A Porous Nano-Micro-Composite as a High-Performance Bi-Functional Air Electrode with Remarkable Stability for Rechargeable Zinc–Air Batteries
Corresponding Author: Zongping Shao
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 130
Abstract
The development of bi-functional electrocatalyst with high catalytic activity and stable performance for both oxygen evolution/reduction reactions (OER/ORR) in aqueous alkaline solution is key to realize practical application of zinc–air batteries (ZABs). In this study, we reported a new porous nano-micro-composite as a bi-functional electrocatalyst for ZABs, devised by the in situ growth of metal–organic framework (MOF) nanocrystals onto the micrometer-sized Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF) perovskite oxide. Upon carbonization, MOF was converted to porous nitrogen-doped carbon nanocages and ultrafine cobalt oxides and CoN4 nanoparticles dispersing inside the carbon nanocages, which further anchored on the surface of BSCF oxide. We homogeneously dispersed BSCF perovskite particles in the surfactant; subsequently, ZIF-67 nanocrystals were grown onto the BSCF particles. In this way, leaching of metallic or organic species in MOFs and the aggregation of BSCF were effectively suppressed, thus maximizing the number of active sites for improving OER. The BSCF in turn acted as catalyst to promote the graphitization of carbon during pyrolysis, as well as to optimize the transition metal-to-carbon ratio, thus enhancing the ORR catalytic activity. A ZAB fabricated from such air electrode showed outstanding performance with a potential gap of only 0.83 V at 5 mA cm−2 for OER/ORR. Notably, no obvious performance degradation was observed for the continuous charge–discharge operation for 1800 cycles over an extended period of 300 h.
Highlights:
1 A novel high-performance bi-functional electrocatalyst was fabricated by in situ growth of ZIF-67 polyhedrons onto Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF) particles.
2 Strong coupling between different phases endowed the robust structure to the composite, which translated into stable charging/discharging operation for 300 h. And the new interfacial phases significantly promoted the catalytic activity, stability and electrical conductivity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.S. Al-Fatesh, Y. Arafat, A.A. Ibrahim, H. Atia, A.H. Fakeeha, U. Armbruster, A.E. Abasaeed, F. Frusteri, Evaluation of Co–Ni/Sc-SBA–15 as a novel coke resistant catalyst for syngas production via CO2 reforming of methane. Appl. Catal. A 567, 102–111 (2018). https://doi.org/10.1016/j.apcata.2018.09.012
- Z. Qian, Y. Chen, Z. Tang, Z. Liu, X. Wang, Y. Tian, W. Gao, Hollow nanocages of NixCo1−xSe for efficient zinc–air batteries and overall water splitting. Nano-Micro Lett. 11, 28 (2019). https://doi.org/10.1007/s40820-019-0258-0
- B. He, P. Man, Q. Zhang, H. Fu, Z. Zhou et al., All binder-free electrodes for high-performance wearable aqueous rechargeable sodium-ion batteries. Nano-Micro Lett. 11, 101 (2019). https://doi.org/10.1007/s40820-019-0332-7
- X. XiaoLong, D. SiXu, W. Hao, L. JingBing, Y. Hui, Research progress in improving the cycling stability of high voltage LiNi0.5Mn1.5O4 cathode in lithium ion battery. Nano-Micro Lett. 9, 22 (2017). https://doi.org/10.1007/s40820-016-0123-3
