Formamidinium Lead Bromide (FAPbBr3) Perovskite Microcrystals for Sensitive and Fast Photodetectors
Corresponding Author: Rongxing He
Nano-Micro Letters,
Vol. 10 No. 3 (2018), Article Number: 43
Abstract
Because of the good thermal stability and superior carrier transport characteristics of formamidinium lead trihalide perovskite HC(NH2)2PbX3 (FAPbX3), it has been considered to be a better optoelectronic material than conventional CH3NH3PbX3 (MAPbX3). Herein, we fabricated a FAPbBr3 microcrystal-based photodetector that exhibited a good responsivity of 4000 A W−1 and external quantum efficiency up to 106% under one-photon excitation, corresponding to the detectivity greater than 1014 Jones. The responsivity is two orders of magnitude higher than that of previously reported formamidinium perovskite photodetectors. Furthermore, the FAPbBr3 photodetector’s responsivity to two-photon absorption with an 800-nm excitation source can reach 0.07 A W−1, which is four orders of magnitude higher than that of its MAPbBr3 counterparts. The response time of this photodetector is less than 1 ms. This study provides solid evidence that FAPbBr3 can be an excellent candidate for highly sensitive and fast photodetectors.
Highlights:
1 Formamidinium lead trihalide (FAPbBr3) microcrystal-based photodetectors facilitate efficient charge transfer.
2 The fabricated FAPbBr3 photodetector shows good responsivity, external quantum efficiency, and detectivity.
3 Two-photon performance of the photodetectors is better than that previously reported for MAPbBr3 photodetectors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Zhao, X. Xiong, Y. Han, L. Wen, Z. Zou et al., Fe-doped p-ZnO nanostructures/n-gan heterojunction for “blue-free” orange light-emitting diodes. Adv. Opt. Mater. 5(17), 1700146 (2017). https://doi.org/10.1002/adom.201700146
- G. Li, Z.K. Tan, D. Di, M.L. Lai, L. Jiang, J.H. Lim, R.H. Friend, N.C. Greenham, Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett. 15(4), 2640–2644 (2015). https://doi.org/10.1021/acs.nanolett.5b00235
- W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intermolecular exchange. Science 348, 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272
- Y. Wang, Y. Chen, W. Zhao, L. Ding, L. Wen et al., A self-powered fast-response ultraviolet detector of p-n homojunction assembled from two ZnO-based nanowires. Nano-Micro Lett. 9, 11 (2016). https://doi.org/10.1007/s40820-016-0112-6
- Z. Kang, Y. Ma, X. Tan, M. Zhu, Z. Zheng et al., MXene-silicon van der waals heterostructures for high-speed self-driven photodetectors. Adv. Electron. Mater. 3(9), 1700165 (2017). https://doi.org/10.1002/aelm.201700165
- X. Zhang, X. Han, J. Su, Q. Zhang, Y. Gao, Well vertically aligned ZnO nanowire arrays with an ultra-fast recovery time for UV photodetector. Appl. Phys. A 107(2), 255–260 (2012). https://doi.org/10.1007/s00339-012-6886-6
- S. Li, S. Tong, J. Yang, H. Xia, C. Zhang et al., High-performance formamidinium-based perovskite photodetectors fabricated via doctor-blading deposition in ambient condition. Org. Electron. 47, 102–107 (2017). https://doi.org/10.1016/j.orgel.2017.05.010
- B. Yang, F. Zhang, J. Chen, S. Yang, X. Xia, T. Pullerits, W. Deng, K. Han, Ultrasensitive and fast all-inorganic perovskite-based photodetector via fast carrier diffusion. Adv. Mater. 29, 1703758 (2017). https://doi.org/10.1002/adma.201703758
- X. Zhang, S. Yang, H. Zhou, J. Liang, H. Liu et al., Perovskite-erbium silicate nanosheet hybrid waveguide photodetectors at the near-infrared telecommunication band. Adv. Mater. 29(21), 1604431 (2017). https://doi.org/10.1002/adma.201604431
- D. Dong, H. Deng, C. Hu, H. Song, K. Qiao et al., Bandgap tunable Csx(CH3NH3)1-xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices. Nanoscale 9(4), 1567–1574 (2017). https://doi.org/10.1039/C6NR06636D
