An Ultrasonic Microrobot Enabling Ultrafast Bidirectional Navigation in Confined Tubular Environments
Corresponding Author: Bin Yang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 43
Abstract
Pipelines are extensively used in environments such as nuclear power plants, chemical factories, and medical devices to transport gases and liquids. These tubular environments often feature complex geometries, confined spaces, and millimeter-scale height restrictions, presenting significant challenges to conventional inspection methods. Here, we present an ultrasonic microrobot (weight, 80 mg; dimensions, 24 mm × 7 mm; thickness, 210 μm) to realize agile and bidirectional navigation in narrow pipelines. The ultrathin structural design of the robot is achieved through a high-performance piezoelectric composite film microstructure based on MEMS technology. The robot exhibits various vibration modes when driven by ultrasonic frequency signals, its motion speed reaches 81 cm s−1 at 54.8 kHz, exceeding that of the fastest piezoelectric microrobots, and its forward and backward motion direction is controllable through frequency modulation, while the minimum driving voltage for initial movement can be as low as 3 VP-P. Additionally, the robot can effortlessly climb slopes up to 24.25° and carry loads more than 36 times its weight. The robot is capable of agile navigation through curved L-shaped pipes, pipes made of various materials (acrylic, stainless steel, and polyvinyl chloride), and even over water. To further demonstrate its inspection capabilities, a micro-endoscope camera is integrated into the robot, enabling real-time image capture inside glass pipes.
Highlights:
1 An ultrasonic microrobot achieves bidirectional high-speed locomotion (81 cm s−1) in micro-pipes via frequency modulation.
2 MEMS-fabricated ultrathin piezoelectric composite film enables rapid navigation within confined pipeline (4 mm height), slope climbing (24.25°), and notable load-carrying (>36 times its weight).
3 The microrobot demonstrates agile locomotion across curved pipes, pipes made of various materials, and even over water; integrated micro-endoscope camera enables real-time imaging, highlighting great potential for efficient pipeline inspection.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Guandalini, P. Colbertaldo, S. Campanari, Dynamic modeling of natural gas quality within transport pipelines in presence of hydrogen injections. Appl. Energy 185, 1712–1723 (2017). https://doi.org/10.1016/j.apenergy.2016.03.006
- R. Abubakirov, M. Yang, N. Khakzad, A risk-based approach to determination of optimal inspection intervals for buried oil pipelines. Process. Saf. Environ. Prot. 134, 95–107 (2020). https://doi.org/10.1016/j.psep.2019.11.031
- M.Z. Ab Rashid, M.F. Mohd Yakub, S.A.Z.B. Shaikh Salim, N. Mamat, S.M.S. Mohd Putra et al., Modeling of the in-pipe inspection robot: a comprehensive review. Ocean Eng. 203, 107206 (2020). https://doi.org/10.1016/j.oceaneng.2020.107206
- C. Tang, B. Du, S. Jiang, Q. Shao, X. Dong et al., A pipeline inspection robot for navigating tubular environments in the sub-centimeter scale. Sci. Robot. 7(66), eabm8597 (2022). https://doi.org/10.1126/scirobotics.abm8597
- X. Yan, Q. Zhou, M. Vincent, Y. Deng, J. Yu et al., Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2(12), eaaq1155 (2017). https://doi.org/10.1126/scirobotics.aaq1155
- B. Wang, K.F. Chan, K. Yuan, Q. Wang, X. Xia et al., Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging. Sci. Robot. 6(52), eabd2813 (2021). https://doi.org/10.1126/scirobotics.abd2813
