Ligand Engineering Achieves Suppression of Temperature Quenching in Pure Green Perovskite Nanocrystals for Efficient and Thermostable Electroluminescence
Corresponding Author: Dongge Ma
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 77
Abstract
Formamidinium lead bromide (FAPbBr3) perovskite nanocrystals (NCs) are promising for display and lighting due to their ultra-pure green emission. However, the thermal quenching will exacerbate their performance degradation in practical applications, which is a common issue for halide perovskites. Here, we reported the heat-resistant FAPbBr3 NCs prepared by a ligand-engineered room-temperature synthesis strategy. An aromatic amine, specifically β-phenylethylamine (PEA) or 3-fluorophenylethylamine (3-F-PEA), was incoporated as the short-chain ligand to expedite the crystallization rate and control the size distribution of FAPbBr3 NCs. Employing this ligand engineering approach, we synthesized high quality FAPbBr3 NCs with uniform grain size and reduced long-chain alkyl ligands, resulting in substantially suppressed thermal quenching and enhanced carrier transportation in the perovskite NCs films. Most notably, more than 90% of the room temperature PL intensity in the 3-F-PEA modified FAPbBr3 NCs film was preserved at 380 K. Consequently, we fabricated ultra-pure green EL devices with a room temperature external quantum efficiency (EQE) as high as 21.9% at the luminance of above 1,000 cd m−2, and demonstrated less than 10% loss in EQE at 343 K. This study introduces a novel room temperature method to synthesize efficient FAPbBr3 NCs with exceptional thermal stability, paving the way for advanced optoelectronic device applications.
Highlights:
1 The innovative synthesis of pure green FAPbBr3 nanocrystals at room temperature was exploited by employing aromatic amine ligands to refine the perovskite nanocrystals with high quality and excellent optoelectronic properties.
2 The proposed ligand engineering strategy firstly realized the suppression of emission thermal quenching effect in the organic-inorganic hybrid FAPbBr3 nanocrystals.
3 It was demonstrated that the FAPbBr3 based light-emitting diodes achieved a room temperature external quantum efficiency (EQE) of 21.9% at the luminance of 1580 cd m-2, and only presented less than 10% loss in EQE at a higher temperature of 343 K.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Zhang, B. Cai, X. Zhou, F. Yuan, C. Yin et al., Ligand-induced cation-π interactions enable high-efficiency, bright, and spectrally stable rec. 2020 pure-red perovskite light-emitting diodes. Adv. Mater. 35, 2303938 (2023). https://doi.org/10.1002/adma.202303938
- M. Li, J. Wang, J. Yao, S. Wang, L. Xu et al., Trade-off between efficiency and stability of CsPbBr3 perovskite quantum dot-based light-emitting diodes by optimized passivation ligands for Br/Pb. Adv. Funct. Mater. 34, 2308341 (2024). https://doi.org/10.1002/adfm.202308341
- Y. Jiang, C. Sun, J. Xu, S. Li, M. Cui et al., Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022). https://doi.org/10.1038/s41586-022-05486-3
- K. Chen, D. Zhang, Q. Du, W. Hong, Y. Liang et al., Synergistic halide- and ligand-exchanges of all-inorganic perovskite nanocrystals for near-unity and spectrally stable red emission. Nanomaterials (Basel) 13, 2337 (2023). https://doi.org/10.3390/nano13162337
- Y. Dong, Y.-K. Wang, F. Yuan, A. Johnston, Y. Liu et al., Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020). https://doi.org/10.1038/s41565-020-0714-5
