). https://doi.org/10.1002/anie.202209529
C.-Y. Liu, S.-F. Yuan, S. Wang, Z.-J. Guan, D.-E. Jiang et al., Structural transformation and catalytic hydrogenation activity of amidinate-protected copper hydride clusters. Nat. Commun. 13, 2082 (2022). https://doi.org/10.1038/s41467-022-29819-y
H.-Y. Zhuo, H.-F. Su, Z.-Z. Cao, W. Liu, S.-A. Wang et al., High-nuclear organometallic copper(I)-alkynide clusters: thermochromic near-infrared luminescence and solution stability. Chemistry 22, 17619–17626 (2016). https://doi.org/10.1002/chem.201603797
M.-M. Zhang, X.-Y. Dong, Z.-Y. Wang, H.-Y. Li, S.-J. Li et al., AIE triggers the circularly polarized luminescence of atomically precise enantiomeric copper(I) alkynyl clusters. Angew. Chem. Int. Ed. 59, 10052–10058 (2020). https://doi.org/10.1002/anie.201908909
M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, Synthesis of thiol-derivatised gold nanops in a two-phase Liquid–Liquid system. J. Chem. Soc., Chem. Commun., 801–802 (1994). https://doi.org/10.1039/c39940000801
M. Brust, J. Fink, D. Bethell, D.J. Schiffrin, C. Kiely, Synthesis and reactions of functionalised gold nanops. J. Chem. Soc., Chem. Commun., 1655 (1995). https://doi.org/10.1039/c39950001655
R. Jin, H. Qian, Z. Wu, Y. Zhu, M. Zhu et al., Size focusing: a methodology for synthesizing atomically precise gold nanoclusters. J. Phys. Chem. Lett. 1, 2903–2910 (2010). https://doi.org/10.1021/jz100944k
Q. Yao, T. Chen, X. Yuan, J. Xie, Toward total synthesis of thiolate-protected metal nanoclusters. Acc. Chem. Res. 51, 1338–1348 (2018). https://doi.org/10.1021/acs.accounts.8b00065
X. Yuan, L.L. Chng, J. Yang, J.Y. Ying, Miscible-solvent-assisted two-phase synthesis of monolayer-ligand-protected metal nanoclusters with various sizes. Adv. Mater. 32, e1906063 (2020). https://doi.org/10.1002/adma.201906063
Z. Wang, X. Pan, S. Qian, G. Yang, F. Du et al., The beauty of binary phases: a facile strategy for synthesis, processing, functionalization, and application of ultrasmall metal nanoclusters. Coord. Chem. Rev. 438, 213900 (2021). https://doi.org/10.1016/j.ccr.2021.213900
Y. Li, M. Zhou, R. Jin, Programmable metal nanoclusters with atomic precision. Adv. Mater. 33, e2006591 (2021). https://doi.org/10.1002/adma.202006591
X. Ma, G. Ma, L. Qin, G. Chen, S. Chen et al., A synchronous nucleation and passivation strategy for controllable synthesis of Au36(PA)24: unveiling the formation process and the role of Au22(PA)18 intermediate. Sci. China Chem. 63, 1777–1784 (2020). https://doi.org/10.1007/s11426-020-9819-4
X. Ma, Z. Tang, L. Qin, J. Peng, L. Li et al., Unravelling the formation mechanism of alkynyl protected gold clusters: a case study of phenylacetylene stabilized Au144 molecules. Nanoscale 12, 2980–2986 (2020). https://doi.org/10.1039/c9nr10930g
X. Ma, F. Sun, L. Qin, Y. Liu, X. Kang et al., Electrochemical CO2 reduction catalyzed by atomically precise alkynyl-protected Au7Ag8, Ag9Cu6, and Au2Ag8Cu5 nanoclusters: probing the effect of multi-metal core on selectivity. Chem. Sci. 13, 10149–10158 (2022). https://doi.org/10.1039/d2sc02886g
Y. Tang, F. Sun, X. Ma, L. Qin, G. Ma et al., Alkynyl and halogen co-protected (AuAg)44 nanoclusters: a comparative study on their optical absorbance, structure, and hydrogen evolution performance. Dalton Trans. 51, 7845–7850 (2022). https://doi.org/10.1039/d2dt00634k