- Q. Shao, J. Liu, Q. Wu, Q. Li, H. Wang, Y. Li, Q. Duan, In situ coupling strategy for anchoring monodisperse Co9S8 nanoparticles on S and N dual-doped graphene as a bifunctional electrocatalyst for rechargeable Zn–air battery. Nano-Micro Lett. 11, 4 (2019). https://doi.org/10.1007/s40820-018-0231-3
- Z. Huang, X. Qin, G. Li, W. Yao, J. Liu et al., Co3O4 nanoparticles anchored on nitrogen-doped partially exfoliated multiwall carbon nanotubes as an enhanced oxygen electrocatalyst for the rechargeable and flexible solid-state Zn–air battery. ACS Appl. Energy Mater. 2(6), 4428–4438 (2019). https://doi.org/10.1021/acsaem.9b00675
- N. Qijian, C. Binling, G. Junxia, N. Jun, G. Xindong, M. Guiping, Flexible, porous, and metal–heteroatom-doped carbon nanofibers as efficient ORR electrocatalysts for Zn–Air battery. Nano-Micro Lett. 11, 8 (2019). https://doi.org/10.1007/s40820-019-0238-4
- Y. Zhu, C. Su, X. Xu, W. Zhou, R. Ran, Z. Shao, A universal and facile way for the development of superior bifunctional electrocatalysts for oxygen reduction and evolution reactions utilizing the synergistic effect. Chem. Eur. J. 20(47), 15533–15542 (2014). https://doi.org/10.1002/chem.201403192
- J.T. Mefford, A.A. Kurilovich, J. Saunders, W.G. Hardin, A.M. Abakumov et al., Decoupling the roles of carbon and metal oxides on the electrocatalytic reduction of oxygen on La1−xSrx CoO3−δ perovskite composite electrodes. Phys. Chem. Chem. Phys. 21(6), 3327–3338 (2019). https://doi.org/10.1039/C8CP06268D
- H. Lee, O. Gwon, C. Lim, J. Kim, O. Galindev, G. Kim, Advanced electrochemical properties of PrBa0.5Sr0.5Co1.9Ni0.1O5+δ as a bifunctional catalyst for rechargeable zinc–air batteries. ChemElectroChem 6(12), 3154–3159 (2019). https://doi.org/10.1002/celc.201900633
- X. Xu, Y. Pan, W. Zhou, Y. Chen, Z. Zhang, Z. Shao, Toward enhanced oxygen evolution on perovskite oxides synthesized from different approaches: a case study of Ba0.5Sr0.5Co0.8Fe0.2O1111. Electrochim. Acta 219, 553–559 (2016). https://doi.org/10.1016/j.electacta.2016.10.031
- S. Guo, X. Xu, J. Liu, Q. Zhang, H. Wang, Cohesive porous Co3O4/C composite derived from zeolitic imidazole framework-67 (ZIF-67) single-source precursor as supercapacitor electrode. J. Electrochem. Soc. 166(6), A960–A967 (2019). https://doi.org/10.1149/2.0381906jes
- Y. Zhong, X. Xu, W. Wang, Z. Shao, Recent advances in metal-organic framework derivatives as oxygen catalysts for zinc–air batteries. Batteries Supercaps. 2(4), 272–289 (2019). https://doi.org/10.1002/batt.201800093
- Y. Zhong, X. Xu, Y. Liu, W. Wang, Z. Shao, Recent progress in metal–organic frameworks for lithium–sulfur batteries. Polyhedron 155, 464–484 (2018). https://doi.org/10.1016/j.poly.2018.08.067
- G.H. Moon, M. Yu, C.K. Chan, H. Tüysüz, Highly active cobalt-based electrocatalysts with facile incorporation of dopants for the oxygen evolution reaction. Angew. Chem. Int. Ed. 131(11), 3529–3533 (2019). https://doi.org/10.1002/anie.201813052
- S. Chen, M. Xue, Y. Li, Y. Pan, L. Zhu, S. Qiu, Rational design and synthesis of NixCo3−xO4 nanoparticles derived from multivariate MOF-74 for supercapacitors. J. Mater. Chem. A 3(40), 20145–20152 (2015). https://doi.org/10.1039/C5TA02557E
- S.L. Zhang, B.Y. Guan, H.B. Wu, X.W. David Lou et al., Metal–organic framework-assisted synthesis of compact Fe2O3 nanotubes in Co3O4 host with enhanced lithium storage properties. Nano-Micro Lett. 10, 44 (2018). https://doi.org/10.1007/s40820-018-0197-1