- Q. Chen, N. De Marco, Y.M. Yang, T.B. Song, C.C. Chen, H. Zhao, Z. Hong, H. Zhou, Y. Yang, Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10(3), 355–396 (2015). https://doi.org/10.1016/j.nantod.2015.04.009
- J. Zhang, X. Yang, H. Deng, K. Qiao, U. Farooq et al., Low-dimensional halide perovskites and their advanced optoelectronic applications. Nano-Micro Lett. 9(3), 36 (2017). https://doi.org/10.1007/s40820-017-0137-5
- J.S. Manser, J.A. Christians, P.V. Kamat, Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 116(21), 12956–13008 (2016). https://doi.org/10.1021/acs.chemrev.6b00136
- M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134
- G. Xing, N. ews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013). https://doi.org/10.1126/science.1243167
- W. Zhang, M. Saliba, D.T. Moore, S.K. Pathak, M.T. Hörantner et al., Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6, 6142 (2015). https://doi.org/10.1038/ncomms7142
- C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26(10), 1584–1589 (2014). https://doi.org/10.1002/adma.201305172
- D.A. Valverde-Chávez, C.S. Ponseca, C.C. Stoumpos, A. Yartsev, M.G. Kanatzidis, V. Sundström, D.G. Cooke, Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3. Energy Environ. Sci. 8(12), 3700–3707 (2015). https://doi.org/10.1039/C5EE02503F
- D.N. Dirin, I. Cherniukh, S. Yakunin, Y. Shynkarenko, M.V. Kovalenko, Solution-grown CsPbBr 3 perovskite single crystals for photon detection. Chem. Mater. 28(23), 8470–8474 (2016). https://doi.org/10.1021/acs.chemmater.6b04298
- D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu et al., Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347(6221), 519–522 (2015). https://doi.org/10.1126/science.aaa2725
- M.I. Saidaminov, A.L. Abdelhady, B. Murali, E. Alarousu, V.M. Burlakov et al., High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015). https://doi.org/10.1038/ncomms8586
- Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347(6225), 967–970 (2015). https://doi.org/10.1126/science.aaa5760
- S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). https://doi.org/10.1126/science.1243982
- M.I. Saidaminov, V. Adinolfi, R. Comin, A.L. Abdelhady, W. Peng et al., Planar-integrated single-crystalline perovskite photodetectors. Nat. Commun. 6, 8724 (2015). https://doi.org/10.1038/ncomms9724
- C. Bao, Z. Chen, Y. Fang, H. Wei, Y. Deng, X. Xiao, L. Li, J. Huang, Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals. Adv. Mater. 29(39), 1703209 (2017). https://doi.org/10.1002/adma.201703209
- J. Yang, T. Yu, K. Zhu, Q. Xu, High-gain and fast-response metal-semiconductor-metal structured organolead halide perovskite photodetectors. J. Phys. D Appl. Phys. 50(49), 495102 (2017). https://doi.org/10.1088/1361-6463/aa918c
- W. Hu, R. Wu, S. Yang, P. Fan, J. Yang, A. Pan, Solvent-induced crystallization for hybrid perovskite thin-film photodetector with high-performance and low working voltage. J. Phys. D Appl. Phys. 50(37), 375101 (2017). https://doi.org/10.1088/1361-6463/aa8059
- V. Adinolfi, O. Ouellette, M.I. Saidaminov, G. Walters, A.L. Abdelhady, O.M. Bakr, E.H. Sargent, Fast and sensitive solution-processed visible-blind perovskite uv photodetectors. Adv. Mater. 28(33), 7264–7268 (2016). https://doi.org/10.1002/adma.201601196
- G. Maculan, A.D. Sheikh, A.L. Abdelhady, M.I. Saidaminov, M.A. Haque et al., CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind uv-photodetector. J. Phys. Chem. Lett. 6(19), 3781–3786 (2015). https://doi.org/10.1021/acs.jpclett.5b01666
- T.B. Song, Q. Chen, H. Zhou, C. Jiang, H.H. Wang, Y.M. Yang, Y. Liu, J. You, Y. Yang, Perovskite solar cells: film formation and properties. J. Mater. Chem. A 3(17), 9032–9050 (2015). https://doi.org/10.1039/C4TA05246C
- X. Li, M.I. Dar, C. Yi, J. Luo, M. Tschumi, S.M. Zakeeruddin, M.K. Nazeeruddin, H. Han, M. Grätzel, Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 7(9), 703–711 (2015). https://doi.org/10.1038/nchem.2324