G. Ma, Y. Tang, L. Chen, L. Qin, Q. Shen et al., A homoleptic alkynyl-protected Au(I)9-Ag(I)9 cluster: structure analysis, optical properties, and catalytic implications. Eur. J. Inorg. Chem. 2022, e202200176 (2022). https://doi.org/10.1002/ejic.202200176
L. Qin, F. Sun, Z. Gong, G. Ma, Y. Chen et al., Electrochemical NO3- reduction catalyzed by atomically precise Ag30Pd4 bimetallic nanocluster: synergistic catalysis or tandem catalysis? ACS Nano 17, 12747–12758 (2023). https://doi.org/10.1021/acsnano.3c03692
L. Chen, F. Sun, Q. Shen, L. Wang, Y. Liu et al., Structure, optical properties, and catalytic applications of alkynyl-protected M4Rh2 (M = Ag/Au) nanoclusters with atomic precision: a comparative study. Dalton Trans. 52, 9441–9447 (2023). https://doi.org/10.1039/d3dt01326j
L. Wang, L. Chen, L. Qin, Y. Liu, Z. Tang, Alkynyl-protected Ag20 Rh2 nanocluster with atomic precision: structure analysis and tri-functionality catalytic application. Chem. Asian J. 18, e202300685 (2023). https://doi.org/10.1002/asia.202300685
X. Ma, Y. Tang, G. Ma, L. Qin, Z. Tang, Controllable synthesis and formation mechanism study of homoleptic alkynyl-protected Au nanoclusters: recent advances, grand challenges, and great opportunities. Nanoscale 13, 602–614 (2021). https://doi.org/10.1039/d0nr07499c
X. Yuan, B. Zhang, Z. Luo, Q. Yao, D.T. Leong et al., Balancing the rate of cluster growth and etching for gram-scale synthesis of thiolate-protected Au25 nanoclusters with atomic precision. Angew. Chem. Int. Ed. 53, 4623–4627 (2014). https://doi.org/10.1002/anie.201311177
Z. Wu, J. Suhan, R. Jin, One-pot synthesis of atomically monodisperse, thiol-functionalized Au25nanoclusters. J. Mater. Chem. 19, 622–626 (2009). https://doi.org/10.1039/b815983a
A.C. Dharmaratne, T. Krick, A. Dass, Nanocluster size evolution studied by mass spectrometry in room temperature Au25(SR)18 synthesis. J. Am. Chem. Soc. 131, 13604–13605 (2009). https://doi.org/10.1021/ja906087a
S. Ito, S. Takano, T. Tsukuda, Alkynyl-protected Au22(C≡CR)18 clusters featuring new interfacial motifs and R-dependent photoluminescence. J. Phys. Chem. Lett. 10, 6892–6896 (2019). https://doi.org/10.1021/acs.jpclett.9b02920
Z.-J. Guan, F. Hu, J.-J. Li, Z.-R. Wen, Y.-M. Lin et al., Isomerization in alkynyl-protected gold nanoclusters. J. Am. Chem. Soc. 142, 2995–3001 (2020). https://doi.org/10.1021/jacs.9b11836
Y.-J. Zhong, J.-H. Liao, T.-H. Chiu, S. Kahlal, C.-J. Lin et al., A two-electron silver superatom isolated from thermally induced internal redox reaction of A silver(I) hydride. Angew. Chem. Int. Ed. 60, 12712–12716 (2021). https://doi.org/10.1002/anie.202100965
K.K. Chakrahari, J.H. Liao, S. Kahlal, Y.C. Liu, M.H. Chiang et al., Cu13{S2 CNn Bu2}6 (acetylide)4]+: a two-electron superatom. Angew. Chem. Int. Ed. 55, 14704–14708 (2016). https://doi.org/10.1002/anie.201608609
F. Sun, Q. Tang, D-e. Jiang Theoretical advances in understanding and designing the active sites for hydrogen evolution reaction. ACS Catal. 12, 8404–8433 (2022). https://doi.org/10.1021/acscatal.2c02081