- W. Wang, X. Xu, W. Zhou, Z. Shao, Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Adv. Sci. 4(4), 1600371 (2017). https://doi.org/10.1002/advs.201600371
- Z. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431(7005), 170–173 (2004). https://doi.org/10.1038/nature02863
- J. Shao, Z. Wan, H. Liu, H. Zheng, T. Gao, M. Shen, Q. Qu, H. Zheng, Metal organic frameworks-derived Co3O4 hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage. J. Mater. Chem. A 2(31), 12194–12200 (2014). https://doi.org/10.1039/C4TA01966K
- Y.M. Chen, L. Yu, X.W. Lou, Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew. Chem. Int. Ed. 55(20), 5990–5993 (2016). https://doi.org/10.1002/anie.201600133
- J. Meng, C. Niu, L. Xu, J. Li, X. Liu et al., General oriented formation of carbon nanotubes from metal–organic frameworks. J. Am. Chem. Soc. 139(24), 8212–8221 (2017). https://doi.org/10.1021/jacs.7b01942
- Z. Guo, F. Wang, Z. Li, Y. Yang, A.G. Tamirat et al., Lithiophilic Co/Co4N nanoparticles embedded in hollow N-doped carbon nanocubes stabilizing lithium metal anodes for Li–air batteries. J. Mater. Chem. A 6(44), 22096–22105 (2018). https://doi.org/10.1039/C8TA05013A
- X. Zhu, T. Jin, C. Tian, C. Lu, X. Liu et al., In situ coupling strategy for the preparation of FeCo alloys and Co4N hybrid for highly efficient oxygen evolution. Adv. Mater. 29(47), 1704091 (2017). https://doi.org/10.1002/adma.201704091
- F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, In situ coupling of strung Co4N and intertwined N–C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn–air batteries. J. Am. Chem. Soc. 138(32), 10226–10231 (2016). https://doi.org/10.1021/jacs.6b05046
- A. Bähr, G.-H. Moon, H. Tüysüz, Nitrogen-doped mesostructured carbon-supported metallic cobalt nanoparticles for oxygen evolution reaction. ACS Appl. Energy Mater. 2(9), 6672–6680 (2019). https://doi.org/10.1021/acsaem.9b01183
- M. Yu, C.K. Chan, H. Tüysüz, Coffee-waste templating of metal ion-substituted cobalt oxides for the oxygen evolution reaction. Chemsuschem 11(3), 605–611 (2018). https://doi.org/10.1002/cssc.201701877
- X. Deng, W.N. Schmidt, H. Tüysüz, Impacts of geometry, symmetry, and morphology of nanocast Co3O4 on its catalytic activity for water oxidation. Chem. Mater. 26(21), 6127–6134 (2014). https://doi.org/10.1021/cm5023163
- S. Wu, Z. Zhang, M. Lan, S. Yang, J. Cheng et al., Lithiophilic Cu–CuO–Ni hybrid structure: advanced current collectors toward stable lithium metal anodes. Adv. Mater. 30(9), 1705830 (2018). https://doi.org/10.1002/adma.201705830
- C. Chen, A. Wu, H. Yan, Y. Xiao, C. Tian, H. Fu, Trapping [PMo12O40]3− clusters into pre-synthesized ZIF-67 toward MoxCoxC particles confined in uniform carbon polyhedrons for efficient overall water splitting. Chem. Sci. 9(21), 4746–4755 (2018). https://doi.org/10.1039/C8SC01454J
- H. Qi, Y. Feng, Z. Chi, Y. Cui, M. Wang et al., In situ encapsulation of Co-based nanoparticles into nitrogen-doped carbon nanotubes-modified reduced graphene oxide as an air cathode for high-performance Zn–air batteries. Nanoscale 11(45), 21943–21952 (2019). https://doi.org/10.1039/C9NR07270E
- Y. Guo, P. Yuan, J. Zhang, H. Xia, F. Cheng et al., Co2P–CoN double active centers confined in N-doped carbon nanotube: heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn–air batteries driven water splitting. Adv. Funct. Mater. 28(51), 1805641 (2018). https://doi.org/10.1002/adfm.201805641