- T.M. Koh, K. Fu, Y. Fang, S. Chen, T. Sum, N. ews, S.G. Mhaisalkar, P.P. Boix, T. Baikie, Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C 118(30), 16458–16462 (2013). https://doi.org/10.1021/jp411112k
- G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982–988 (2014). https://doi.org/10.1039/C3EE43822H
- T.J. Jacobsson, J.P. Correa-Baena, M. Pazoki, M. Saliba, K. Schenk, M. Grätzel, A. Hagfeldt, Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy Environ. Sci. 9(5), 1706–1724 (2016). https://doi.org/10.1039/C6EE00030D
- F.C. Hanusch, E. Wiesenmayer, E. Mankel, A. Binek, P. Angloher et al., Efficient planar heterojunction perovskite solar cells based on formamidinium lead bromide. J. Phys. Chem. Lett. 5(16), 2791–2795 (2014). https://doi.org/10.1021/jz501237m
- N. Pellet, P. Gao, G. Gregori, T.Y. Yang, M.K. Nazeeruddin, J. Maier, M. Grätzel, Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Edit. 53(12), 3151–3157 (2014). https://doi.org/10.1002/anie.201309361
- A.A. Zhumekenov, M.I. Saidaminov, M.A. Haque, E. Alarousu, S.P. Sarmah et al., Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length. ACS Energy Lett. 1(1), 32–37 (2016). https://doi.org/10.1021/acsenergylett.6b00002
- D. Yu, F. Cao, Y. Shen, X. Liu, Y. Zhu, H. Zeng, Dimensionality and interface engineering of 2d homologous perovskites for boosted charge-carrier transport and photodetection performances. J. Phys. Chem. Lett. 8(12), 2565–2572 (2017). https://doi.org/10.1021/acs.jpclett.7b00993
- M.I. Saidaminov, A.L. Abdelhady, G. Maculan, O.M. Bakr, Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth. Chem. Commun. 51(100), 17658–17661 (2015). https://doi.org/10.1039/C5CC06916E
- N. Arora, M.I. Dar, M. Hezam, W. Tress, G. Jacopin et al., Photovoltaic and amplified spontaneous emission studies of high-quality formamidinium lead bromide perovskite films. Adv. Funct. Mater. 26(17), 2846–2854 (2016). https://doi.org/10.1002/adfm.201504977
- Q. Han, S.H. Bae, P. Sun, Y.T. Hsieh, Y.M. Yang et al., Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv. Mater. 28(11), 2253–2258 (2016). https://doi.org/10.1002/adma.201505002
- R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao et al., High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv. Mater. 27(11), 1912–1918 (2015). https://doi.org/10.1002/adma.201405116
- W. Hu, W. Huang, S. Yang, X. Wang, Z. Jiang et al., High-performance flexible photodetectors based on high-quality perovskite thin films by a vapor-solution method. Adv. Mater. 29(43), 1703256 (2017). https://doi.org/10.1002/adma.201703256
- M. Ahmadi, T. Wu, B. Hu, A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics. Adv. Mater. 29(41), 1605242 (2017). https://doi.org/10.1002/adma.201605242
- Y. Liu, J. Sun, Z. Yang, D. Yang, X. Ren, H. Xu, Z. Yang, S.F. Liu, 20-mm-large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors. Adv. Opt. Mater. 4(11), 1829–1837 (2016). https://doi.org/10.1002/adom.201600327
- M.I. Saidaminov, M. Haque, M. Savoie, A.L. Abdelhady, N. Cho et al., Perovskite photodetectors operating in both narrowband and broadband regimes. Adv. Mater. 28(37), 8144–8149 (2016). https://doi.org/10.1002/adma.201601235
- V. Liberman, M. Rothschild, O. Bakr, F. Stellacci, Optical limiting with complex plasmonic nanops. J. Opt. 12(6), 065001 (2010). https://doi.org/10.1088/2040-8978/12/6/065001
- E. Chong, T. Watson, F. Festy, Autocorrelation measurement of femtosecond laser pulses based on two-photon absorption in gap photodiode. Appl. Phys. Lett. 105(6), 062111 (2014). https://doi.org/10.1063/1.4893423
- W.R. Zipfel, R.M. Williams, Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21(11), 1369–1377 (2003). https://doi.org/10.1038/nbt899