- X. Yu, J. Guo, Y. Mao, C. Shan, F. Tian et al., Enhancing the performance of perovskite light-emitting diodes via synergistic effect of defect passivation and dielectric screening. Nano-Micro Lett. 16, 205 (2024). https://doi.org/10.1007/s40820-024-01405-5
- S. Kumar, T. Marcato, F. Krumeich, Y.-T. Li, Y.-C. Chiu et al., Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes. Nat. Commun. 13, 2106 (2022). https://doi.org/10.1038/s41467-022-29812-5
- J. Zhang, J. Wang, L. Cai, S. Wang, K. Wu et al., Fine-tuning crystal structures of lead bromide perovskite nanocrystals through trace cadmium(II) doping for efficient color-saturated green LEDs. Angew. Chem. Int. Ed. 63, 202403996 (2024). https://doi.org/10.1002/anie.202403996
- J. Guo, M. Lu, X. Zhang, S. Sun, C. Han et al., Highly stable and efficient light-emitting diodes based on orthorhombic γ-CsPbI3 nanocrystals. ACS Nano 17, 9290–9301 (2023). https://doi.org/10.1021/acsnano.3c00789
- Y.K. Wang, F. Yuan, Y. Dong, J.Y. Li, A. Johnston et al., All-inorganic quantum-dot leds based on a phase-stabilized alpha-CsPbI3 perovskite. Angew. Chem. Int. Ed. 60, 16164–16170 (2021). https://doi.org/10.1002/anie.202104812
- Y. Nong, J. Yao, J. Li, L. Xu, Z. Yang et al., Boosting external quantum efficiency of blue perovskite QLEDs exceeding 23% by trifluoroacetate passivation and mixed hole transportation design. Adv. Mater. 36, e2402325 (2024). https://doi.org/10.1002/adma.202402325
- K. Kumar, D. Sharma, D. Thakur, W.-Z. Lin, M.R. Nagar et al., Exploring acceptor-functionalized perylenes as hole transport materials for solution process organic light-emitting diodes. ACS Appl. Electron. Mater. 6, 3874–3883 (2024). https://doi.org/10.1021/acsaelm.4c00469
- J.Y. Lee, J. Kim, H. Kim, M.C. Suh, Molecular stacking effect on small-molecular organic light-emitting diodes prepared with solution process. ACS Appl. Mater. Interfac. 12, 23244–23251 (2020). https://doi.org/10.1021/acsami.0c06597
- S.-D. Baek, Y.C. Kim, J.-M. Myoung, Sb-doped p-ZnO quantum dots: templates for ZnO nanorods homojunction white light-emitting diodes by low-temperature solution process. Appl. Surf. Sci. 480, 122–130 (2019). https://doi.org/10.1016/j.apsusc.2019.02.209
- S. Bai, X. Guo, T. Chen, Y. Zhang, X. Zhang et al., Solution processed fabrication of silver nanowire-MXene@PEDOT: PSS flexible transparent electrodes for flexible organic light-emitting diodes. Compos. Part A Appl. Sci. Manuf. 139, 106088 (2020). https://doi.org/10.1016/j.compositesa.2020.106088
- B.T. Diroll, C. Dabard, M. Hua, J.I. Climente, E. Lhuillier et al., Hole relaxation bottlenecks in CdSe/CdTe/CdSe lateral heterostructures lead to bicolor emission. Nano Lett. 24, 7934–7940 (2024). https://doi.org/10.1021/acs.nanolett.4c01250
- A. Rabanian, M. Neghabi, M. Zadsar, M. Jafari, Theoretical studies of energy states of CdSe/ZnS/CdSe and ZnS/CdSe/ZnS quantum dots with an impurity. Mater. Sci. Eng. B 274, 115489 (2021). https://doi.org/10.1016/j.mseb.2021.115489
- A.K. Visheratina, A.O. Orlova, F. Purcell-Milton, V.A. Kuznetsova, A.A. Visheratin et al., Influence of CdSe and CdSe/CdS nanocrystals on the optical activity of chiral organic molecules. J. Mater. Chem. C 6, 1759–1766 (2018). https://doi.org/10.1039/c7tc03457a
- D. Shin, H.J. Lee, D. Jung, J.A. Chae, J.W. Park et al., Growth control of InP/ZnSe heterostructured nanocrystals. Adv. Mater. (2024). https://doi.org/10.1002/adma.202312250
- C.-W. Tu, M. Fränzl, Q. Gao, H.-H. Tan, C. Jagadish et al., Lasing from InP nanowire photonic crystals on InP substrate. Adv. Opt. Mater. 9, 2001745 (2021). https://doi.org/10.1002/adom.202001745