- W. Xia, Interactions between metal species and nitrogen-functionalized carbon nanotubes. Catal. Sci. Technol. 6(3), 630–644 (2016). https://doi.org/10.1039/C5CY01694K
- L. Guo, J. Sun, X. Ji, J. Wei, Z. Wen, R. Yao, H. Xu, Q. Ge, Directly converting carbon dioxide to linear α-olefins on bio-promoted catalysts. Commun. Chem. 1(1), 11 (2018). https://doi.org/10.1038/s42004-018-0012-4
- J. Sun, H. Xu, G. Liu, P. Zhu, R. Fan, Y. Yoneyama, N. Tsubaki, Green synthesis of rice bran microsphere catalysts containing natural biopromoters. ChemCatChem 7(11), 1642–1645 (2015). https://doi.org/10.1002/cctc.201500375
- Z.-Y. Wu, X.-X. Xu, B.-C. Hu, H.-W. Liang, Y. Lin, L.-F. Chen, S.-H. Yu, Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem. Int. Ed. 54(28), 8179–8183 (2015). https://doi.org/10.1002/anie.201502173
- X. Ma, K. Li, X. Zhang, B. Wei, H. Yang et al., The surface engineering of cobalt carbide spheres through N, B co-doping achieved by room-temperature in situ anchoring effects for active and durable multifunctional electrocatalysts. J. Mater. Chem. A 7(24), 14904–14915 (2019). https://doi.org/10.1039/C9TA03762D
- I.S. Amiinu, X. Liu, Z. Pu, W. Li, Q. Li et al., From 3D ZIF nanocrystals to Co–Nx/C nanorod array electrocatalysts for ORR, OER, and Zn–air batteries. Adv. Funct. Mater. 28(5), 1704638 (2018). https://doi.org/10.1002/adfm.201704638
- Y. Tian, L. Xu, J. Qian, J. Bao, C. Yan, H. Li, H. Li, S. Zhang, Fe3C/Fe2O3 heterostructure embedded in N-doped graphene as a bifunctional catalyst for quasi-solid-state zinc–air batteries. Carbon 146, 763–771 (2019). https://doi.org/10.1016/j.carbon.2019.02.046
- J. Han, X. Meng, L. Lu, J. Bian, Z. Li, C. Sun, Single-atom Fe–Nx–C as an efficient electrocatalyst for zinc–air batteries. Adv. Funct. Mater. 29(41), 1808872 (2019). https://doi.org/10.1002/adfm.201808872
- L. Lin, Q. Zhu, A.-W. Xu, Noble-metal-free Fe–N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 136(31), 11027–11033 (2014). https://doi.org/10.1021/ja504696r
- X. Xu, C. Su, W. Zhou, Y. Zhu, Y. Chen, Z. Shao, Co-doping strategy for developing perovskite oxides as highly efficient electrocatalysts for oxygen evolution reaction. Adv. Sci. 3(2), 1500187 (2016). https://doi.org/10.1002/advs.201500187
- J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061), 1383–1385 (2011). https://doi.org/10.1126/science.1212858
- D.K. Singh, R.N. Jenjeti, S. Sampath, M. Eswaramoorthy, Two in one: N-doped tubular carbon nanostructure as an efficient metal-free dual electrocatalyst for hydrogen evolution and oxygen reduction reactions. J. Mater. Chem. A 5(13), 6025–6031 (2017). https://doi.org/10.1039/C6TA11057F
- G. Fu, Z. Cui, Y. Chen, Y. Li, Y. Tang, J.B. Goodenough, Ni3Fe-N doped carbon sheets as a bifunctional electrocatalyst for air cathodes. Adv. Energy Mater. 7(1), 1601172 (2017). https://doi.org/10.1002/aenm.201601172
- J. Zhang, Z. Zhao, Z. Xia, L. Dai, A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 10, 444 (2015). https://doi.org/10.1038/nnano.2015.48
- S. Wang, E. Iyyamperumal, A. Roy, Y. Xue, D. Yu, L. Dai, Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: a synergetic effect by co-doping with boron and nitrogen. Angew. Chem. Int. Ed. 50(49), 11756–11760 (2011). https://doi.org/10.1002/anie.201105204
- J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 51(46), 11496–11500 (2012). https://doi.org/10.1002/anie.201206720