- W. Haske, V.W. Chen, J.M. Hales, W. Dong, S. Barlow, S.R. Marder, J.W. Perry, 65 nm feature sizes using visible wavelength 3-D multiphoton lithography. Opt. Express 15(6), 3426–3436 (2007). https://doi.org/10.1364/OE.15.003426
- G. Walters, B.R. Sutherland, S. Hoogland, D. Shi, R. Comin, D.P. Sellan, O.M. Bakr, E.H. Sargent, Two-photon absorption in organometallic bromide perovskites. ACS Nano 9(9), 9340–9346 (2015). https://doi.org/10.1021/acsnano.5b03308
- Q. Lin, A. Armin, P.L. Burn, P. Meredith, Near infrared photodetectors based on sub-gap absorption in organohalide perovskite single crystals. Laser Photonics Rev. 10(6), 1047–1053 (2016). https://doi.org/10.1002/lpor.201600215
- B. Yang, X. Mao, S. Yang, Y. Li, Y. Wang, M. Wang, W. Deng, K. Han, Low threshold two-photon-pumped amplified spontaneous emission in CH3NH3PbBr3 microdisks. ACS Appl. Mater. Interfaces 8(30), 19587–19592 (2016). https://doi.org/10.1021/acsami.6b04246
References
W. Zhao, X. Xiong, Y. Han, L. Wen, Z. Zou et al., Fe-doped p-ZnO nanostructures/n-gan heterojunction for “blue-free” orange light-emitting diodes. Adv. Opt. Mater. 5(17), 1700146 (2017). https://doi.org/10.1002/adom.201700146
G. Li, Z.K. Tan, D. Di, M.L. Lai, L. Jiang, J.H. Lim, R.H. Friend, N.C. Greenham, Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett. 15(4), 2640–2644 (2015). https://doi.org/10.1021/acs.nanolett.5b00235
W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intermolecular exchange. Science 348, 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272
Y. Wang, Y. Chen, W. Zhao, L. Ding, L. Wen et al., A self-powered fast-response ultraviolet detector of p-n homojunction assembled from two ZnO-based nanowires. Nano-Micro Lett. 9, 11 (2016). https://doi.org/10.1007/s40820-016-0112-6
Z. Kang, Y. Ma, X. Tan, M. Zhu, Z. Zheng et al., MXene-silicon van der waals heterostructures for high-speed self-driven photodetectors. Adv. Electron. Mater. 3(9), 1700165 (2017). https://doi.org/10.1002/aelm.201700165
X. Zhang, X. Han, J. Su, Q. Zhang, Y. Gao, Well vertically aligned ZnO nanowire arrays with an ultra-fast recovery time for UV photodetector. Appl. Phys. A 107(2), 255–260 (2012). https://doi.org/10.1007/s00339-012-6886-6
S. Li, S. Tong, J. Yang, H. Xia, C. Zhang et al., High-performance formamidinium-based perovskite photodetectors fabricated via doctor-blading deposition in ambient condition. Org. Electron. 47, 102–107 (2017). https://doi.org/10.1016/j.orgel.2017.05.010
B. Yang, F. Zhang, J. Chen, S. Yang, X. Xia, T. Pullerits, W. Deng, K. Han, Ultrasensitive and fast all-inorganic perovskite-based photodetector via fast carrier diffusion. Adv. Mater. 29, 1703758 (2017). https://doi.org/10.1002/adma.201703758
X. Zhang, S. Yang, H. Zhou, J. Liang, H. Liu et al., Perovskite-erbium silicate nanosheet hybrid waveguide photodetectors at the near-infrared telecommunication band. Adv. Mater. 29(21), 1604431 (2017). https://doi.org/10.1002/adma.201604431
D. Dong, H. Deng, C. Hu, H. Song, K. Qiao et al., Bandgap tunable Csx(CH3NH3)1-xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices. Nanoscale 9(4), 1567–1574 (2017). https://doi.org/10.1039/C6NR06636D
Q. Chen, N. De Marco, Y.M. Yang, T.B. Song, C.C. Chen, H. Zhao, Z. Hong, H. Zhou, Y. Yang, Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10(3), 355–396 (2015). https://doi.org/10.1016/j.nantod.2015.04.009
J. Zhang, X. Yang, H. Deng, K. Qiao, U. Farooq et al., Low-dimensional halide perovskites and their advanced optoelectronic applications. Nano-Micro Lett. 9(3), 36 (2017). https://doi.org/10.1007/s40820-017-0137-5
J.S. Manser, J.A. Christians, P.V. Kamat, Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 116(21), 12956–13008 (2016). https://doi.org/10.1021/acs.chemrev.6b00136
M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134
G. Xing, N. ews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013). https://doi.org/10.1126/science.1243167
