BiVO4 Photoanode with Exposed (040) Facets for Enhanced Photoelectrochemical Performance
Corresponding Author: Baoxue Zhou
Nano-Micro Letters,
Vol. 10 No. 1 (2018), Article Number: 11
Abstract
A BiVO4 photoanode with exposed (040) facets was prepared to enhance its photoelectrochemical performance. The exposure of the (040) crystal planes of the BiVO4 film was induced by adding NaCl to the precursor solution. The as-prepared BiVO4 photoanode exhibits higher solar-light absorption and charge-separation efficiency compared to those of an anode prepared without adding NaCl. To our knowledge, the photocurrent density (1.26 mA cm−2 at 1.23 V vs. RHE) of as-prepared BiVO4 photoanode is the highest according to the reports for bare BiVO4 films under simulated AM1.5G solar light, and the incident photon-to-current conversion efficiency is above 35% at 400 nm. The photoelectrochemical (PEC) water-splitting performance was also dramatically improved with a hydrogen evolution rate of 9.11 μmol cm−2 h−1, which is five times compared with the BiVO4 photoanode prepared without NaCl (1.82 μmol cm−2 h−1). Intensity-modulated photocurrent spectroscopy and transient photocurrent measurements show a higher charge-carrier-transfer rate for this photoanode. These results demonstrate a promising approach for the development of high-performance BiVO4 photoanodes which can be used for efficient PEC water splitting and degradation of organic pollutants.
Highlights:
1 A BiVO4 photoanode with exposed (040) facets was prepared by an improved chemical bath deposition method, where NaCl was used to induce the exposure of (040) facets
2 The photoelectrochemical performance of as-synthesized BiVO4 photoanode with exposed (040) facets was strongly enhanced compared to that photoanode without exposure of (040) facets
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Zhang, J. Zhang, J. Gong, Tantalum-based semiconductors for solar water splitting. Chem. Soc. Rev. 43(13), 4395–4422 (2014). doi:10.1039/C3CS60438A
- F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42(6), 2294–2320 (2013). doi:10.1039/C2CS35266D
- A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38(1), 253–278 (2009). doi:10.1039/B800489G
- J. Graetz, New approaches to hydrogen storage. Chem. Soc. Rev. 38(1), 73–82 (2009). doi:10.1039/B718842K
- Q. Jia, K. Iwashina, A. Kudo, Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation. Proc. Natl. Acad. Sci. 109(29), 11564–11569 (2012). doi:10.1073/pnas.1204623109
- M. Xie, X. Fu, L. Jing, P. Luan, Y. Feng, H. Fu, Long-lived, visible-light-excited charge carriers of TiO2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting. Adv. Energy Mater. 4(5), 1300995 (2014). doi:10.1002/aenm.201300995
- M. Long, J. Jiang, Y. Li, R. Cao, L. Zhang, W. Cai, Effect of gold nanoparticles on the photocatalytic and photoelectrochemical performance of Au modified BiVO4. Nano-Micro Lett. 3(3), 171–177 (2011). doi:10.1007/BF03353669
- X. Zhang, X. Quan, S. Chen, Y. Zhang, Effect of Si doping on photoelectrocatalytic decomposition of phenol of BiVO4 film under visible light. J. Hazard. Mater. 177(1), 914–917 (2010). doi:10.1016/j.jhazmat.2010.01.003
- M. Li, L. Zhao, L. Guo, Preparation and photoelectrochemical study of BiVO4 thin films deposited by ultrasonic spray pyrolysis. Int. J. Hydrogen Energy 35(13), 7127–7133 (2010). doi:10.1016/j.ijhydene.2010.02.026