- H. Lange, D.F. Kelley, Spectroscopic effects of lattice strain in InP/ZnSe and InP/ZnS nanocrystals. J. Phys. Chem. C 124, 22839–22844 (2020). https://doi.org/10.1021/acs.jpcc.0c07145
- J. Song, J. Li, L. Xu, J. Li, F. Zhang et al., Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs. Adv. Mater. 30, e1800764 (2018). https://doi.org/10.1002/adma.201800764
- L. Gao, Y. Zhang, L. Gou, Q. Wang, M. Wang et al., High efficiency pure blue perovskite quantum dot light-emitting diodes based on formamidinium manipulating carrier dynamics and electron state filling. Light Sci. Appl. 11, 346 (2022). https://doi.org/10.1038/s41377-022-00992-5
- J. Shi, B. Cohen-Kleinstein, X. Zhang, C. Zhao, Y. Zhang et al., In situ iodide passivation toward efficient CsPbI3 perovskite quantum dot solar cells. Nano-Micro Lett. 15, 163 (2023). https://doi.org/10.1007/s40820-023-01134-1
- X. Zhang, H. Huang, C. Zhao, L. Jin, C. Lee et al., Conductive colloidal perovskite quantum dot inks towards fast printing of solar cells. Nat. Energy (2024). https://doi.org/10.1038/s41560-024-01608-5
- F. Palazon, F. Di Stasio, S. Lauciello, R. Krahne, M. Prato et al., Evolution of CsPbBr3 nanocrystals upon post-synthesis annealing under an inert atmosphere. J. Mater. Chem. C 4, 9179–9182 (2016). https://doi.org/10.1039/c6tc03342c
- M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov et al., Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J. Phys. Chem. Lett. 7, 167–172 (2016). https://doi.org/10.1021/acs.jpclett.5b02597
- X. Li, W. Ma, D. Liang, W. Cai, S. Zhao et al., High-performance CsPbBr3@Cs4PbBr6/SiO2 nanocrystals via double coating layers for white light emission and visible light communication. Science 2, 646–654 (2022). https://doi.org/10.1016/j.esci.2022.10.005
- J. Pradhan, P. Moitra, B. Umesh, P. Mondal. Das et al., Encapsulation of CsPbBr3 nanocrystals by a tripodal amine markedly improves photoluminescence and stability concomitantly via anion defect elimination. Chem. Mater. 32, 7159–7171 (2020). https://doi.org/10.1021/acs.chemmater.0c00385
- C. Wang, L. Yan, J. Si, N. Wang, T. Li et al., Exceptional stability against water, UV light, and heat for CsPbBr3@Pb-MOF composites. Small Method. (2024). https://doi.org/10.1002/smtd.202400241
- Q. Mo, C. Chen, W. Cai, S. Zhao, D. Yan et al., Room temperature synthesis of stable zirconia-coated CsPbBr3 nanocrystals for white light-emitting diodes and visible light communication. Laser Photonic. Rev. 15, 2100278 (2021). https://doi.org/10.1002/lpor.202100278
- J. Zhuang, J. Wang, F. Yan, Review on chemical stability of lead halide perovskite solar cells. Nano-Micro Lett. 15, 84 (2023). https://doi.org/10.1007/s40820-023-01046-0
- M. Liu, Q. Wan, H. Wang, F. Carulli, X. Sun et al., Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nat. Photonics 15, 379–385 (2021). https://doi.org/10.1038/s41566-021-00766-2
- J. Wang, L. Gao, N. Sui, X. Chi, H. Xiao et al., Photo-physical properties of CsPbBr3 nanocrystals adjusted by a weak quantum confinement effect. J. Phys. Chem. C 127, 13081–13087 (2023). https://doi.org/10.1021/acs.jpcc.3c00640
- L. Rao, Y. Tang, C. Song, K. Xu, E.T. Vickers et al., Polar-solvent-free synthesis of highly photoluminescent and stable CsPbBr3 nanocrystals with controlled shape and size by ultrasonication. Chem. Mater. 31, 365–375 (2019). https://doi.org/10.1021/acs.chemmater.8b03298
- Y.-H. Kim, S. Kim, A. Kakekhani, J. Park, J. Park et al., Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonic. 15, 148–155 (2021). https://doi.org/10.1038/s41566-020-00732-4