- H. Min, D. Bae, S. Jang, S. Lee, M. Park et al., Stiffness-tunable velvet worm-inspired soft adhesive robot. Sci. Adv. 10(47), eadp8260 (2024). https://doi.org/10.1126/sciadv.adp8260
- Y. Wu, X. Dong, J.-K. Kim, C. Wang, M. Sitti, Wireless soft millirobots for climbing three-dimensional surfaces in confined spaces. Sci. Adv. 8(21), eabn3431 (2022). https://doi.org/10.1126/sciadv.abn3431
- Z. Li, S. Zhang, Q. Wang, Y. Xu, Y. Li et al., Untethered & stiffness-tunable ferromagnetic liquid robots for cleaning thrombus in complex blood vessels. Adv. Mater. 36(46), 2409142 (2024). https://doi.org/10.1002/adma.202409142
- Z. Zhang, R. He, B. Han, S. Ren, J. Fan et al., Magnetically switchable adhesive millirobots for universal manipulation in both air and water. Adv. Mater. 37(26), 2420045 (2025). https://doi.org/10.1002/adma.202420045
- S. Han, J.-W. Shin, J.H. Lee, B. Li, G.-J. Ko et al., Wireless, multifunctional system-integrated programmable soft robot. Nano-Micro Lett. 17(1), 152 (2025). https://doi.org/10.1007/s40820-024-01601-3
- Q. Cao, Y. Pan, Y. Zhang, Y. Jiang, G. Gong et al., A dual-functional capsule robot for drug delivery and tissue biopsy based on magnetic torsion spring technology. Bio-des. Manuf. 8(3), 495–510 (2025). https://doi.org/10.1631/bdm.2400276
- F. Niu, Q. Xue, Q. Cao, X. He, T. Wang et al., Magneto-soft robots based on multi-materials optimizing and heat-assisted in situ magnetic domains programming. Int. J. Extreme Manuf. 7(5), 055506 (2025). https://doi.org/10.1088/2631-7990/add81b
- T. Ching, J.Z.W. Lee, S.K.H. Win, L.S.T. Win, D. Sufiyan et al., Crawling, climbing, perching, and flying by FiBa soft robots. Sci. Robot. 9(92), eadk4533 (2024). https://doi.org/10.1126/scirobotics.adk4533
- T. Chen, X. Yang, B. Zhang, J. Li, J. Pan et al., Scale-inspired programmable robotic structures with concurrent shape morphing and stiffness variation. Sci. Robot. 9(92), eadl0307 (2024). https://doi.org/10.1126/scirobotics.adl0307
- G. Gu, J. Zou, R. Zhao, X. Zhao, X. Zhu, Soft wall-climbing robots. Sci. Robot. 3(25), eaat2874 (2018). https://doi.org/10.1126/scirobotics.aat2874
- X. Ji, X. Liu, V. Cacucciolo, M. Imboden, Y. Civet et al., An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci. Robot. 4(37), eaaz6451 (2019). https://doi.org/10.1126/scirobotics.aaz6451
- X. Wang, S. Li, J.-C. Chang, J. Liu, D. Axinte et al., Multimodal locomotion ultra-thin soft robots for exploration of narrow spaces. Nat. Commun. 15(1), 6296 (2024). https://doi.org/10.1038/s41467-024-50598-1
- Y. Lai, C. Zang, G. Luo, S. Xu, R. Bo et al., An agile multimodal microrobot with architected passively morphing wheels. Sci. Adv. 10(51), eadp1176 (2024). https://doi.org/10.1126/sciadv.adp1176
- X. Yu, W. Zhan, Z. Liu, L. Wei, W. Shen et al., Forward and backward control of an ultrafast millimeter-scale microrobot via vibration mode transition. Sci. Adv. 10(43), eadr1607 (2024). https://doi.org/10.1126/sciadv.adr1607
- M.Z. Miskin, A.J. Cortese, K. Dorsey, E.P. Esposito, M.F. Reynolds et al., Electronically integrated, mass-manufactured, microscopic robots. Nature 584(7822), 557–561 (2020). https://doi.org/10.1038/s41586-020-2626-9
- W. Wang, Q. Liu, I. Tanasijevic, M.F. Reynolds, A.J. Cortese et al., Cilia metasurfaces for electronically programmable microfluidic manipulation. Nature 605(7911), 681–686 (2022). https://doi.org/10.1038/s41586-022-04645-w
- Q. Liu, W. Wang, H. Sinhmar, I. Griniasty, J.Z. Kim et al., Electronically configurable microscopic metasheet robots. Nat. Mater. 24(1), 109–115 (2025). https://doi.org/10.1038/s41563-024-02007-7