W. Zhang, M. Saliba, D.T. Moore, S.K. Pathak, M.T. Hörantner et al., Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6, 6142 (2015). https://doi.org/10.1038/ncomms7142
C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26(10), 1584–1589 (2014). https://doi.org/10.1002/adma.201305172
D.A. Valverde-Chávez, C.S. Ponseca, C.C. Stoumpos, A. Yartsev, M.G. Kanatzidis, V. Sundström, D.G. Cooke, Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3. Energy Environ. Sci. 8(12), 3700–3707 (2015). https://doi.org/10.1039/C5EE02503F
D.N. Dirin, I. Cherniukh, S. Yakunin, Y. Shynkarenko, M.V. Kovalenko, Solution-grown CsPbBr 3 perovskite single crystals for photon detection. Chem. Mater. 28(23), 8470–8474 (2016). https://doi.org/10.1021/acs.chemmater.6b04298
D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu et al., Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347(6221), 519–522 (2015). https://doi.org/10.1126/science.aaa2725
M.I. Saidaminov, A.L. Abdelhady, B. Murali, E. Alarousu, V.M. Burlakov et al., High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015). https://doi.org/10.1038/ncomms8586
Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347(6225), 967–970 (2015). https://doi.org/10.1126/science.aaa5760
S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). https://doi.org/10.1126/science.1243982
M.I. Saidaminov, V. Adinolfi, R. Comin, A.L. Abdelhady, W. Peng et al., Planar-integrated single-crystalline perovskite photodetectors. Nat. Commun. 6, 8724 (2015). https://doi.org/10.1038/ncomms9724
C. Bao, Z. Chen, Y. Fang, H. Wei, Y. Deng, X. Xiao, L. Li, J. Huang, Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals. Adv. Mater. 29(39), 1703209 (2017). https://doi.org/10.1002/adma.201703209
J. Yang, T. Yu, K. Zhu, Q. Xu, High-gain and fast-response metal-semiconductor-metal structured organolead halide perovskite photodetectors. J. Phys. D Appl. Phys. 50(49), 495102 (2017). https://doi.org/10.1088/1361-6463/aa918c
W. Hu, R. Wu, S. Yang, P. Fan, J. Yang, A. Pan, Solvent-induced crystallization for hybrid perovskite thin-film photodetector with high-performance and low working voltage. J. Phys. D Appl. Phys. 50(37), 375101 (2017). https://doi.org/10.1088/1361-6463/aa8059
V. Adinolfi, O. Ouellette, M.I. Saidaminov, G. Walters, A.L. Abdelhady, O.M. Bakr, E.H. Sargent, Fast and sensitive solution-processed visible-blind perovskite uv photodetectors. Adv. Mater. 28(33), 7264–7268 (2016). https://doi.org/10.1002/adma.201601196
G. Maculan, A.D. Sheikh, A.L. Abdelhady, M.I. Saidaminov, M.A. Haque et al., CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind uv-photodetector. J. Phys. Chem. Lett. 6(19), 3781–3786 (2015). https://doi.org/10.1021/acs.jpclett.5b01666
T.B. Song, Q. Chen, H. Zhou, C. Jiang, H.H. Wang, Y.M. Yang, Y. Liu, J. You, Y. Yang, Perovskite solar cells: film formation and properties. J. Mater. Chem. A 3(17), 9032–9050 (2015). https://doi.org/10.1039/C4TA05246C
X. Li, M.I. Dar, C. Yi, J. Luo, M. Tschumi, S.M. Zakeeruddin, M.K. Nazeeruddin, H. Han, M. Grätzel, Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 7(9), 703–711 (2015). https://doi.org/10.1038/nchem.2324
T.M. Koh, K. Fu, Y. Fang, S. Chen, T. Sum, N. ews, S.G. Mhaisalkar, P.P. Boix, T. Baikie, Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C 118(30), 16458–16462 (2013). https://doi.org/10.1021/jp411112k
G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982–988 (2014). https://doi.org/10.1039/C3EE43822H
T.J. Jacobsson, J.P. Correa-Baena, M. Pazoki, M. Saliba, K. Schenk, M. Grätzel, A. Hagfeldt, Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy Environ. Sci. 9(5), 1706–1724 (2016). https://doi.org/10.1039/C6EE00030D
F.C. Hanusch, E. Wiesenmayer, E. Mankel, A. Binek, P. Angloher et al., Efficient planar heterojunction perovskite solar cells based on formamidinium lead bromide. J. Phys. Chem. Lett. 5(16), 2791–2795 (2014). https://doi.org/10.1021/jz501237m