- L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Bertolotti, N. Masciocchi et al., Monodisperse formamidinium lead bromide nanocrystals with bright and stable green photoluminescence. J. Am. Chem. Soc. 138, 14202–14205 (2016). https://doi.org/10.1021/jacs.6b08900
- M. Li, Y. Zhao, J. Guo, X. Qin, Q. Zhang et al., Phase regulation and defect passivation enabled by phosphoryl chloride molecules for efficient quasi-2D perovskite light-emitting diodes. Nano-Micro Lett. 15, 119 (2023). https://doi.org/10.1007/s40820-023-01089-3
- D. Zhang, L. Chao, G. Jin, Z. Xing, W. Hong et al., Highly efficient red perovskite light-emitting diodes with reduced efficiency roll-off enabled by manipulating crystallization of quasi-2D perovskites. Adv. Funct. Mater. 32, 2205707 (2022). https://doi.org/10.1002/adfm.202205707
- G. Jin, D. Zhang, P. Pang, Z. Ye, T. Liu et al., Boosting the performance of CsPbBr3-based perovskite light-emitting diodes via constructing nanocomposite emissive layers. J. Mater. Chem. C 9, 916–924 (2021). https://doi.org/10.1039/d0tc05227b
- F. Zhu, G. Lian, D. Cui, Q. Wang, H. Yu et al., A general strategy for ordered carrier transport of quasi-2D and 3D perovskite films for giant self-powered photoresponse and ultrahigh stability. Nano-Micro Lett. 15, 115 (2023). https://doi.org/10.1007/s40820-023-01087-5
- H. Wang, X. Gong, D. Zhao, Y.-B. Zhao, S. Wang et al., A multifunctional molecular modifier enabling efficient large-area perovskite light-emitting diodes. Joule 4, 1977–1987 (2020). https://doi.org/10.1016/j.joule.2020.07.002
- S.J. Yoon, K.G. Stamplecoskie, P.V. Kamat, How lead halide complex chemistry dictates the composition of mixed halide perovskites. J. Phys. Chem. Lett. 7, 1368–1373 (2016). https://doi.org/10.1021/acs.jpclett.6b00433
- C. Peng, R. Zhang, H. Chen, Y. Liu, S. Zhang et al., A demulsification-crystallization model for high-quality perovskite nanocrystals. Adv. Mater. 35, e2206969 (2023). https://doi.org/10.1002/adma.202206969
- J. De Roo, M. Ibáñez, P. Geiregat, G. Nedelcu, W. Walravens et al., Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10, 2071–2081 (2016). https://doi.org/10.1021/acsnano.5b06295
- H. Zhang, M.K. Nazeeruddin, W.C.H. Choy, Perovskite photovoltaics: the significant role of ligands in film formation, passivation, and stability. Adv. Mater. 31, 1805702 (2019). https://doi.org/10.1002/adma.201805702
- J. Pan, L.N. Quan, Y. Zhao, W. Peng, B. Murali et al., Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28, 8718–8725 (2016). https://doi.org/10.1002/adma.201600784
- D. Jia, J. Chen, J. Qiu, H. Ma, M. Yu et al., Tailoring solvent-mediated ligand exchange for CsPbI3 perovskite quantum dot solar cells with efficiency exceeding 165%. Joule 6, 1632–1653 (2022). https://doi.org/10.1016/j.joule.2022.05.007
- L. Xu, J. Li, B. Cai, J. Song, F. Zhang et al., A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat. Commun. 11, 3902 (2020). https://doi.org/10.1038/s41467-020-17633-3
- H. He, Q. Yu, H. Li, J. Li, J. Si et al., Exciton localization in solution-processed organolead trihalide perovskites. Nat. Commun. 7, 10896 (2016). https://doi.org/10.1038/ncomms10896
- J. Krustok, H. Collan, K. Hjelt, Does the low-temperature arrhenius plot of the photoluminescence intensity in CdTe point towards an erroneous activation energy? J. Appl. Phys. 81, 1442–1445 (1997). https://doi.org/10.1063/1.363903
- M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond et al., Temperature quenching of photoluminescence intensities in undoped and doped GaN. J. Appl. Phys. 86, 3721–3728 (1999). https://doi.org/10.1063/1.371242
- I.O. Thomas, G.P. Srivastava, Lattice thermal conduction in ultra-thin nanocomposites. J. Appl. Phys. 119, 244309 (2016). https://doi.org/10.1063/1.4954678