- Y. Ling, K. Zhang, B. Sun, K. Li, C. Hou et al., Low-voltage-driven, insect-scale robots built with opto-mechanical nano-muscle fibers. Device 3(1), 100599 (2025). https://doi.org/10.1016/j.device.2024.100599
- C. Ni, D. Chen, X. Wen, B. Jin, Y. He et al., High speed underwater hydrogel robots with programmable motions powered by light. Nat. Commun. 14(1), 1–9 (2023). https://doi.org/10.1038/s41467-023-43576-6
- H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi et al., Light-fueled microscopic walkers. Adv. Mater. 27(26), 3883–3887 (2015). https://doi.org/10.1002/adma.201501446
- X. Li, Y. Du, X. Pan, C. Xiao, X. Ding et al., Leaf vein-inspired programmable superstructure liquid metal photothermal actuator for soft robots. Adv. Mater. 37(18), 2570131 (2025). https://doi.org/10.1002/adma.202570131
- H. Chen, Z. Chen, Z. Liu, J. Xiong, Q. Yan et al., From coils to crawls: a snake-inspired soft robot for multimodal locomotion and grasping. Nano-Micro Lett. 17(1), 243 (2025). https://doi.org/10.1007/s40820-025-01762-9
- Y. Wu, J.K. Yim, J. Liang, Z. Shao, M. Qi et al., Insect-scale fast moving and ultrarobust soft robot. Sci. Robot. 4(32), eaax1594 (2019). https://doi.org/10.1126/scirobotics.aax1594
- J. Liang, Y. Wu, J.K. Yim, H. Chen, Z. Miao et al., Electrostatic footpads enable agile insect-scale soft robots with trajectory control. Sci. Robot. 6(55), eabe7906 (2021). https://doi.org/10.1126/scirobotics.abe7906
- B. Goldberg, R. Zufferey, N. Doshi, E.F. Helbling, G. Whittredge et al., Power and control autonomy for high-speed locomotion with an insect-scale legged robot. IEEE Robot. Autom. Lett. 3(2), 987–993 (2018). https://doi.org/10.1109/LRA.2018.2793355
- E. Chen, Y. Yang, M. Li, B. Li, G. Liu et al., Bio-mimic, fast-moving, and flippable soft piezoelectric robots. Adv. Sci. 10(20), e2300673 (2023). https://doi.org/10.1002/advs.202300673
- W. Mu, M. Li, E. Chen, Y. Yang, J. Yin et al., Spiral-shape fast-moving soft robots. Adv. Funct. Mater. 33(35), 2300516 (2023). https://doi.org/10.1002/adfm.202300516
- J. Deng, Z. Liu, J. Li, S. Zhang, Y. Liu, Development of a highly adaptive miniature piezoelectric robot inspired by earthworms. Adv. Sci. 11(29), 2403426 (2024). https://doi.org/10.1002/advs.202403426
- Y. Liu, B. Feng, T. Cheng, Y. Chen, X. Liu et al., Singularity analysis and solutions for the origami transmission mechanism of fast-moving untethered insect-scale robot. IEEE Trans. Robot. 40, 777–796 (2023). https://doi.org/10.1109/TRO.2023.3338949
- F. Ramirez Serrano, N.P. Hyun, E. Steinhardt, P.-L. Lechère, R.J. Wood, A springtail-inspired multimodal walking-jumping microrobot. Sci. Robot. 10(99), eadp7854 (2025). https://doi.org/10.1126/scirobotics.adp7854
- J. Li, J. Deng, S. Zhang, W. Chen, J. Zhao et al., Developments and challenges of miniature piezoelectric robots: a review. Adv. Sci. 10(36), 2305128 (2023). https://doi.org/10.1002/advs.202305128
- Q. Chang, W. Chen, S. Zhang, J. Deng, Y. Liu, Review on multiple-degree-of-freedom cross-scale piezoelectric actuation technology. Adv. Intell. Syst. 6(6), 2300780 (2024). https://doi.org/10.1002/aisy.202300780
- X. Gao, L. Qiao, C. Qiu, T. Wang, L. Zhang et al., A robust, low-voltage driven millirobot based on transparent ferroelectric crystals. Appl. Phys. Lett. 120(3), 032902 (2022). https://doi.org/10.1063/5.0079737
- M. Xun, J. Li, S. Zhang, J. Deng, Y. Liu, A quadruped micromanipulation robot driven by three-degree-of-freedom ultrasonic vibration legs. Device 3(3), 100620 (2025). https://doi.org/10.1016/j.device.2024.100620
- J. Li, J. Deng, S. Zhang, Y. Liu, Development of a miniature quadrupedal piezoelectric robot combining fast speed and nano-resolution. Int. J. Mech. Sci. 250, 108276 (2023). https://doi.org/10.1016/j.ijmecsci.2023.108276