- W. Yao, H. Iwai, J. Ye, Effects of molybdenum substitution on the photocatalytic behavior of BiVO4. Dalton Trans. 252(11), 1426–1430 (2008). doi:10.1039/b713338c
- G. Wang, Y. Ling, X. Lu, F. Qian, Y. Tong, J.Z. Zhang, V. Lordi, C. Rocha Leao, Y. Li, Computational and photoelectrochemical study of hydrogenated bismuth vanadate. J. Phys. Chem. C 117(21), 10957–10964 (2013). doi:10.1021/jp401972h
- Y. Zhang, X. Zhang, D. Wang, F. Wan, Y. Liu, Protecting hydrogenation-generated oxygen vacancies in BiVO4 photoanode for enhanced water oxidation with conformal ultrathin amorphous TiO2 layer. Appl. Sur. Sci. 403, 389–395 (2017). doi:10.1016/j.apsusc.2017.01.195
- J.K. Cooper, S.B. Scott, Y. Ling, J. Yang, S. Hao et al., Role of hydrogen in defining the n-type character of BiVO4 photoanodes. Chem. Mater. 28(16), 5761–5771 (2016). doi:10.1021/acs.chemmater.6b01994
- D.K. Zhong, S. Choi, D.R. Gamelin, Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4. J. Am. Chem. Soc. 133(45), 18370–18377 (2011). doi:10.1021/ja207348x
- F.F. Abdi, R. van de Krol, Nature and light dependence of bulk recombination in Co-Pi catalyzed BiVO4 photoanodes. J. Phys. Chem. C 116(17), 9398–9404 (2012). doi:10.1021/jp3007552
- P. Cai, S. Zhou, D. Ma, S. Liu, W. Chen, S. Huang, Fe2O3-modified porous BiVO4 nanoplates with enhanced photocatalytic activity. Nano-Micro Lett. 7(2), 183–193 (2015). doi:10.1007/s40820-015-0033-9
- S.J.A. Ho-Kimura, A.D. Moniz, J. Handoko, Tang, Enhanced photoelectrochemical water splitting by nanostructured BiVO4-TiO2 composite electrodes. J. Mater. Chem. A 2(11), 3948–3953 (2014). doi:10.1039/c3ta15268e
- X. Fu, M. Xie, P. Luan, L. Jing, Effective visible-excited charge separation in silicate-bridged ZnO/BiVO4 nanocomposite and its contribution to enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 6(21), 18550–18557 (2014). doi:10.1021/am505651d
- S.J.A. Moniz, J. Zhu, J. Tang, 1D Co-Pi modified BiVO4/ZnO junction cascade for efficient photoelectrochemical water cleavage. Adv. Energy Mater. 4(10), 1301590 (2014). doi:10.1002/aenm.201301590
- L. Zhang, E. Reisner, J.J. Baumberg, Al-doped ZnO inverse opal networks as efficient electron collectors in BiVO4 photoanodes for solar water oxidation. Energy Environ. Sci. 7(4), 1402–1408 (2014). doi:10.1039/C3EE44031A
- J.H. Kim, G. Magesh, H.J. Kang, M. Banu, J.H. Kim, J. Lee, J.S. Lee, Carbonate-coordinated cobalt co-catalyzed BiVO4/WO3 composite photoanode tailored for CO2 reduction to fuels. Nano Energy 15, 153–163 (2015). doi:10.1016/j.nanoen.2015.04.022
- R. Wang, J. Bai, Y. Li, Q. Zeng, J. Li, B. Zhou, BiVO4/TiO2(N2) nanotubes heterojunction photoanode for highly efficient photoelectrocatalytic applications. Nano-Micro Lett. 9(2), 14 (2017). doi:10.1007/s40820-016-0115-3
- G. Tan, L. Zhang, H. Ren, J. Huang, W. Yang, A. Xia, Microwave hydrothermal synthesis of N-doped BiVO4 nanoplates with exposed (040) facets and enhanced visible-light photocatalytic properties. Ceram. Int. 40(7), 9541–9547 (2014). doi:10.1016/j.ceramint.2014.02.028
- H. Li, Y. Sun, B. Cai, S. Gan, D. Han, L. Niu, T. Wu, Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (040) with enhancing photoelectrochemical and photocatalytic performance. Appl. Catal. B Environ. 170, 206–214 (2015). doi:10.1016/j.apcatb.2015.01.043