- S. Lepri, Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1–80 (2003). https://doi.org/10.1016/s0370-1573(02)00558-6
- C.M. Iaru, J.J. Geuchies, P.M. Koenraad, D. Vanmaekelbergh, A.Y. Silov, Strong carrier–phonon coupling in lead halide perovskite nanocrystals. ACS Nano 11, 11024–11030 (2017). https://doi.org/10.1021/acsnano.7b05033
- Q. Wei, J. Yin, O.M. Bakr, Z. Wang, C. Wang et al., Effect of zinc-doping on the reduction of the hot-carrier cooling rate in halide perovskites. Angew. Chem. Int. Ed. 60, 10957–10963 (2021). https://doi.org/10.1002/anie.202100099
- J. Yan, W. Zhang, S. Geng, C. Qiu, Y. Chu et al., Electronic state modulation by large A-site cations in quasi-two-dimensional organic–inorganic lead halide perovskites. Chem. Mater. 35, 289–294 (2023). https://doi.org/10.1021/acs.chemmater.2c03189
- M. Xie, J. Guo, X. Zhang, C. Bi, L. Zhang et al., High-efficiency pure-red perovskite quantum-dot light-emitting diodes. Nano Lett. 22, 8266–8273 (2022). https://doi.org/10.1021/acs.nanolett.2c03062
- J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang et al., Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015). https://doi.org/10.1126/science.aaa3145
References
J. Zhang, B. Cai, X. Zhou, F. Yuan, C. Yin et al., Ligand-induced cation-π interactions enable high-efficiency, bright, and spectrally stable rec. 2020 pure-red perovskite light-emitting diodes. Adv. Mater. 35, 2303938 (2023). https://doi.org/10.1002/adma.202303938
M. Li, J. Wang, J. Yao, S. Wang, L. Xu et al., Trade-off between efficiency and stability of CsPbBr3 perovskite quantum dot-based light-emitting diodes by optimized passivation ligands for Br/Pb. Adv. Funct. Mater. 34, 2308341 (2024). https://doi.org/10.1002/adfm.202308341
Y. Jiang, C. Sun, J. Xu, S. Li, M. Cui et al., Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022). https://doi.org/10.1038/s41586-022-05486-3
K. Chen, D. Zhang, Q. Du, W. Hong, Y. Liang et al., Synergistic halide- and ligand-exchanges of all-inorganic perovskite nanocrystals for near-unity and spectrally stable red emission. Nanomaterials (Basel) 13, 2337 (2023). https://doi.org/10.3390/nano13162337
Y. Dong, Y.-K. Wang, F. Yuan, A. Johnston, Y. Liu et al., Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020). https://doi.org/10.1038/s41565-020-0714-5
X. Yu, J. Guo, Y. Mao, C. Shan, F. Tian et al., Enhancing the performance of perovskite light-emitting diodes via synergistic effect of defect passivation and dielectric screening. Nano-Micro Lett. 16, 205 (2024). https://doi.org/10.1007/s40820-024-01405-5
S. Kumar, T. Marcato, F. Krumeich, Y.-T. Li, Y.-C. Chiu et al., Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes. Nat. Commun. 13, 2106 (2022). https://doi.org/10.1038/s41467-022-29812-5
J. Zhang, J. Wang, L. Cai, S. Wang, K. Wu et al., Fine-tuning crystal structures of lead bromide perovskite nanocrystals through trace cadmium(II) doping for efficient color-saturated green LEDs. Angew. Chem. Int. Ed. 63, 202403996 (2024). https://doi.org/10.1002/anie.202403996
J. Guo, M. Lu, X. Zhang, S. Sun, C. Han et al., Highly stable and efficient light-emitting diodes based on orthorhombic γ-CsPbI3 nanocrystals. ACS Nano 17, 9290–9301 (2023). https://doi.org/10.1021/acsnano.3c00789
Y.K. Wang, F. Yuan, Y. Dong, J.Y. Li, A. Johnston et al., All-inorganic quantum-dot leds based on a phase-stabilized alpha-CsPbI3 perovskite. Angew. Chem. Int. Ed. 60, 16164–16170 (2021). https://doi.org/10.1002/anie.202104812