- Y. Liu, J. Li, J. Deng, S. Zhang, W. Chen et al., Arthropod-metamerism-inspired resonant piezoelectric millirobot. Adv. Intell. Syst. 3(8), 2100015 (2021). https://doi.org/10.1002/aisy.202100015
- Y. Ambe, S. Aoi, K. Tsuchiya, F. Matsuno, Generation of direct-, retrograde-, and source-wave gaits in multi-legged locomotion in a decentralized manner via embodied sensorimotor interaction. Front. Neural Circuits 15, 706064 (2021). https://doi.org/10.3389/fncir.2021.706064
- Y. Wang, B. Wang, Y. Zhang, L. Wei, C. Yu et al., T-phage inspired piezoelectric microrobot. Int. J. Mech. Sci. 231, 107596 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107596
- J. Hu, S. Chen, L. Wang, A new insect-scale piezoelectric robot with asymmetric structure. IEEE Trans. Ind. Electron. 70(8), 8194–8202 (2023). https://doi.org/10.1109/TIE.2022.3213887
- Z. Miao, J. Liang, H. Chen, J. Lu, X. Sun et al., Power autonomy and agility control of an untethered insect-scale soft robot. Soft Robot. 10(4), 749–759 (2023). https://doi.org/10.1089/soro.2021.0201
- X. Gao, J. Yang, J. Wu, X. Xin, Z. Li et al., Piezoelectric actuators and motors: materials, designs, and applications. Adv. Mater. Technol. 5(1), 1900716 (2020). https://doi.org/10.1002/admt.201900716
- X. Zhou, S. Wu, X. Wang, Z. Wang, Q. Zhu et al., Review on piezoelectric actuators: materials, classifications, applications, and recent trends. Front. Mech. Eng. 19(1), 6 (2024). https://doi.org/10.1007/s11465-023-0772-0
- S.-G. Roh, H. Ryeol, Differential-drive in-pipe robot for moving inside urban gas pipelines. IEEE Trans. Robot. 21(1), 1–17 (2005). https://doi.org/10.1109/TRO.2004.838000
- Y.-S. Kwon, B.-J. Yi, Design and motion planning of a two-module collaborative indoor pipeline inspection robot. IEEE Trans. Robot. 28(3), 681–696 (2012). https://doi.org/10.1109/TRO.2012.2183049
- A. Kakogawa, S. Ma, S. Hirose, An in-pipe robot with underactuated parallelogram crawler modules. in 2014 IEEE International Conference on Robotics and Automation (ICRA). May 31 - June 7, 2014, Hong Kong, China. IEEE, (2014), pp. 1687–1692. https://doi.org/10.1109/ICRA.2014.6907078
- A. Kakogawa, T. Nishimura, S. Ma, Designing arm length of a screw drive in-pipe robot for climbing vertically positioned bent pipes. Robotica 34(2), 306–327 (2016). https://doi.org/10.1017/s026357471400143x
- K. Moon, C. Seok, L. Geon, C. Ryeol, Novel mechanism for in-pipe robot based on a multiaxial differential gear mechanism. IEEE/ASME Trans. Mechatron. 22(1), 227–235 (2016). https://doi.org/10.1109/TMECH.2016.2621978
- A. Kakogawa, S. Ma, A multi-link in-pipe inspection robot composed of active and passive compliant joints. in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). October 24 2020-January 24, 2021, Las Vegas, NV, USA. IEEE, (2020), pp. 6472–6478. https://doi.org/10.1109/iros45743.2020.9341478
- T. Zheng, X. Wang, H. Li, C. Zhao, Z. Jiang et al., Design of a robot for inspecting the multishape pipeline systems. IEEE/ASME Trans. Mechatron. 27(6), 4608–4618 (2022). https://doi.org/10.1109/TMECH.2022.3160728
- T. Idogaki, H. Kanayama, N. Ohya, H. Suzuki, T. Hattori, Characteristics of piezoelectric locomotive mechanism for an in-pipe micro inspection machine. MHS'95. in Proceedings of the Sixth International Symposium on Micro Machine and Human Science. October 4–6, 1995, Nagoya, Japan. IEEE, (1995), pp. 193–198. https://doi.org/10.1109/MHS.1995.494237
- L. Sun, Y. Zhang, P. Sun, Z. Gong, Study on robots with PZT actuator for small pipe. MHS2001. in Proceedings of 2001 International Symposium on Micromechatronics and Human Science. September 9–12, 2001, Nagoya, Japan. IEEE, (2001), pp. 149–154. https://doi.org/10.1109/MHS.2001.965237