- G. Li, X. Nie, J. Chen, P.K. Wong, T. An, H. Yamashita, H. Zhao, Enhanced simultaneous PEC eradication of bacteria and antibiotics by facilely fabricated high-activity 001 facets TiO2 mounted onto TiO2 nanotubular photoanode. Water Res. 101, 597–605 (2016). doi:10.1016/j.watres.2016.06.001
- Q. Zeng, J. Li, J. Bai, X. Li, L. Xia, B. Zhou, Preparation of vertically aligned WO3 nanoplate array films based on peroxotungstate reduction reaction and their excellent photoelectrocatalytic performance. Appl. Catal. B Environ. 202, 388–396 (2017). doi:10.1016/j.apcatb.2016.09.045
- E. Hosono, S. Fujihara, K. Kakiuchi, H. Imai, Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. J. Am. Chem. Soc. 126(25), 7790–7791 (2004). doi:10.1021/ja048820p
- Y. Wang, M. Guo, M. Zhang, X. Wang, Hydrothermal preparation and photoelectrochemical performance of size-controlled SnO2 nanorod arrays. CrystEngComm 12(12), 4024–4027 (2010). doi:10.1039/c0ce00201a
- H. Lee, A. Kim, H. Kwon, W. Yang, Y. Oh, D. Lee, J. Moon, Retarding crystallization during facile single coating of NaCl-incorporated precursor solution for efficient large-area uniform perovskite solar cells. ACS Appl. Mater. Interfaces 8(43), 29419–29426 (2016). doi:10.1021/acsami.6b08783
- C.W. Kim, Y.S. Son, M.J. Kang, D.Y. Kim, Y.S. Kang, (040)-Crystal facet engineering of BiVO4 plate photoanodes for solar fuel production. Adv. Energy Mater. 6(4), 1501754 (2016). doi:10.1002/aenm.201501754
- W. Luo, Z. Wang, L. Wan, Z. Li, T. Yu, Z. Zou, Synthesis, growth mechanism and photoelectrochemical properties of BiVO4 microcrystal electrodes. J. Phys. D Appl. Phys. 43(40), 405402 (2010). doi:10.1088/0022-3727/43/40/405402
- L. Yang, Y. Xiong, H. Dong, H. Peng, Y. Zhang, P. Xiao, Enhanced charge separation and oxidation kinetics of BiVO4 photoanode by double layer structure. J. Power Sources 343, 67–75 (2017). doi:10.1016/j.jpowsour.2017.01.050
- Q. Wu, S. Bao, B. Tian, Y. Xiao, J. Zhang, Double-diffusion-based synthesis of BiVO4 mesoporous single crystals with enhanced photocatalytic activity for oxygen evolution. Chem. Commun. 52(47), 7478–7481 (2016). doi:10.1039/C6CC02737G
- R. Chatten, A.V. Chadwick, A. Rougier, P.J.D. Lindan, The oxygen vacancy in crystal phases of WO3. J. Phys. Chem. B 109(8), 3146–3156 (2005). doi:10.1021/jp045655r
- M. Ahmadi, S. Sahoo, R. Younesi, A.P.S. Gaur, R.S. Katiyar, M.J-F Guinel, WO3 nano-ribbons: their phase transformation from tungstite (WO3·H2O) to tungsten oxide (WO3). J. Mater. Sci. 49(17), 5899–5909 (2014). doi:10.1007/s10853-014-8304-2
- J. Zhu, F. Fan, R. Chen, H. An, Z. Feng, C. Li, Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst. Angew. Chem. Int. Ed. 54(31), 9111–9114 (2015). doi:10.1002/anie.201504135
- K. Ye, Z. Chai, J. Gu, X. Yu, C. Zhao, Y. Zhang, W. Mai, BiOI-BiVO4 photoanodes with significantly improved solar water splitting capability: p-n junction to expand solar adsorption range and facilitate charge carrier dynamics. Nano Energy 18, 222–231 (2015). doi:10.1016/j.nanoen.2015.10.018
- E.S. Kim, H.J. Kang, G. Magesh, J.Y. Kim, J. Jang, J.S. Lee, Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation. ACS Appl. Mater. Interfaces 6(20), 17762–17769 (2014). doi:10.1021/am504283t
- Y. Dong, J. Li, X. Li, B. Zhou, The promotion effect of low-molecular hydroxyl compounds on the nano-photoelectrocatalytic degradation of fulvic acid and mechanism. Nano-Micro Lett. 8(4), 320–327 (2016). doi:10.1007/s40820-016-0091-7