Y. Wang, X. Zheng, D. Wang, Design concept for electrocatalysts. Nano Res. 15, 1730–1752 (2022). https://doi.org/10.1007/s12274-021-3794-0
X.L. Tian, J.Y. Li, L.X. Zhang, Y. Chen, Structural chemistry in energy relevant-catalysis reaction. Chin. J. Struct. Chem. 41, 2207001–2207001 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0160
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017). https://doi.org/10.1126/science.aad4998
O.S. Bushuyev, P. De Luna, C.T. Dinh, L. Tao, G. Saur et al., What should we make with CO2 and how can we make it? Joule 2, 825–832 (2018). https://doi.org/10.1016/j.joule.2017.09.003
M. Lu, M. Zhang, J. Liu, Y. Chen, J.-P. Liao et al., Covalent organic framework based functional materials: important catalysts for efficient CO2 utilization. Angew. Chem. Int. Ed. 61, e202200003 (2022). https://doi.org/10.1002/anie.202200003
Y. Quan, J. Zhu, G. Zheng, Electrocatalytic reactions for converting CO2 to value-added products. Small Sci. 1, 2100043 (2021). https://doi.org/10.1002/smsc.202100043
Y. Li, T.-B. Lu, Coupling electrochemical CO2 reduction with value-added anodic oxidation reactions: progress and challenges. Mater. Chem. Front. 8, 341–353 (2024). https://doi.org/10.1039/d3qm00625e
G. Ma, L. Qin, Y. Liu, H. Fan, L. Qiao et al., A review of CO2 reduction reaction catalyzed by atomical-level Ag nanomaterials: atom-precise nanoclusters and atomically dispersed catalysts. Surf. Interfaces 36, 102555 (2023). https://doi.org/10.1016/j.surfin.2022.102555
G. Wang, J. Chen, Y. Ding, P. Cai, L. Yi et al., Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem. Soc. Rev. 50, 4993–5061 (2021). https://doi.org/10.1039/d0cs00071j
H. Liu, Y. Zhu, J. Ma, Z. Zhang, W. Hu, Atomically thin catalysts: recent advances in atomic-level engineering of nanostructured catalysts for electrochemical CO2 reduction. Adv. Funct. Mater. 30, 2070107 (2020). https://doi.org/10.1002/adfm.202070107
B. Pan, Y. Wang, Y. Li, Understanding and leveraging the effect of cations in the electrical double layer for electrochemical CO2 reduction. Chem Catal. 2, 1267–1276 (2022). https://doi.org/10.1016/j.checat.2022.03.012
L. Zhou, R. Lv, Rational catalyst design and interface engineering for electrochemical CO2 reduction to high-valued alcohols. J. Energy Chem. 70, 310–331 (2022). https://doi.org/10.1016/j.jechem.2022.02.033
S. Ji, Y. Chen, X. Wang, Z. Zhang, D. Wang et al., Chemical synthesis of single atomic site catalysts. Chem. Rev. 120, 11900–11955 (2020). https://doi.org/10.1021/acs.chemrev.9b00818
J. Duan, T. Liu, Y. Zhao, R. Yang, Y. Zhao et al., Active and conductive layer stacked superlattices for highly selective CO2 electroreduction. Nat. Commun. 13, 2039 (2022). https://doi.org/10.1038/s41467-022-29699-2
Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec et al., Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 141, 7646–7659 (2019). https://doi.org/10.1021/jacs.9b02124
J. Wang, H.-Y. Tan, Y. Zhu, H. Chu, H.M. Chen, Linking the dynamic chemical state of catalysts with the product profile of electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 60, 17254–17267 (2021). https://doi.org/10.1002/anie.202017181