Y. Nong, J. Yao, J. Li, L. Xu, Z. Yang et al., Boosting external quantum efficiency of blue perovskite QLEDs exceeding 23% by trifluoroacetate passivation and mixed hole transportation design. Adv. Mater. 36, e2402325 (2024). https://doi.org/10.1002/adma.202402325
K. Kumar, D. Sharma, D. Thakur, W.-Z. Lin, M.R. Nagar et al., Exploring acceptor-functionalized perylenes as hole transport materials for solution process organic light-emitting diodes. ACS Appl. Electron. Mater. 6, 3874–3883 (2024). https://doi.org/10.1021/acsaelm.4c00469
J.Y. Lee, J. Kim, H. Kim, M.C. Suh, Molecular stacking effect on small-molecular organic light-emitting diodes prepared with solution process. ACS Appl. Mater. Interfac. 12, 23244–23251 (2020). https://doi.org/10.1021/acsami.0c06597
S.-D. Baek, Y.C. Kim, J.-M. Myoung, Sb-doped p-ZnO quantum dots: templates for ZnO nanorods homojunction white light-emitting diodes by low-temperature solution process. Appl. Surf. Sci. 480, 122–130 (2019). https://doi.org/10.1016/j.apsusc.2019.02.209
S. Bai, X. Guo, T. Chen, Y. Zhang, X. Zhang et al., Solution processed fabrication of silver nanowire-MXene@PEDOT: PSS flexible transparent electrodes for flexible organic light-emitting diodes. Compos. Part A Appl. Sci. Manuf. 139, 106088 (2020). https://doi.org/10.1016/j.compositesa.2020.106088
B.T. Diroll, C. Dabard, M. Hua, J.I. Climente, E. Lhuillier et al., Hole relaxation bottlenecks in CdSe/CdTe/CdSe lateral heterostructures lead to bicolor emission. Nano Lett. 24, 7934–7940 (2024). https://doi.org/10.1021/acs.nanolett.4c01250
A. Rabanian, M. Neghabi, M. Zadsar, M. Jafari, Theoretical studies of energy states of CdSe/ZnS/CdSe and ZnS/CdSe/ZnS quantum dots with an impurity. Mater. Sci. Eng. B 274, 115489 (2021). https://doi.org/10.1016/j.mseb.2021.115489
A.K. Visheratina, A.O. Orlova, F. Purcell-Milton, V.A. Kuznetsova, A.A. Visheratin et al., Influence of CdSe and CdSe/CdS nanocrystals on the optical activity of chiral organic molecules. J. Mater. Chem. C 6, 1759–1766 (2018). https://doi.org/10.1039/c7tc03457a
D. Shin, H.J. Lee, D. Jung, J.A. Chae, J.W. Park et al., Growth control of InP/ZnSe heterostructured nanocrystals. Adv. Mater. (2024). https://doi.org/10.1002/adma.202312250
C.-W. Tu, M. Fränzl, Q. Gao, H.-H. Tan, C. Jagadish et al., Lasing from InP nanowire photonic crystals on InP substrate. Adv. Opt. Mater. 9, 2001745 (2021). https://doi.org/10.1002/adom.202001745
H. Lange, D.F. Kelley, Spectroscopic effects of lattice strain in InP/ZnSe and InP/ZnS nanocrystals. J. Phys. Chem. C 124, 22839–22844 (2020). https://doi.org/10.1021/acs.jpcc.0c07145
J. Song, J. Li, L. Xu, J. Li, F. Zhang et al., Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs. Adv. Mater. 30, e1800764 (2018). https://doi.org/10.1002/adma.201800764
L. Gao, Y. Zhang, L. Gou, Q. Wang, M. Wang et al., High efficiency pure blue perovskite quantum dot light-emitting diodes based on formamidinium manipulating carrier dynamics and electron state filling. Light Sci. Appl. 11, 346 (2022). https://doi.org/10.1038/s41377-022-00992-5
J. Shi, B. Cohen-Kleinstein, X. Zhang, C. Zhao, Y. Zhang et al., In situ iodide passivation toward efficient CsPbI3 perovskite quantum dot solar cells. Nano-Micro Lett. 15, 163 (2023). https://doi.org/10.1007/s40820-023-01134-1
X. Zhang, H. Huang, C. Zhao, L. Jin, C. Lee et al., Conductive colloidal perovskite quantum dot inks towards fast printing of solar cells. Nat. Energy (2024). https://doi.org/10.1038/s41560-024-01608-5
F. Palazon, F. Di Stasio, S. Lauciello, R. Krahne, M. Prato et al., Evolution of CsPbBr3 nanocrystals upon post-synthesis annealing under an inert atmosphere. J. Mater. Chem. C 4, 9179–9182 (2016). https://doi.org/10.1039/c6tc03342c