- J. Liu, D. Zhu, C. Guo, A. Vasileff, S.Z. Qiao, Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions. Adv. Energy Mater. 7(23), 1700518 (2017). https://doi.org/10.1002/aenm.201700518
- B. Chen, X. He, F. Yin, H. Wang, D.-J. Liu, R. Shi, J. Chen, H. Yin, MO-Co@N-doped carbon (M = Zn or Co): vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn–air battery. Adv. Funct. Mater. 27(37), 1700795 (2017). https://doi.org/10.1002/adfm.201700795
- Y. Bu, H. Jang, O. Gwon, S.H. Kim, S.H. Joo et al., Synergistic interaction of perovskite oxides and N-doped graphene in versatile electrocatalyst. J. Mater. Chem. A 7(5), 2048–2054 (2019). https://doi.org/10.1039/C8TA09919G
- J. Zhang, H. Li, P. Guo, H. Ma, X. Zhao, Rational design of graphitic carbon based nanostructures for advanced electrocatalysis. J. Mater. Chem. A 4(22), 8497–8511 (2016). https://doi.org/10.1039/C6TA01657J
- H. Tüysüz, Y.J. Hwang, S.B. Khan, A.M. Asiri, P. Yang, Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res. 6(1), 47–54 (2013). https://doi.org/10.1007/s12274-012-0280-8
- X. Deng, C.K. Chan, H. Tüysüz, Spent tea leaf templating of cobalt-based mixed oxide nanocrystals for water oxidation. ACS Appl. Mater. Interfaces. 8(47), 32488–32495 (2016). https://doi.org/10.1021/acsami.6b12005
References
A.S. Al-Fatesh, Y. Arafat, A.A. Ibrahim, H. Atia, A.H. Fakeeha, U. Armbruster, A.E. Abasaeed, F. Frusteri, Evaluation of Co–Ni/Sc-SBA–15 as a novel coke resistant catalyst for syngas production via CO2 reforming of methane. Appl. Catal. A 567, 102–111 (2018). https://doi.org/10.1016/j.apcata.2018.09.012
Z. Qian, Y. Chen, Z. Tang, Z. Liu, X. Wang, Y. Tian, W. Gao, Hollow nanocages of NixCo1−xSe for efficient zinc–air batteries and overall water splitting. Nano-Micro Lett. 11, 28 (2019). https://doi.org/10.1007/s40820-019-0258-0
B. He, P. Man, Q. Zhang, H. Fu, Z. Zhou et al., All binder-free electrodes for high-performance wearable aqueous rechargeable sodium-ion batteries. Nano-Micro Lett. 11, 101 (2019). https://doi.org/10.1007/s40820-019-0332-7
X. XiaoLong, D. SiXu, W. Hao, L. JingBing, Y. Hui, Research progress in improving the cycling stability of high voltage LiNi0.5Mn1.5O4 cathode in lithium ion battery. Nano-Micro Lett. 9, 22 (2017). https://doi.org/10.1007/s40820-016-0123-3
Q. Shao, J. Liu, Q. Wu, Q. Li, H. Wang, Y. Li, Q. Duan, In situ coupling strategy for anchoring monodisperse Co9S8 nanoparticles on S and N dual-doped graphene as a bifunctional electrocatalyst for rechargeable Zn–air battery. Nano-Micro Lett. 11, 4 (2019). https://doi.org/10.1007/s40820-018-0231-3
Z. Huang, X. Qin, G. Li, W. Yao, J. Liu et al., Co3O4 nanoparticles anchored on nitrogen-doped partially exfoliated multiwall carbon nanotubes as an enhanced oxygen electrocatalyst for the rechargeable and flexible solid-state Zn–air battery. ACS Appl. Energy Mater. 2(6), 4428–4438 (2019). https://doi.org/10.1021/acsaem.9b00675
N. Qijian, C. Binling, G. Junxia, N. Jun, G. Xindong, M. Guiping, Flexible, porous, and metal–heteroatom-doped carbon nanofibers as efficient ORR electrocatalysts for Zn–Air battery. Nano-Micro Lett. 11, 8 (2019). https://doi.org/10.1007/s40820-019-0238-4
Y. Zhu, C. Su, X. Xu, W. Zhou, R. Ran, Z. Shao, A universal and facile way for the development of superior bifunctional electrocatalysts for oxygen reduction and evolution reactions utilizing the synergistic effect. Chem. Eur. J. 20(47), 15533–15542 (2014). https://doi.org/10.1002/chem.201403192