- P. Liu, Z. Wen, L. Sun, An in-pipe micro robot actuated by piezoelectric bimorphs. Sci. Bull. 54(12), 2134–2142 (2009). https://doi.org/10.1007/s11434-009-0257-5
- C. Ning, J. Xing, Backward motion suppression in space-constrained piezoelectric pipeline robots. Int. J. Mech. Sci. 284, 109746 (2024). https://doi.org/10.1016/j.ijmecsci.2024.109746
- H. Yu, P. Ma, C. Cao, A novel in-pipe worming robot based on SMA. in IEEE International conference mechatronics and automation, 2005. July 29 - August 1, 2005, Niagara Falls, ON, Canada. IEEE, (2005), pp. 923–927. https://doi.org/10.1109/ICMA.2005.1626675
- B. Kim, M.G. Lee, Y.P. Lee, Y. Kim, G. Lee, An earthworm-like micro robot using shape memory alloy actuator. Sens. Actuat. A Phys. 125(2), 429–437 (2006). https://doi.org/10.1016/j.sna.2005.05.004
- Q. Fang, J. Zhang, Y. He, N. Zheng, Y. Wang et al., Drosophila larvae-inspired soft crawling robot with multimodal locomotion and versatile applications. Research 7, 0357 (2024). https://doi.org/10.34133/research.0357
- A.A. Calderón, J.C. Ugalde, J.C. Zagal, N.O. Pérez-Arancibia, Design, fabrication and control of a multi-material-multi-actuator soft robot inspired by burrowing worms. in 2016 IEEE International Conference on robotics and biomimetics (ROBIO). December 3–7, 2016, Qingdao, China. IEEE, (2016), pp. 31–38. https://doi.org/10.1109/ROBIO.2016.7866293
- S. Yamazaki, Y. Tanise, Y. Yamada, T. Nakamura, Development of axial extension actuator for narrow pipe inspection endoscopic robot. in 2016 IEEE/SICE international symposium on system integration (SII). December 13–15, 2016, Sapporo, Japan. IEEE, (2016), pp. 634–639. https://doi.org/10.1109/SII.2016.7844070
- W. Adams, S. Sridar, C.M. Thalman, B. Copenhaver, H. Elsaad et al., Water pipe robot utilizing soft inflatable actuators. in 2018 IEEE International Conference on Soft Robotics (RoboSoft). April 24–28, 2018, Livorno, Italy. IEEE, (2018), pp. 321–326. https://doi.org/10.1109/ROBOSOFT.2018.8404939
- Z. Jiao, C. Ji, J. Zou, H. Yang, M. Pan, Vacuum-powered soft pneumatic twisting actuators to empower new capabilities for soft robots. Adv. Mater. Technol. 4(1), 1800429 (2019). https://doi.org/10.1002/admt.201800429
- M.S. Verma, A. Ainla, D. Yang, D. Harburg, G.M. Whitesides, A soft tube-climbing robot. Soft Robot. 5(2), 133–137 (2018). https://doi.org/10.1089/soro.2016.0078
- X. Zhang, T. Pan, H.L. Heung, P.W.Y. Chiu, Z. Li, A biomimetic soft robot for inspecting pipeline with significant diameter variation. in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). October 1–5, 2018, Madrid, Spain. IEEE, (2018), pp. 7486–7491. https://doi.org/10.1109/IROS.2018.8594390
- B. Zhang, Y. Fan, P. Yang, T. Cao, H. Liao, Worm-like soft robot for complicated tubular environments. Soft Robot. 6(3), 399–413 (2019). https://doi.org/10.1089/soro.2018.0088
- Z. Zhang, X. Wang, S. Wang, D. Meng, B. Liang, Design and modeling of a parallel-pipe-crawling pneumatic soft robot. IEEE Access 7, 134301–134317 (2019). https://doi.org/10.1109/ACCESS.2019.2941502
- H. Takeshima, T. Takayama, Six-braided tube in-pipe locomotive device. in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). September 28 - October 2, 2015, Hamburg, Germany. IEEE, (2015), pp. 1125–1130. https://doi.org/10.1109/IROS.2015.7353511
- R. Ishikawa, T. Tomita, Y. Yamada, T. Nakamura, Development of a peristaltic crawling robot for long-distance complex line sewer pipe inspections. in 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). July 12–15, 2016, Banff, AB, Canada. IEEE, (2016), pp. 413–418. https://doi.org/10.1109/AIM.2016.7576802