- J. Su, L. Guo, N. Bao, C.A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11(5), 1928–1933 (2011). doi:10.1021/nl2000743
- F.M. Pesci, A.J. Cowan, B.D. Alexander, J.R. Durrant, D.R. Klug, Charge carrier dynamics on mesoporous WO3 during water splitting. J. Phys. Chem. Lett. 2(15), 1900–1903 (2011). doi:10.1021/jz200839n
- Y. Wang, H.-Y. Wang, M. Yu, L.-M. Fu, Y. Qin, J.-P. Zhang, X.-C. Ai, Trap-limited charge recombination in intrinsic perovskite film and meso-superstructured perovskite solar cells and the passivation effect of the hole-transport material on trap states. Phys. Chem. Chem. Phys. 17(44), 29501–29506 (2015). doi:10.1039/C5CP04360C
- T. Yoshihara, Y. Tamaki, A. Furube, M. Murai, K. Hara, R. Katoh, Effect of pH on absorption spectra of photogenerated holes in nanocrystalline TiO2 films. Chem. Phys. Lett. 438(4), 268–273 (2007). doi:10.1016/j.cplett.2007.03.017
References
P. Zhang, J. Zhang, J. Gong, Tantalum-based semiconductors for solar water splitting. Chem. Soc. Rev. 43(13), 4395–4422 (2014). doi:10.1039/C3CS60438A
F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42(6), 2294–2320 (2013). doi:10.1039/C2CS35266D
A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38(1), 253–278 (2009). doi:10.1039/B800489G
J. Graetz, New approaches to hydrogen storage. Chem. Soc. Rev. 38(1), 73–82 (2009). doi:10.1039/B718842K
Q. Jia, K. Iwashina, A. Kudo, Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation. Proc. Natl. Acad. Sci. 109(29), 11564–11569 (2012). doi:10.1073/pnas.1204623109
M. Xie, X. Fu, L. Jing, P. Luan, Y. Feng, H. Fu, Long-lived, visible-light-excited charge carriers of TiO2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting. Adv. Energy Mater. 4(5), 1300995 (2014). doi:10.1002/aenm.201300995
M. Long, J. Jiang, Y. Li, R. Cao, L. Zhang, W. Cai, Effect of gold nanoparticles on the photocatalytic and photoelectrochemical performance of Au modified BiVO4. Nano-Micro Lett. 3(3), 171–177 (2011). doi:10.1007/BF03353669
X. Zhang, X. Quan, S. Chen, Y. Zhang, Effect of Si doping on photoelectrocatalytic decomposition of phenol of BiVO4 film under visible light. J. Hazard. Mater. 177(1), 914–917 (2010). doi:10.1016/j.jhazmat.2010.01.003
M. Li, L. Zhao, L. Guo, Preparation and photoelectrochemical study of BiVO4 thin films deposited by ultrasonic spray pyrolysis. Int. J. Hydrogen Energy 35(13), 7127–7133 (2010). doi:10.1016/j.ijhydene.2010.02.026
W. Yao, H. Iwai, J. Ye, Effects of molybdenum substitution on the photocatalytic behavior of BiVO4. Dalton Trans. 252(11), 1426–1430 (2008). doi:10.1039/b713338c
G. Wang, Y. Ling, X. Lu, F. Qian, Y. Tong, J.Z. Zhang, V. Lordi, C. Rocha Leao, Y. Li, Computational and photoelectrochemical study of hydrogenated bismuth vanadate. J. Phys. Chem. C 117(21), 10957–10964 (2013). doi:10.1021/jp401972h
Y. Zhang, X. Zhang, D. Wang, F. Wan, Y. Liu, Protecting hydrogenation-generated oxygen vacancies in BiVO4 photoanode for enhanced water oxidation with conformal ultrathin amorphous TiO2 layer. Appl. Sur. Sci. 403, 389–395 (2017). doi:10.1016/j.apsusc.2017.01.195
J.K. Cooper, S.B. Scott, Y. Ling, J. Yang, S. Hao et al., Role of hydrogen in defining the n-type character of BiVO4 photoanodes. Chem. Mater. 28(16), 5761–5771 (2016). doi:10.1021/acs.chemmater.6b01994