J.T. Mefford, A.A. Kurilovich, J. Saunders, W.G. Hardin, A.M. Abakumov et al., Decoupling the roles of carbon and metal oxides on the electrocatalytic reduction of oxygen on La1−xSrx CoO3−δ perovskite composite electrodes. Phys. Chem. Chem. Phys. 21(6), 3327–3338 (2019). https://doi.org/10.1039/C8CP06268D
H. Lee, O. Gwon, C. Lim, J. Kim, O. Galindev, G. Kim, Advanced electrochemical properties of PrBa0.5Sr0.5Co1.9Ni0.1O5+δ as a bifunctional catalyst for rechargeable zinc–air batteries. ChemElectroChem 6(12), 3154–3159 (2019). https://doi.org/10.1002/celc.201900633
X. Xu, Y. Pan, W. Zhou, Y. Chen, Z. Zhang, Z. Shao, Toward enhanced oxygen evolution on perovskite oxides synthesized from different approaches: a case study of Ba0.5Sr0.5Co0.8Fe0.2O1111. Electrochim. Acta 219, 553–559 (2016). https://doi.org/10.1016/j.electacta.2016.10.031
S. Guo, X. Xu, J. Liu, Q. Zhang, H. Wang, Cohesive porous Co3O4/C composite derived from zeolitic imidazole framework-67 (ZIF-67) single-source precursor as supercapacitor electrode. J. Electrochem. Soc. 166(6), A960–A967 (2019). https://doi.org/10.1149/2.0381906jes
Y. Zhong, X. Xu, W. Wang, Z. Shao, Recent advances in metal-organic framework derivatives as oxygen catalysts for zinc–air batteries. Batteries Supercaps. 2(4), 272–289 (2019). https://doi.org/10.1002/batt.201800093
Y. Zhong, X. Xu, Y. Liu, W. Wang, Z. Shao, Recent progress in metal–organic frameworks for lithium–sulfur batteries. Polyhedron 155, 464–484 (2018). https://doi.org/10.1016/j.poly.2018.08.067
G.H. Moon, M. Yu, C.K. Chan, H. Tüysüz, Highly active cobalt-based electrocatalysts with facile incorporation of dopants for the oxygen evolution reaction. Angew. Chem. Int. Ed. 131(11), 3529–3533 (2019). https://doi.org/10.1002/anie.201813052
S. Chen, M. Xue, Y. Li, Y. Pan, L. Zhu, S. Qiu, Rational design and synthesis of NixCo3−xO4 nanoparticles derived from multivariate MOF-74 for supercapacitors. J. Mater. Chem. A 3(40), 20145–20152 (2015). https://doi.org/10.1039/C5TA02557E
S.L. Zhang, B.Y. Guan, H.B. Wu, X.W. David Lou et al., Metal–organic framework-assisted synthesis of compact Fe2O3 nanotubes in Co3O4 host with enhanced lithium storage properties. Nano-Micro Lett. 10, 44 (2018). https://doi.org/10.1007/s40820-018-0197-1
W. Wang, X. Xu, W. Zhou, Z. Shao, Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Adv. Sci. 4(4), 1600371 (2017). https://doi.org/10.1002/advs.201600371
Z. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431(7005), 170–173 (2004). https://doi.org/10.1038/nature02863
J. Shao, Z. Wan, H. Liu, H. Zheng, T. Gao, M. Shen, Q. Qu, H. Zheng, Metal organic frameworks-derived Co3O4 hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage. J. Mater. Chem. A 2(31), 12194–12200 (2014). https://doi.org/10.1039/C4TA01966K
Y.M. Chen, L. Yu, X.W. Lou, Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew. Chem. Int. Ed. 55(20), 5990–5993 (2016). https://doi.org/10.1002/anie.201600133
J. Meng, C. Niu, L. Xu, J. Li, X. Liu et al., General oriented formation of carbon nanotubes from metal–organic frameworks. J. Am. Chem. Soc. 139(24), 8212–8221 (2017). https://doi.org/10.1021/jacs.7b01942
Z. Guo, F. Wang, Z. Li, Y. Yang, A.G. Tamirat et al., Lithiophilic Co/Co4N nanoparticles embedded in hollow N-doped carbon nanocubes stabilizing lithium metal anodes for Li–air batteries. J. Mater. Chem. A 6(44), 22096–22105 (2018). https://doi.org/10.1039/C8TA05013A