- M.D. Gilbertson, G. McDonald, G. Korinek, J.D. Van de Ven, T.M. Kowalewski, Serially actuated locomotion for soft robots in tube-like environments. IEEE Robot. Autom. Lett. 2(2), 1140–1147 (2017). https://doi.org/10.1109/LRA.2017.2662060
- C. Hong, Y. Wu, C. Wang, Z. Ren, C. Wang et al., Wireless flow-powered miniature robot capable of traversing tubular structures. Sci. Robot. 9(88), eadi5155 (2024). https://doi.org/10.1126/scirobotics.adi5155
- Y. Zhu, N. Liu, Z. Chen, H. He, Z. Wang et al., 3D-printed high-frequency dielectric elastomer actuator toward insect-scale ultrafast soft robot. ACS Mater. Lett. 5(3), 704–714 (2023). https://doi.org/10.1021/acsmaterialslett.2c00991
- H.H. Hariri, L.A. Prasetya, S. Foong, G.S. Soh, K.N. Otto et al., A tether-less Legged piezoelectric miniature robot using bounding gait locomotion for bidirectional motion. in 2016 IEEE International Conference on Robotics and Automation (ICRA). May 16–21, 2016, Stockholm, Sweden. IEEE, (2016), pp. 4743–4749. https://doi.org/10.1109/ICRA.2016.7487676
- Z. Liu, W. Zhan, X. Liu, Y. Zhu, M. Qi et al., A wireless controlled robotic insect with ultrafast untethered running speeds. Nat. Commun. 15(1), 3815 (2024). https://doi.org/10.1038/s41467-024-47812-5
References
G. Guandalini, P. Colbertaldo, S. Campanari, Dynamic modeling of natural gas quality within transport pipelines in presence of hydrogen injections. Appl. Energy 185, 1712–1723 (2017). https://doi.org/10.1016/j.apenergy.2016.03.006
R. Abubakirov, M. Yang, N. Khakzad, A risk-based approach to determination of optimal inspection intervals for buried oil pipelines. Process. Saf. Environ. Prot. 134, 95–107 (2020). https://doi.org/10.1016/j.psep.2019.11.031
M.Z. Ab Rashid, M.F. Mohd Yakub, S.A.Z.B. Shaikh Salim, N. Mamat, S.M.S. Mohd Putra et al., Modeling of the in-pipe inspection robot: a comprehensive review. Ocean Eng. 203, 107206 (2020). https://doi.org/10.1016/j.oceaneng.2020.107206
C. Tang, B. Du, S. Jiang, Q. Shao, X. Dong et al., A pipeline inspection robot for navigating tubular environments in the sub-centimeter scale. Sci. Robot. 7(66), eabm8597 (2022). https://doi.org/10.1126/scirobotics.abm8597
X. Yan, Q. Zhou, M. Vincent, Y. Deng, J. Yu et al., Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2(12), eaaq1155 (2017). https://doi.org/10.1126/scirobotics.aaq1155
B. Wang, K.F. Chan, K. Yuan, Q. Wang, X. Xia et al., Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging. Sci. Robot. 6(52), eabd2813 (2021). https://doi.org/10.1126/scirobotics.abd2813
H. Min, D. Bae, S. Jang, S. Lee, M. Park et al., Stiffness-tunable velvet worm-inspired soft adhesive robot. Sci. Adv. 10(47), eadp8260 (2024). https://doi.org/10.1126/sciadv.adp8260
Y. Wu, X. Dong, J.-K. Kim, C. Wang, M. Sitti, Wireless soft millirobots for climbing three-dimensional surfaces in confined spaces. Sci. Adv. 8(21), eabn3431 (2022). https://doi.org/10.1126/sciadv.abn3431
Z. Li, S. Zhang, Q. Wang, Y. Xu, Y. Li et al., Untethered & stiffness-tunable ferromagnetic liquid robots for cleaning thrombus in complex blood vessels. Adv. Mater. 36(46), 2409142 (2024). https://doi.org/10.1002/adma.202409142
Z. Zhang, R. He, B. Han, S. Ren, J. Fan et al., Magnetically switchable adhesive millirobots for universal manipulation in both air and water. Adv. Mater. 37(26), 2420045 (2025). https://doi.org/10.1002/adma.202420045
S. Han, J.-W. Shin, J.H. Lee, B. Li, G.-J. Ko et al., Wireless, multifunctional system-integrated programmable soft robot. Nano-Micro Lett. 17(1), 152 (2025). https://doi.org/10.1007/s40820-024-01601-3