S. Liu, B. Zhang, L. Zhang, J. Sun, Rational design strategies of Cu-based electrocatalysts for CO2 electroreduction to C2 products. J. Energy Chem. 71, 63–82 (2022). https://doi.org/10.1016/j.jechem.2022.03.041
Y. Fang, L. Han, S. Che, Electrocatalytic reduction of CO2 on chiral Cu surfaces. Chin. J. Struct. Chem. 42, 100107 (2023). https://doi.org/10.1016/j.cjsc.2023.100107
S. Nitopi, E. Bertheussen, S.B. Scott, X. Liu, A.K. Engstfeld et al., Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019). https://doi.org/10.1021/acs.chemrev.8b00705
T.K. Todorova, M.W. Schreiber, M. Fontecave, Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts. ACS Catal. 10, 1754–1768 (2020). https://doi.org/10.1021/acscatal.9b04746
D. Karapinar, C.E. Creissen, J.G. Rivera de la Cruz, M.W. Schreiber, M. Fontecave, Electrochemical CO2 reduction to ethanol with copper-based catalysts. ACS Energy Lett. 6, 694–706 (2021). https://doi.org/10.1021/acsenergylett.0c02610
A. Ma, J. Wang, Y. Wang, Y. Zuo, Y. Ren et al., Atomically precise M15 (M = Au/Ag/Cu) alloy nanoclusters: structural analysis, optical and electrocatalytic CO2 reduction properties. Polyoxometalates 3, 9140054 (2024). https://doi.org/10.26599/pom.2024.9140054
Y.-F. Lu, L.-Z. Dong, J. Liu, R.-X. Yang, J.-J. Liu et al., Predesign of catalytically active sites via stable coordination cluster model system for electroreduction of CO2 to ethylene. Angew. Chem. Int. Ed. 60, 26210–26217 (2021). https://doi.org/10.1002/anie.202111265
C.P. Wan, J.D. Yi, R. Cao, Y.B. Huang Conductive metal/covalent organic frameworks for CO2 electroreduction. Chin. J. Struct. Chem. 41, 2205001–2205014 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0075
K. Yao, J. Li, H. Wang, R. Lu, X. Yang et al., Mechanistic insights into OC-COH coupling in CO2 electroreduction on fragmented copper. J. Am. Chem. Soc. 144, 14005–14011 (2022). https://doi.org/10.1021/jacs.2c01044
Y.-L. Yang, Y.-R. Wang, L.-Z. Dong, Q. Li, L. Zhang et al., A honeycomb-like porous crystalline hetero-electrocatalyst for efficient electrocatalytic CO2 reduction. Adv. Mater. 34, 2206706 (2022). https://doi.org/10.1002/adma.202206706
Y.-M. Wang, J. Cai, Q.-Y. Wang, Y. Li, Z. Han et al., Electropolymerization of metal clusters establishing a versatile platform for enhanced catalysis performance. Angew. Chem. Int. Ed. 61, e202114538 (2022). https://doi.org/10.1002/anie.202114538
G. Ma, F. Sun, L. Qiao, Q. Shen, L. Wang et al., Atomically precise alkynyl-protected Ag20Cu12 nanocluster: structure analysis and electrocatalytic performance toward nitrate reduction for NH3 synthesis. Nano Res. 16, 10867–10872 (2023). https://doi.org/10.1007/s12274-023-5885-6
S. Wu, N. Salmon, M.M.-J. Li, R. Bañares-Alcántara, S.C.E. Tsang, Energy decarbonization via green H2 or NH3? ACS Energy Lett. 7, 1021–1033 (2022). https://doi.org/10.1021/acsenergylett.1c02816
A. Valera-Medina, F. Amer-Hatem, A.K. Azad, I.C. Dedoussi, M. de Joannon et al., Review on ammonia as a potential fuel: from synthesis to economics. Energy Fuels 35, 6964–7029 (2021). https://doi.org/10.1021/acs.energyfuels.0c03685
C. Lv, J. Liu, C. Lee, Q. Zhu, J. Xu et al., Emerging p-block-element-based electrocatalysts for sustainable nitrogen conversion. ACS Nano 16, 15512–15527 (2022). https://doi.org/10.1021/acsnano.2c07260