D.K. Zhong, S. Choi, D.R. Gamelin, Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4. J. Am. Chem. Soc. 133(45), 18370–18377 (2011). doi:10.1021/ja207348x
F.F. Abdi, R. van de Krol, Nature and light dependence of bulk recombination in Co-Pi catalyzed BiVO4 photoanodes. J. Phys. Chem. C 116(17), 9398–9404 (2012). doi:10.1021/jp3007552
P. Cai, S. Zhou, D. Ma, S. Liu, W. Chen, S. Huang, Fe2O3-modified porous BiVO4 nanoplates with enhanced photocatalytic activity. Nano-Micro Lett. 7(2), 183–193 (2015). doi:10.1007/s40820-015-0033-9
S.J.A. Ho-Kimura, A.D. Moniz, J. Handoko, Tang, Enhanced photoelectrochemical water splitting by nanostructured BiVO4-TiO2 composite electrodes. J. Mater. Chem. A 2(11), 3948–3953 (2014). doi:10.1039/c3ta15268e
X. Fu, M. Xie, P. Luan, L. Jing, Effective visible-excited charge separation in silicate-bridged ZnO/BiVO4 nanocomposite and its contribution to enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 6(21), 18550–18557 (2014). doi:10.1021/am505651d
S.J.A. Moniz, J. Zhu, J. Tang, 1D Co-Pi modified BiVO4/ZnO junction cascade for efficient photoelectrochemical water cleavage. Adv. Energy Mater. 4(10), 1301590 (2014). doi:10.1002/aenm.201301590
L. Zhang, E. Reisner, J.J. Baumberg, Al-doped ZnO inverse opal networks as efficient electron collectors in BiVO4 photoanodes for solar water oxidation. Energy Environ. Sci. 7(4), 1402–1408 (2014). doi:10.1039/C3EE44031A
J.H. Kim, G. Magesh, H.J. Kang, M. Banu, J.H. Kim, J. Lee, J.S. Lee, Carbonate-coordinated cobalt co-catalyzed BiVO4/WO3 composite photoanode tailored for CO2 reduction to fuels. Nano Energy 15, 153–163 (2015). doi:10.1016/j.nanoen.2015.04.022
R. Wang, J. Bai, Y. Li, Q. Zeng, J. Li, B. Zhou, BiVO4/TiO2(N2) nanotubes heterojunction photoanode for highly efficient photoelectrocatalytic applications. Nano-Micro Lett. 9(2), 14 (2017). doi:10.1007/s40820-016-0115-3
G. Tan, L. Zhang, H. Ren, J. Huang, W. Yang, A. Xia, Microwave hydrothermal synthesis of N-doped BiVO4 nanoplates with exposed (040) facets and enhanced visible-light photocatalytic properties. Ceram. Int. 40(7), 9541–9547 (2014). doi:10.1016/j.ceramint.2014.02.028
H. Li, Y. Sun, B. Cai, S. Gan, D. Han, L. Niu, T. Wu, Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (040) with enhancing photoelectrochemical and photocatalytic performance. Appl. Catal. B Environ. 170, 206–214 (2015). doi:10.1016/j.apcatb.2015.01.043
G. Li, X. Nie, J. Chen, P.K. Wong, T. An, H. Yamashita, H. Zhao, Enhanced simultaneous PEC eradication of bacteria and antibiotics by facilely fabricated high-activity 001 facets TiO2 mounted onto TiO2 nanotubular photoanode. Water Res. 101, 597–605 (2016). doi:10.1016/j.watres.2016.06.001
Q. Zeng, J. Li, J. Bai, X. Li, L. Xia, B. Zhou, Preparation of vertically aligned WO3 nanoplate array films based on peroxotungstate reduction reaction and their excellent photoelectrocatalytic performance. Appl. Catal. B Environ. 202, 388–396 (2017). doi:10.1016/j.apcatb.2016.09.045
E. Hosono, S. Fujihara, K. Kakiuchi, H. Imai, Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. J. Am. Chem. Soc. 126(25), 7790–7791 (2004). doi:10.1021/ja048820p
Y. Wang, M. Guo, M. Zhang, X. Wang, Hydrothermal preparation and photoelectrochemical performance of size-controlled SnO2 nanorod arrays. CrystEngComm 12(12), 4024–4027 (2010). doi:10.1039/c0ce00201a