Q. Cao, Y. Pan, Y. Zhang, Y. Jiang, G. Gong et al., A dual-functional capsule robot for drug delivery and tissue biopsy based on magnetic torsion spring technology. Bio-des. Manuf. 8(3), 495–510 (2025). https://doi.org/10.1631/bdm.2400276
F. Niu, Q. Xue, Q. Cao, X. He, T. Wang et al., Magneto-soft robots based on multi-materials optimizing and heat-assisted in situ magnetic domains programming. Int. J. Extreme Manuf. 7(5), 055506 (2025). https://doi.org/10.1088/2631-7990/add81b
T. Ching, J.Z.W. Lee, S.K.H. Win, L.S.T. Win, D. Sufiyan et al., Crawling, climbing, perching, and flying by FiBa soft robots. Sci. Robot. 9(92), eadk4533 (2024). https://doi.org/10.1126/scirobotics.adk4533
T. Chen, X. Yang, B. Zhang, J. Li, J. Pan et al., Scale-inspired programmable robotic structures with concurrent shape morphing and stiffness variation. Sci. Robot. 9(92), eadl0307 (2024). https://doi.org/10.1126/scirobotics.adl0307
G. Gu, J. Zou, R. Zhao, X. Zhao, X. Zhu, Soft wall-climbing robots. Sci. Robot. 3(25), eaat2874 (2018). https://doi.org/10.1126/scirobotics.aat2874
X. Ji, X. Liu, V. Cacucciolo, M. Imboden, Y. Civet et al., An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci. Robot. 4(37), eaaz6451 (2019). https://doi.org/10.1126/scirobotics.aaz6451
X. Wang, S. Li, J.-C. Chang, J. Liu, D. Axinte et al., Multimodal locomotion ultra-thin soft robots for exploration of narrow spaces. Nat. Commun. 15(1), 6296 (2024). https://doi.org/10.1038/s41467-024-50598-1
Y. Lai, C. Zang, G. Luo, S. Xu, R. Bo et al., An agile multimodal microrobot with architected passively morphing wheels. Sci. Adv. 10(51), eadp1176 (2024). https://doi.org/10.1126/sciadv.adp1176
X. Yu, W. Zhan, Z. Liu, L. Wei, W. Shen et al., Forward and backward control of an ultrafast millimeter-scale microrobot via vibration mode transition. Sci. Adv. 10(43), eadr1607 (2024). https://doi.org/10.1126/sciadv.adr1607
M.Z. Miskin, A.J. Cortese, K. Dorsey, E.P. Esposito, M.F. Reynolds et al., Electronically integrated, mass-manufactured, microscopic robots. Nature 584(7822), 557–561 (2020). https://doi.org/10.1038/s41586-020-2626-9
W. Wang, Q. Liu, I. Tanasijevic, M.F. Reynolds, A.J. Cortese et al., Cilia metasurfaces for electronically programmable microfluidic manipulation. Nature 605(7911), 681–686 (2022). https://doi.org/10.1038/s41586-022-04645-w
Q. Liu, W. Wang, H. Sinhmar, I. Griniasty, J.Z. Kim et al., Electronically configurable microscopic metasheet robots. Nat. Mater. 24(1), 109–115 (2025). https://doi.org/10.1038/s41563-024-02007-7
Y. Ling, K. Zhang, B. Sun, K. Li, C. Hou et al., Low-voltage-driven, insect-scale robots built with opto-mechanical nano-muscle fibers. Device 3(1), 100599 (2025). https://doi.org/10.1016/j.device.2024.100599
C. Ni, D. Chen, X. Wen, B. Jin, Y. He et al., High speed underwater hydrogel robots with programmable motions powered by light. Nat. Commun. 14(1), 1–9 (2023). https://doi.org/10.1038/s41467-023-43576-6
H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi et al., Light-fueled microscopic walkers. Adv. Mater. 27(26), 3883–3887 (2015). https://doi.org/10.1002/adma.201501446
X. Li, Y. Du, X. Pan, C. Xiao, X. Ding et al., Leaf vein-inspired programmable superstructure liquid metal photothermal actuator for soft robots. Adv. Mater. 37(18), 2570131 (2025). https://doi.org/10.1002/adma.202570131
H. Chen, Z. Chen, Z. Liu, J. Xiong, Q. Yan et al., From coils to crawls: a snake-inspired soft robot for multimodal locomotion and grasping. Nano-Micro Lett. 17(1), 243 (2025). https://doi.org/10.1007/s40820-025-01762-9