X. Zhang, Y. Wang, C. Liu, Y. Yu, S. Lu et al., Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 403, 126269 (2021). https://doi.org/10.1016/j.cej.2020.126269
L. Gu, H. Luo, Y. Zhang, Y. Cong, M. Kuang et al., Engineering interfacial architectures toward nitrate electrocatalysis and nitrogen neutral cycle. Mater. Chem. Front. 8, 1015–1035 (2024). https://doi.org/10.1039/d3qm01038d
S. Zhang, Y. Zha, Y. Ye, K. Li, Y. Lin et al., Oxygen-coordinated single Mn sites for efficient electrocatalytic nitrate reduction to ammonia. Nano-Micro Lett. 16, 9 (2023). https://doi.org/10.1007/s40820-023-01217-z
G. Luo, M. Song, Q. Zhang, L. An, T. Shen et al., Advances of synergistic electrocatalysis between single atoms and nanops/clusters. Nano-Micro Lett. 16, 241 (2024). https://doi.org/10.1007/s40820-024-01463-9
T. Wang, H.-J. Wang, J.-S. Lin, J.-L. Yang, F.-L. Zhang et al., Plasmonic photocatalysis: Mechanism, applications and perspectives. Chin. J. Struct. Chem. 42, 100066 (2023). https://doi.org/10.1016/j.cjsc.2023.100066
K. Sun, Y. Qian, H.-L. Jiang, Metal-organic frameworks for photocatalytic water splitting and CO2 reduction. Angew. Chem. Int. Ed. 62, e202217565 (2023). https://doi.org/10.1002/anie.202217565
J. Chen, L. Lin, P. Lin, L. Xiao, L. Zhang et al., A direct Z-scheme Bi2WO6/La2Ti2O7 photocatalyst for selective reduction of CO2 to CO. Chin. J. Struct. Chem. 42, 100010 (2023). https://doi.org/10.1016/j.cjsc.2022.100010
C. Li, J. Wang, L. Tong, Y. Wang, P. Zhang et al., Recent progress and challenges of photocatalytic CO2 conversion into value-added multi-carbon products. Coord. Chem. Rev. 502, 215623 (2024). https://doi.org/10.1016/j.ccr.2023.215623
M. Sayed, J. Yu, G. Liu, M. Jaroniec, Non-noble plasmonic metal-based photocatalysts. Chem. Rev. 122, 10484–10537 (2022). https://doi.org/10.1021/acs.chemrev.1c00473
L. Zhang, J. Zhang, H. Yu, J. Yu, Emerging S-scheme photocatalyst. Adv. Mater. 34, e2107668 (2022). https://doi.org/10.1002/adma.202107668
C. Ban, Y. Duan, Y. Wang, J. Ma, K. Wang et al., Isotype heterojunction-boosted CO2 photoreduction to CO. Nano-Micro Lett. 14, 74 (2022). https://doi.org/10.1007/s40820-022-00821-9
M. Gao, F. Tian, X. Zhang, Z. Chen, W. Yang et al., Improved plasmonic hot-electron capture in Au nanop/polymeric carbon nitride by Pt single atoms for broad-spectrum photocatalytic H2 evolution. Nano-Micro Lett. 15, 129 (2023). https://doi.org/10.1007/s40820-023-01098-2
M. Lu, M. Zhang, J. Liu, T.-Y. Yu, J.-N. Chang et al., Confining and highly dispersing single polyoxometalate clusters in covalent organic frameworks by covalent linkages for CO2 photoreduction. J. Am. Chem. Soc. 144, 1861–1871 (2022). https://doi.org/10.1021/jacs.1c11987
S. Tao, S. Wan, Q. Huang, C. Li, J. Yu et al., Molecular engineering of g-C3N4 with dibenzothiophene groups as electron donor for enhanced photocatalytic H2-production. Chin. J. Struct. Chem. 41, 48–54 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0068
J.G. Yu, X. Li,, Z.L. Jin,, H.Tang,, E.Z. Liu, Preface to solar photocatalysis. Chin. J. Struct. Chem. 41, 2206001–2206002 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0158