M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov et al., Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J. Phys. Chem. Lett. 7, 167–172 (2016). https://doi.org/10.1021/acs.jpclett.5b02597
X. Li, W. Ma, D. Liang, W. Cai, S. Zhao et al., High-performance CsPbBr3@Cs4PbBr6/SiO2 nanocrystals via double coating layers for white light emission and visible light communication. Science 2, 646–654 (2022). https://doi.org/10.1016/j.esci.2022.10.005
J. Pradhan, P. Moitra, B. Umesh, P. Mondal. Das et al., Encapsulation of CsPbBr3 nanocrystals by a tripodal amine markedly improves photoluminescence and stability concomitantly via anion defect elimination. Chem. Mater. 32, 7159–7171 (2020). https://doi.org/10.1021/acs.chemmater.0c00385
C. Wang, L. Yan, J. Si, N. Wang, T. Li et al., Exceptional stability against water, UV light, and heat for CsPbBr3@Pb-MOF composites. Small Method. (2024). https://doi.org/10.1002/smtd.202400241
Q. Mo, C. Chen, W. Cai, S. Zhao, D. Yan et al., Room temperature synthesis of stable zirconia-coated CsPbBr3 nanocrystals for white light-emitting diodes and visible light communication. Laser Photonic. Rev. 15, 2100278 (2021). https://doi.org/10.1002/lpor.202100278
J. Zhuang, J. Wang, F. Yan, Review on chemical stability of lead halide perovskite solar cells. Nano-Micro Lett. 15, 84 (2023). https://doi.org/10.1007/s40820-023-01046-0
M. Liu, Q. Wan, H. Wang, F. Carulli, X. Sun et al., Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nat. Photonics 15, 379–385 (2021). https://doi.org/10.1038/s41566-021-00766-2
J. Wang, L. Gao, N. Sui, X. Chi, H. Xiao et al., Photo-physical properties of CsPbBr3 nanocrystals adjusted by a weak quantum confinement effect. J. Phys. Chem. C 127, 13081–13087 (2023). https://doi.org/10.1021/acs.jpcc.3c00640
L. Rao, Y. Tang, C. Song, K. Xu, E.T. Vickers et al., Polar-solvent-free synthesis of highly photoluminescent and stable CsPbBr3 nanocrystals with controlled shape and size by ultrasonication. Chem. Mater. 31, 365–375 (2019). https://doi.org/10.1021/acs.chemmater.8b03298
Y.-H. Kim, S. Kim, A. Kakekhani, J. Park, J. Park et al., Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonic. 15, 148–155 (2021). https://doi.org/10.1038/s41566-020-00732-4
L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Bertolotti, N. Masciocchi et al., Monodisperse formamidinium lead bromide nanocrystals with bright and stable green photoluminescence. J. Am. Chem. Soc. 138, 14202–14205 (2016). https://doi.org/10.1021/jacs.6b08900
M. Li, Y. Zhao, J. Guo, X. Qin, Q. Zhang et al., Phase regulation and defect passivation enabled by phosphoryl chloride molecules for efficient quasi-2D perovskite light-emitting diodes. Nano-Micro Lett. 15, 119 (2023). https://doi.org/10.1007/s40820-023-01089-3
D. Zhang, L. Chao, G. Jin, Z. Xing, W. Hong et al., Highly efficient red perovskite light-emitting diodes with reduced efficiency roll-off enabled by manipulating crystallization of quasi-2D perovskites. Adv. Funct. Mater. 32, 2205707 (2022). https://doi.org/10.1002/adfm.202205707
G. Jin, D. Zhang, P. Pang, Z. Ye, T. Liu et al., Boosting the performance of CsPbBr3-based perovskite light-emitting diodes via constructing nanocomposite emissive layers. J. Mater. Chem. C 9, 916–924 (2021). https://doi.org/10.1039/d0tc05227b
F. Zhu, G. Lian, D. Cui, Q. Wang, H. Yu et al., A general strategy for ordered carrier transport of quasi-2D and 3D perovskite films for giant self-powered photoresponse and ultrahigh stability. Nano-Micro Lett. 15, 115 (2023). https://doi.org/10.1007/s40820-023-01087-5