X. Zhu, T. Jin, C. Tian, C. Lu, X. Liu et al., In situ coupling strategy for the preparation of FeCo alloys and Co4N hybrid for highly efficient oxygen evolution. Adv. Mater. 29(47), 1704091 (2017). https://doi.org/10.1002/adma.201704091
F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, In situ coupling of strung Co4N and intertwined N–C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn–air batteries. J. Am. Chem. Soc. 138(32), 10226–10231 (2016). https://doi.org/10.1021/jacs.6b05046
A. Bähr, G.-H. Moon, H. Tüysüz, Nitrogen-doped mesostructured carbon-supported metallic cobalt nanoparticles for oxygen evolution reaction. ACS Appl. Energy Mater. 2(9), 6672–6680 (2019). https://doi.org/10.1021/acsaem.9b01183
M. Yu, C.K. Chan, H. Tüysüz, Coffee-waste templating of metal ion-substituted cobalt oxides for the oxygen evolution reaction. Chemsuschem 11(3), 605–611 (2018). https://doi.org/10.1002/cssc.201701877
X. Deng, W.N. Schmidt, H. Tüysüz, Impacts of geometry, symmetry, and morphology of nanocast Co3O4 on its catalytic activity for water oxidation. Chem. Mater. 26(21), 6127–6134 (2014). https://doi.org/10.1021/cm5023163
S. Wu, Z. Zhang, M. Lan, S. Yang, J. Cheng et al., Lithiophilic Cu–CuO–Ni hybrid structure: advanced current collectors toward stable lithium metal anodes. Adv. Mater. 30(9), 1705830 (2018). https://doi.org/10.1002/adma.201705830
C. Chen, A. Wu, H. Yan, Y. Xiao, C. Tian, H. Fu, Trapping [PMo12O40]3− clusters into pre-synthesized ZIF-67 toward MoxCoxC particles confined in uniform carbon polyhedrons for efficient overall water splitting. Chem. Sci. 9(21), 4746–4755 (2018). https://doi.org/10.1039/C8SC01454J
H. Qi, Y. Feng, Z. Chi, Y. Cui, M. Wang et al., In situ encapsulation of Co-based nanoparticles into nitrogen-doped carbon nanotubes-modified reduced graphene oxide as an air cathode for high-performance Zn–air batteries. Nanoscale 11(45), 21943–21952 (2019). https://doi.org/10.1039/C9NR07270E
Y. Guo, P. Yuan, J. Zhang, H. Xia, F. Cheng et al., Co2P–CoN double active centers confined in N-doped carbon nanotube: heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn–air batteries driven water splitting. Adv. Funct. Mater. 28(51), 1805641 (2018). https://doi.org/10.1002/adfm.201805641
W. Xia, Interactions between metal species and nitrogen-functionalized carbon nanotubes. Catal. Sci. Technol. 6(3), 630–644 (2016). https://doi.org/10.1039/C5CY01694K
L. Guo, J. Sun, X. Ji, J. Wei, Z. Wen, R. Yao, H. Xu, Q. Ge, Directly converting carbon dioxide to linear α-olefins on bio-promoted catalysts. Commun. Chem. 1(1), 11 (2018). https://doi.org/10.1038/s42004-018-0012-4
J. Sun, H. Xu, G. Liu, P. Zhu, R. Fan, Y. Yoneyama, N. Tsubaki, Green synthesis of rice bran microsphere catalysts containing natural biopromoters. ChemCatChem 7(11), 1642–1645 (2015). https://doi.org/10.1002/cctc.201500375
Z.-Y. Wu, X.-X. Xu, B.-C. Hu, H.-W. Liang, Y. Lin, L.-F. Chen, S.-H. Yu, Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem. Int. Ed. 54(28), 8179–8183 (2015). https://doi.org/10.1002/anie.201502173
X. Ma, K. Li, X. Zhang, B. Wei, H. Yang et al., The surface engineering of cobalt carbide spheres through N, B co-doping achieved by room-temperature in situ anchoring effects for active and durable multifunctional electrocatalysts. J. Mater. Chem. A 7(24), 14904–14915 (2019). https://doi.org/10.1039/C9TA03762D