R. Jin, G. Li, S. Sharma, Y. Li, X. Du, Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem. Rev. 121, 567–648 (2021). https://doi.org/10.1021/acs.chemrev.0c00495
Y. Du, H. Sheng, D. Astruc, M. Zhu, Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chem. Rev. 120, 526–622 (2020). https://doi.org/10.1021/acs.chemrev.8b00726
S. Wang, L. Tang, B. Cai, Z. Yin, Y. Li et al., Ligand modification of Au25 nanoclusters for near-infrared photocatalytic oxidative functionalization. J. Am. Chem. Soc. 144, 3787–3792 (2022). https://doi.org/10.1021/jacs.2c01570
Y. Liu, Y. Wang, N. Pinna, Atomically precise metal nanoclusters for photocatalytic water splitting. ACS Mater. Lett. 6, 2995–3006 (2024). https://doi.org/10.1021/acsmaterialslett.4c00622
K.P.S. Cheung, S. Sarkar, V. Gevorgyan, Visible light-induced transition metal catalysis. Chem. Rev. 122, 1543–1625 (2022). https://doi.org/10.1021/acs.chemrev.1c00403
O. Reiser Shining light on copper: unique opportunities for visible-light-catalyzed atom transfer radical addition reactions and related processes. Acc. Chem. Res. 49, 1990–1996 (2016). https://doi.org/10.1021/acs.accounts.6b00296
A. Hossain, A. Bhattacharyya, O. Reiser, Copper’s rapid ascent in visible-light photoredox catalysis. Science 364, eaav9713 (2019). https://doi.org/10.1126/science.aav9713
Y. Yun, L. Li, M. Zhou, M. Li, N. Sun et al., Atomically precise coreless AuCu bimetallic nanoclusters for Ullmann C-O coupling. Nano Res. 16, 10756–10762 (2023). https://doi.org/10.1007/s12274-023-5755-2
Z.-J. Guan, J.-J. Li, F. Hu, Q.-M. Wang, Structural engineering toward gold nanocluster catalysis. Angew. Chem. Int. Ed. 61, e202209725 (2022). https://doi.org/10.1002/anie.202209725
S. Zhao, R. Jin, R. Jin, Opportunities and challenges in CO2 reduction by gold- and silver-based electrocatalysts: from bulk metals to nanops and atomically precise nanoclusters. ACS Energy Lett. 3, 452–462 (2018). https://doi.org/10.1021/acsenergylett.7b01104
Z. Wu, D.-E. Jiang, A.K.P. Mann, D.R. Mullins, Z.-A. Qiao et al., Thiolate ligands as a double-edged sword for CO oxidation on CeO2 supported Au25(SCH2CH2Ph)18 nanoclusters. J. Am. Chem. Soc. 136, 6111–6122 (2014). https://doi.org/10.1021/ja5018706
Z. Lei, Q.-M. Wang, Homo and heterometallic gold(I) clusters with hypercoordinated carbon. Coord. Chem. Rev. 378, 382–394 (2019). https://doi.org/10.1016/j.ccr.2017.11.001
A. Ghosh, O.F. Mohammed, O.M. Bakr, Atomic-level doping of metal clusters. Acc. Chem. Res. 51, 3094–3103 (2018). https://doi.org/10.1021/acs.accounts.8b00412
R. Chinchilla, C. Nájera, Recent advances in sonogashira reactions. Chem. Soc. Rev. 40, 5084–5121 (2011). https://doi.org/10.1039/c1cs15071e
B.V. Rokade, J. Barker, P.J. Guiry, Development of and recent advances in asymmetric A3 coupling. Chem. Soc. Rev. 48, 4766–4790 (2019). https://doi.org/10.1039/c9cs00253g
C. Zhang, C. Tang, N. Jiao, Recent advances in copper-catalyzed dehydrogenative functionalization via a single electron transfer (SET) process. Chem. Soc. Rev. 41, 3464–3484 (2012). https://doi.org/10.1039/c2cs15323h
R.G. Pearson, Hard and soft acids and bases, HSAB, part 1: fundamental principles. J. Chem. Educ. 45(9), 581 (1968). https://doi.org/10.1021/ed045p581