H. Lee, A. Kim, H. Kwon, W. Yang, Y. Oh, D. Lee, J. Moon, Retarding crystallization during facile single coating of NaCl-incorporated precursor solution for efficient large-area uniform perovskite solar cells. ACS Appl. Mater. Interfaces 8(43), 29419–29426 (2016). doi:10.1021/acsami.6b08783
C.W. Kim, Y.S. Son, M.J. Kang, D.Y. Kim, Y.S. Kang, (040)-Crystal facet engineering of BiVO4 plate photoanodes for solar fuel production. Adv. Energy Mater. 6(4), 1501754 (2016). doi:10.1002/aenm.201501754
W. Luo, Z. Wang, L. Wan, Z. Li, T. Yu, Z. Zou, Synthesis, growth mechanism and photoelectrochemical properties of BiVO4 microcrystal electrodes. J. Phys. D Appl. Phys. 43(40), 405402 (2010). doi:10.1088/0022-3727/43/40/405402
L. Yang, Y. Xiong, H. Dong, H. Peng, Y. Zhang, P. Xiao, Enhanced charge separation and oxidation kinetics of BiVO4 photoanode by double layer structure. J. Power Sources 343, 67–75 (2017). doi:10.1016/j.jpowsour.2017.01.050
Q. Wu, S. Bao, B. Tian, Y. Xiao, J. Zhang, Double-diffusion-based synthesis of BiVO4 mesoporous single crystals with enhanced photocatalytic activity for oxygen evolution. Chem. Commun. 52(47), 7478–7481 (2016). doi:10.1039/C6CC02737G
R. Chatten, A.V. Chadwick, A. Rougier, P.J.D. Lindan, The oxygen vacancy in crystal phases of WO3. J. Phys. Chem. B 109(8), 3146–3156 (2005). doi:10.1021/jp045655r
M. Ahmadi, S. Sahoo, R. Younesi, A.P.S. Gaur, R.S. Katiyar, M.J-F Guinel, WO3 nano-ribbons: their phase transformation from tungstite (WO3·H2O) to tungsten oxide (WO3). J. Mater. Sci. 49(17), 5899–5909 (2014). doi:10.1007/s10853-014-8304-2
J. Zhu, F. Fan, R. Chen, H. An, Z. Feng, C. Li, Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst. Angew. Chem. Int. Ed. 54(31), 9111–9114 (2015). doi:10.1002/anie.201504135
K. Ye, Z. Chai, J. Gu, X. Yu, C. Zhao, Y. Zhang, W. Mai, BiOI-BiVO4 photoanodes with significantly improved solar water splitting capability: p-n junction to expand solar adsorption range and facilitate charge carrier dynamics. Nano Energy 18, 222–231 (2015). doi:10.1016/j.nanoen.2015.10.018
E.S. Kim, H.J. Kang, G. Magesh, J.Y. Kim, J. Jang, J.S. Lee, Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation. ACS Appl. Mater. Interfaces 6(20), 17762–17769 (2014). doi:10.1021/am504283t
Y. Dong, J. Li, X. Li, B. Zhou, The promotion effect of low-molecular hydroxyl compounds on the nano-photoelectrocatalytic degradation of fulvic acid and mechanism. Nano-Micro Lett. 8(4), 320–327 (2016). doi:10.1007/s40820-016-0091-7
J. Su, L. Guo, N. Bao, C.A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11(5), 1928–1933 (2011). doi:10.1021/nl2000743
F.M. Pesci, A.J. Cowan, B.D. Alexander, J.R. Durrant, D.R. Klug, Charge carrier dynamics on mesoporous WO3 during water splitting. J. Phys. Chem. Lett. 2(15), 1900–1903 (2011). doi:10.1021/jz200839n
Y. Wang, H.-Y. Wang, M. Yu, L.-M. Fu, Y. Qin, J.-P. Zhang, X.-C. Ai, Trap-limited charge recombination in intrinsic perovskite film and meso-superstructured perovskite solar cells and the passivation effect of the hole-transport material on trap states. Phys. Chem. Chem. Phys. 17(44), 29501–29506 (2015). doi:10.1039/C5CP04360C
T. Yoshihara, Y. Tamaki, A. Furube, M. Murai, K. Hara, R. Katoh, Effect of pH on absorption spectra of photogenerated holes in nanocrystalline TiO2 films. Chem. Phys. Lett. 438(4), 268–273 (2007). doi:10.1016/j.cplett.2007.03.017