N. Pellet, P. Gao, G. Gregori, T.Y. Yang, M.K. Nazeeruddin, J. Maier, M. Grätzel, Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Edit. 53(12), 3151–3157 (2014). https://doi.org/10.1002/anie.201309361
A.A. Zhumekenov, M.I. Saidaminov, M.A. Haque, E. Alarousu, S.P. Sarmah et al., Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length. ACS Energy Lett. 1(1), 32–37 (2016). https://doi.org/10.1021/acsenergylett.6b00002
D. Yu, F. Cao, Y. Shen, X. Liu, Y. Zhu, H. Zeng, Dimensionality and interface engineering of 2d homologous perovskites for boosted charge-carrier transport and photodetection performances. J. Phys. Chem. Lett. 8(12), 2565–2572 (2017). https://doi.org/10.1021/acs.jpclett.7b00993
M.I. Saidaminov, A.L. Abdelhady, G. Maculan, O.M. Bakr, Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth. Chem. Commun. 51(100), 17658–17661 (2015). https://doi.org/10.1039/C5CC06916E
N. Arora, M.I. Dar, M. Hezam, W. Tress, G. Jacopin et al., Photovoltaic and amplified spontaneous emission studies of high-quality formamidinium lead bromide perovskite films. Adv. Funct. Mater. 26(17), 2846–2854 (2016). https://doi.org/10.1002/adfm.201504977
Q. Han, S.H. Bae, P. Sun, Y.T. Hsieh, Y.M. Yang et al., Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv. Mater. 28(11), 2253–2258 (2016). https://doi.org/10.1002/adma.201505002
R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao et al., High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv. Mater. 27(11), 1912–1918 (2015). https://doi.org/10.1002/adma.201405116
W. Hu, W. Huang, S. Yang, X. Wang, Z. Jiang et al., High-performance flexible photodetectors based on high-quality perovskite thin films by a vapor-solution method. Adv. Mater. 29(43), 1703256 (2017). https://doi.org/10.1002/adma.201703256
M. Ahmadi, T. Wu, B. Hu, A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics. Adv. Mater. 29(41), 1605242 (2017). https://doi.org/10.1002/adma.201605242
Y. Liu, J. Sun, Z. Yang, D. Yang, X. Ren, H. Xu, Z. Yang, S.F. Liu, 20-mm-large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors. Adv. Opt. Mater. 4(11), 1829–1837 (2016). https://doi.org/10.1002/adom.201600327
M.I. Saidaminov, M. Haque, M. Savoie, A.L. Abdelhady, N. Cho et al., Perovskite photodetectors operating in both narrowband and broadband regimes. Adv. Mater. 28(37), 8144–8149 (2016). https://doi.org/10.1002/adma.201601235
V. Liberman, M. Rothschild, O. Bakr, F. Stellacci, Optical limiting with complex plasmonic nanops. J. Opt. 12(6), 065001 (2010). https://doi.org/10.1088/2040-8978/12/6/065001
E. Chong, T. Watson, F. Festy, Autocorrelation measurement of femtosecond laser pulses based on two-photon absorption in gap photodiode. Appl. Phys. Lett. 105(6), 062111 (2014). https://doi.org/10.1063/1.4893423
W.R. Zipfel, R.M. Williams, Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21(11), 1369–1377 (2003). https://doi.org/10.1038/nbt899
W. Haske, V.W. Chen, J.M. Hales, W. Dong, S. Barlow, S.R. Marder, J.W. Perry, 65 nm feature sizes using visible wavelength 3-D multiphoton lithography. Opt. Express 15(6), 3426–3436 (2007). https://doi.org/10.1364/OE.15.003426
G. Walters, B.R. Sutherland, S. Hoogland, D. Shi, R. Comin, D.P. Sellan, O.M. Bakr, E.H. Sargent, Two-photon absorption in organometallic bromide perovskites. ACS Nano 9(9), 9340–9346 (2015). https://doi.org/10.1021/acsnano.5b03308
Q. Lin, A. Armin, P.L. Burn, P. Meredith, Near infrared photodetectors based on sub-gap absorption in organohalide perovskite single crystals. Laser Photonics Rev. 10(6), 1047–1053 (2016). https://doi.org/10.1002/lpor.201600215
B. Yang, X. Mao, S. Yang, Y. Li, Y. Wang, M. Wang, W. Deng, K. Han, Low threshold two-photon-pumped amplified spontaneous emission in CH3NH3PbBr3 microdisks. ACS Appl. Mater. Interfaces 8(30), 19587–19592 (2016). https://doi.org/10.1021/acsami.6b04246