H. Wang, X. Gong, D. Zhao, Y.-B. Zhao, S. Wang et al., A multifunctional molecular modifier enabling efficient large-area perovskite light-emitting diodes. Joule 4, 1977–1987 (2020). https://doi.org/10.1016/j.joule.2020.07.002
S.J. Yoon, K.G. Stamplecoskie, P.V. Kamat, How lead halide complex chemistry dictates the composition of mixed halide perovskites. J. Phys. Chem. Lett. 7, 1368–1373 (2016). https://doi.org/10.1021/acs.jpclett.6b00433
C. Peng, R. Zhang, H. Chen, Y. Liu, S. Zhang et al., A demulsification-crystallization model for high-quality perovskite nanocrystals. Adv. Mater. 35, e2206969 (2023). https://doi.org/10.1002/adma.202206969
J. De Roo, M. Ibáñez, P. Geiregat, G. Nedelcu, W. Walravens et al., Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10, 2071–2081 (2016). https://doi.org/10.1021/acsnano.5b06295
H. Zhang, M.K. Nazeeruddin, W.C.H. Choy, Perovskite photovoltaics: the significant role of ligands in film formation, passivation, and stability. Adv. Mater. 31, 1805702 (2019). https://doi.org/10.1002/adma.201805702
J. Pan, L.N. Quan, Y. Zhao, W. Peng, B. Murali et al., Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28, 8718–8725 (2016). https://doi.org/10.1002/adma.201600784
D. Jia, J. Chen, J. Qiu, H. Ma, M. Yu et al., Tailoring solvent-mediated ligand exchange for CsPbI3 perovskite quantum dot solar cells with efficiency exceeding 165%. Joule 6, 1632–1653 (2022). https://doi.org/10.1016/j.joule.2022.05.007
L. Xu, J. Li, B. Cai, J. Song, F. Zhang et al., A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat. Commun. 11, 3902 (2020). https://doi.org/10.1038/s41467-020-17633-3
H. He, Q. Yu, H. Li, J. Li, J. Si et al., Exciton localization in solution-processed organolead trihalide perovskites. Nat. Commun. 7, 10896 (2016). https://doi.org/10.1038/ncomms10896
J. Krustok, H. Collan, K. Hjelt, Does the low-temperature arrhenius plot of the photoluminescence intensity in CdTe point towards an erroneous activation energy? J. Appl. Phys. 81, 1442–1445 (1997). https://doi.org/10.1063/1.363903
M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond et al., Temperature quenching of photoluminescence intensities in undoped and doped GaN. J. Appl. Phys. 86, 3721–3728 (1999). https://doi.org/10.1063/1.371242
I.O. Thomas, G.P. Srivastava, Lattice thermal conduction in ultra-thin nanocomposites. J. Appl. Phys. 119, 244309 (2016). https://doi.org/10.1063/1.4954678
S. Lepri, Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1–80 (2003). https://doi.org/10.1016/s0370-1573(02)00558-6
C.M. Iaru, J.J. Geuchies, P.M. Koenraad, D. Vanmaekelbergh, A.Y. Silov, Strong carrier–phonon coupling in lead halide perovskite nanocrystals. ACS Nano 11, 11024–11030 (2017). https://doi.org/10.1021/acsnano.7b05033
Q. Wei, J. Yin, O.M. Bakr, Z. Wang, C. Wang et al., Effect of zinc-doping on the reduction of the hot-carrier cooling rate in halide perovskites. Angew. Chem. Int. Ed. 60, 10957–10963 (2021). https://doi.org/10.1002/anie.202100099
J. Yan, W. Zhang, S. Geng, C. Qiu, Y. Chu et al., Electronic state modulation by large A-site cations in quasi-two-dimensional organic–inorganic lead halide perovskites. Chem. Mater. 35, 289–294 (2023). https://doi.org/10.1021/acs.chemmater.2c03189
M. Xie, J. Guo, X. Zhang, C. Bi, L. Zhang et al., High-efficiency pure-red perovskite quantum-dot light-emitting diodes. Nano Lett. 22, 8266–8273 (2022). https://doi.org/10.1021/acs.nanolett.2c03062
J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang et al., Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015). https://doi.org/10.1126/science.aaa3145