T. He, Z. Huang, S. Yuan, X.-L. Lv, X.-J. Kong et al., Kinetically controlled reticular assembly of a chemically stable mesoporous Ni(II)-pyrazolate metal–organic framework. J. Am. Chem. Soc. 142, 13491–13499 (2020). https://doi.org/10.1021/jacs.0c05074
P. Hervés, M. Pérez-Lorenzo, L.M. Liz-Marzán, J. Dzubiella, Y. Lu et al., Catalysis by metallic nanops in aqueous solution: model reactions. Chem. Soc. Rev. 41, 5577–5587 (2012). https://doi.org/10.1039/c2cs35029g
X. Kong, J. Liu, Influence of alumina binder content on catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone. Plos one 9, e101744 (2014). https://doi.org/10.1371/journal.pone.0101744
Y. Kobayashi, S. Tada, M. Kondo, K. Fujiwara, H. Mizoguchi, Intermetallic YIr2 nanops with negatively charged Ir active sites for catalytic hydrogenation of cyclohexanone to cyclohexanol. Catal. Sci. Technol. 12, 3088–3093 (2022). https://doi.org/10.1039/d2cy00198e
C. Sun, N. Mammen, S. Kaappa, P. Yuan, G. Deng et al., Atomically precise, thiolated copper-hydride nanoclusters as single-site hydrogenation catalysts for ketones in mild conditions. ACS Nano 13, 5975–5986 (2019). https://doi.org/10.1021/acsnano.9b02052
Y. Li, Z. Tang, P.N. Prasad, M.R. Knecht, M.T. Swihart, Peptide-mediated synthesis of gold nanops: effects of peptide sequence and nature of binding on physicochemical properties. Nanoscale 6, 3165–3172 (2014). https://doi.org/10.1039/c3nr06201e
G. Liao, Y. Gong, L. Zhong, J. Fang, L. Zhang et al., Unlocking the door to highly efficient Ag-based nanops catalysts for NaBH4-assisted nitrophenol reduction. Nano Res. 12, 2407–2436 (2019). https://doi.org/10.1007/s12274-019-2441-5
S.-F. Yuan, Z.-J. Guan, Q.-M. Wang, Identification of the active species in bimetallic cluster catalyzed hydrogenation. J. Am. Chem. Soc. 144, 11405–11412 (2022). https://doi.org/10.1021/jacs.2c04156
X. Chen, Z. Cai, X. Chen, M. Oyama, AuPd bimetallic nanops decorated on graphene nanosheets: their green synthesis, growth mechanism and high catalytic ability in 4-nitrophenol reduction. J. Mater. Chem. A 2, 5668–5674 (2014). https://doi.org/10.1039/c3ta15141g
F. Hu, J.-J. Li, Z.-J. Guan, S.-F. Yuan, Q.-M. Wang, Formation of an alkynyl-protected Ag112 silver nanocluster as promoted by chloride released in situ from CH2Cl2. Angew. Chem. Int. Ed. 59, 5312–5315 (2020). https://doi.org/10.1002/anie.201915168
Q. Zhu, F. Zhang, Y. Huang, H. Xiao, L. Zhao et al., An all-round AI-Chemist with a scientific mind. Natl. Sci. Rev. 9, nwac190 (2022). https://doi.org/10.1093/nsr/nwac190
D. Lockey, C. Mathis, H.N. Miras, L. Cronin, Investigating the autocatalytically driven formation of Keggin-based polyoxometalate clusters. Matter 5, 302–313 (2022). https://doi.org/10.1016/j.matt.2021.11.030
X. Li, S. Takano, T. Tsukuda, Ligand effects on the hydrogen evolution reaction catalyzed by Au13 and Pt@Au12: alkynyl vs thiolate. J. Phys. Chem. C 125, 23226–23230 (2021). https://doi.org/10.1021/acs.jpcc.1c08197
J.-I. Nishigaki, R. Tsunoyama, H. Tsunoyama, N. Ichikuni, S. Yamazoe et al., A new binding motif of sterically demanding thiolates on a gold cluster. J. Am. Chem. Soc. 134, 14295–14297 (2012). https://doi.org/10.1021/ja305477a