I.S. Amiinu, X. Liu, Z. Pu, W. Li, Q. Li et al., From 3D ZIF nanocrystals to Co–Nx/C nanorod array electrocatalysts for ORR, OER, and Zn–air batteries. Adv. Funct. Mater. 28(5), 1704638 (2018). https://doi.org/10.1002/adfm.201704638
Y. Tian, L. Xu, J. Qian, J. Bao, C. Yan, H. Li, H. Li, S. Zhang, Fe3C/Fe2O3 heterostructure embedded in N-doped graphene as a bifunctional catalyst for quasi-solid-state zinc–air batteries. Carbon 146, 763–771 (2019). https://doi.org/10.1016/j.carbon.2019.02.046
J. Han, X. Meng, L. Lu, J. Bian, Z. Li, C. Sun, Single-atom Fe–Nx–C as an efficient electrocatalyst for zinc–air batteries. Adv. Funct. Mater. 29(41), 1808872 (2019). https://doi.org/10.1002/adfm.201808872
L. Lin, Q. Zhu, A.-W. Xu, Noble-metal-free Fe–N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 136(31), 11027–11033 (2014). https://doi.org/10.1021/ja504696r
X. Xu, C. Su, W. Zhou, Y. Zhu, Y. Chen, Z. Shao, Co-doping strategy for developing perovskite oxides as highly efficient electrocatalysts for oxygen evolution reaction. Adv. Sci. 3(2), 1500187 (2016). https://doi.org/10.1002/advs.201500187
J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061), 1383–1385 (2011). https://doi.org/10.1126/science.1212858
D.K. Singh, R.N. Jenjeti, S. Sampath, M. Eswaramoorthy, Two in one: N-doped tubular carbon nanostructure as an efficient metal-free dual electrocatalyst for hydrogen evolution and oxygen reduction reactions. J. Mater. Chem. A 5(13), 6025–6031 (2017). https://doi.org/10.1039/C6TA11057F
G. Fu, Z. Cui, Y. Chen, Y. Li, Y. Tang, J.B. Goodenough, Ni3Fe-N doped carbon sheets as a bifunctional electrocatalyst for air cathodes. Adv. Energy Mater. 7(1), 1601172 (2017). https://doi.org/10.1002/aenm.201601172
J. Zhang, Z. Zhao, Z. Xia, L. Dai, A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 10, 444 (2015). https://doi.org/10.1038/nnano.2015.48
S. Wang, E. Iyyamperumal, A. Roy, Y. Xue, D. Yu, L. Dai, Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: a synergetic effect by co-doping with boron and nitrogen. Angew. Chem. Int. Ed. 50(49), 11756–11760 (2011). https://doi.org/10.1002/anie.201105204
J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 51(46), 11496–11500 (2012). https://doi.org/10.1002/anie.201206720
J. Liu, D. Zhu, C. Guo, A. Vasileff, S.Z. Qiao, Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions. Adv. Energy Mater. 7(23), 1700518 (2017). https://doi.org/10.1002/aenm.201700518
B. Chen, X. He, F. Yin, H. Wang, D.-J. Liu, R. Shi, J. Chen, H. Yin, MO-Co@N-doped carbon (M = Zn or Co): vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn–air battery. Adv. Funct. Mater. 27(37), 1700795 (2017). https://doi.org/10.1002/adfm.201700795
Y. Bu, H. Jang, O. Gwon, S.H. Kim, S.H. Joo et al., Synergistic interaction of perovskite oxides and N-doped graphene in versatile electrocatalyst. J. Mater. Chem. A 7(5), 2048–2054 (2019). https://doi.org/10.1039/C8TA09919G
J. Zhang, H. Li, P. Guo, H. Ma, X. Zhao, Rational design of graphitic carbon based nanostructures for advanced electrocatalysis. J. Mater. Chem. A 4(22), 8497–8511 (2016). https://doi.org/10.1039/C6TA01657J
H. Tüysüz, Y.J. Hwang, S.B. Khan, A.M. Asiri, P. Yang, Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res. 6(1), 47–54 (2013). https://doi.org/10.1007/s12274-012-0280-8
X. Deng, C.K. Chan, H. Tüysüz, Spent tea leaf templating of cobalt-based mixed oxide nanocrystals for water oxidation. ACS Appl. Mater. Interfaces. 8(47), 32488–32495 (2016). https://doi.org/10.1021/acsami.6b12005