Z. Liu, H. Tan, B. Li, Z. Hu, D.-E. Jiang et al., Ligand effect on switching the rate-determining step of water oxidation in atomically precise metal nanoclusters. Nat. Commun. 14, 3374 (2023). https://doi.org/10.1038/s41467-023-38914-7
S. Yoo, S. Yoo, G. Deng, F. Sun, K. Lee et al., Nanocluster surface microenvironment modulates electrocatalytic CO2 reduction. Adv. Mater. 36, e2313032 (2024). https://doi.org/10.1002/adma.202313032
W.-Q. Shi, L. Zeng, R.-L. He, X.-S. Han, Z.-J. Guan et al., Near-unity NIR phosphorescent quantum yield from a room-temperature solvated metal nanocluster. Science 383, 326–330 (2024). https://doi.org/10.1126/science.adk6628
S. Hossain, Y. Niihori, L.V. Nair, B. Kumar, W. Kurashige et al., Alloy clusters: precise synthesis and mixing effects. Acc. Chem. Res. 51, 3114–3124 (2018). https://doi.org/10.1021/acs.accounts.8b00453
K. Kwak, W. Choi, Q. Tang, M. Kim, Y. Lee et al., A molecule-like PtAu24(SC6H13)18 nanocluster as an electrocatalyst for hydrogen production. Nat. Commun. 8, 14723 (2017). https://doi.org/10.1038/ncomms14723
S. Li, D. Alfonso, A.V. Nagarajan, S.D. House, J.C. Yang et al., Monopalladium substitution in gold nanoclusters enhances CO2 electroreduction activity and selectivity. ACS Catal. 10, 12011–12016 (2020). https://doi.org/10.1021/acscatal.0c02266
S. Li, A.V. Nagarajan, S. Zhao, G. Mpourmpakis, R. Jin, Understanding the single atom doping effects in oxygen reduction with atomically precise metal nanoclusters. J. Phys. Chem. C 125, 24831–24836 (2021). https://doi.org/10.1021/acs.jpcc.1c08356
Z. Qin, S. Hu, W. Han, Z. Li, W.W. Xu et al., Tailoring optical and photocatalytic properties by single-Ag-atom exchange in Au13Ag12(PPh3))10Cl8 nanoclusters. Nano Res. 15, 2971–2976 (2022). https://doi.org/10.1007/s12274-021-3928-4
W.L. Zhou, J.J. Jiang, W.R. Cheng, H. Su, Q.H. Liu, In-situ synchrotron radiation infrared spectroscopic identification of reactive intermediates over multiphase electrocatalytic interfaces. Chin. J. Struct. Chem. 41, 2210004–2210015 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0083
L. Xie, C. Huang, Z. Liang, H. Wang, Z. Jiang et al., In-situ HP-STM and operando EC-STM studies of heterogeneous catalysis at interfaces. Chin. J. Struct. Chem. 41, 29–44 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0136
Z. Xiao, Y.-C. Huang, C.-L. Dong, C. Xie, Z. Liu et al., operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 142, 12087–12095 (2020). https://doi.org/10.1021/jacs.0c00257
Y. Yang, S. Louisia, S. Yu, J. Jin, I. Roh et al., operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 614, 262–269 (2023). https://doi.org/10.1038/s41586-022-05540-0
M. Zhou, T. Higaki, G. Hu, M.Y. Sfeir, Y. Chen et al., Three-orders-of-magnitude variation of carrier lifetimes with crystal phase of gold nanoclusters. Science 364, 279–282 (2019). https://doi.org/10.1126/science.aaw8007
D.-E. Jiang, W. Chen, R.L. Whetten, Z. Chen, What protects the core when the thiolated Au cluster is extremely small? J. Phys. Chem. C 113, 16983–16987 (2009). https://doi.org/10.1021/jp906823d
F. Sun, L. Qin, Z. Tang, G. Deng, M.S. Bootharaju et al., -SR removal or -R removal? A mechanistic revisit on the puzzle of ligand etching of Au25(SR)18 nanoclusters during electrocatalysis. Chem. Sci. 14, 10532–10546 (2023). https://doi.org/10.1039/d3sc03018k