Y. Wu, J.K. Yim, J. Liang, Z. Shao, M. Qi et al., Insect-scale fast moving and ultrarobust soft robot. Sci. Robot. 4(32), eaax1594 (2019). https://doi.org/10.1126/scirobotics.aax1594
J. Liang, Y. Wu, J.K. Yim, H. Chen, Z. Miao et al., Electrostatic footpads enable agile insect-scale soft robots with trajectory control. Sci. Robot. 6(55), eabe7906 (2021). https://doi.org/10.1126/scirobotics.abe7906
B. Goldberg, R. Zufferey, N. Doshi, E.F. Helbling, G. Whittredge et al., Power and control autonomy for high-speed locomotion with an insect-scale legged robot. IEEE Robot. Autom. Lett. 3(2), 987–993 (2018). https://doi.org/10.1109/LRA.2018.2793355
E. Chen, Y. Yang, M. Li, B. Li, G. Liu et al., Bio-mimic, fast-moving, and flippable soft piezoelectric robots. Adv. Sci. 10(20), e2300673 (2023). https://doi.org/10.1002/advs.202300673
W. Mu, M. Li, E. Chen, Y. Yang, J. Yin et al., Spiral-shape fast-moving soft robots. Adv. Funct. Mater. 33(35), 2300516 (2023). https://doi.org/10.1002/adfm.202300516
J. Deng, Z. Liu, J. Li, S. Zhang, Y. Liu, Development of a highly adaptive miniature piezoelectric robot inspired by earthworms. Adv. Sci. 11(29), 2403426 (2024). https://doi.org/10.1002/advs.202403426
Y. Liu, B. Feng, T. Cheng, Y. Chen, X. Liu et al., Singularity analysis and solutions for the origami transmission mechanism of fast-moving untethered insect-scale robot. IEEE Trans. Robot. 40, 777–796 (2023). https://doi.org/10.1109/TRO.2023.3338949
F. Ramirez Serrano, N.P. Hyun, E. Steinhardt, P.-L. Lechère, R.J. Wood, A springtail-inspired multimodal walking-jumping microrobot. Sci. Robot. 10(99), eadp7854 (2025). https://doi.org/10.1126/scirobotics.adp7854
J. Li, J. Deng, S. Zhang, W. Chen, J. Zhao et al., Developments and challenges of miniature piezoelectric robots: a review. Adv. Sci. 10(36), 2305128 (2023). https://doi.org/10.1002/advs.202305128
Q. Chang, W. Chen, S. Zhang, J. Deng, Y. Liu, Review on multiple-degree-of-freedom cross-scale piezoelectric actuation technology. Adv. Intell. Syst. 6(6), 2300780 (2024). https://doi.org/10.1002/aisy.202300780
X. Gao, L. Qiao, C. Qiu, T. Wang, L. Zhang et al., A robust, low-voltage driven millirobot based on transparent ferroelectric crystals. Appl. Phys. Lett. 120(3), 032902 (2022). https://doi.org/10.1063/5.0079737
M. Xun, J. Li, S. Zhang, J. Deng, Y. Liu, A quadruped micromanipulation robot driven by three-degree-of-freedom ultrasonic vibration legs. Device 3(3), 100620 (2025). https://doi.org/10.1016/j.device.2024.100620
J. Li, J. Deng, S. Zhang, Y. Liu, Development of a miniature quadrupedal piezoelectric robot combining fast speed and nano-resolution. Int. J. Mech. Sci. 250, 108276 (2023). https://doi.org/10.1016/j.ijmecsci.2023.108276
Y. Liu, J. Li, J. Deng, S. Zhang, W. Chen et al., Arthropod-metamerism-inspired resonant piezoelectric millirobot. Adv. Intell. Syst. 3(8), 2100015 (2021). https://doi.org/10.1002/aisy.202100015
Y. Ambe, S. Aoi, K. Tsuchiya, F. Matsuno, Generation of direct-, retrograde-, and source-wave gaits in multi-legged locomotion in a decentralized manner via embodied sensorimotor interaction. Front. Neural Circuits 15, 706064 (2021). https://doi.org/10.3389/fncir.2021.706064
Y. Wang, B. Wang, Y. Zhang, L. Wei, C. Yu et al., T-phage inspired piezoelectric microrobot. Int. J. Mech. Sci. 231, 107596 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107596
J. Hu, S. Chen, L. Wang, A new insect-scale piezoelectric robot with asymmetric structure. IEEE Trans. Ind. Electron. 70(8), 8194–8202 (2023). https://doi.org/10.1109/TIE.2022.3213887
Z. Miao, J. Liang, H. Chen, J. Lu, X. Sun et al., Power autonomy and agility control of an untethered insect-scale soft robot. Soft Robot. 10(4), 749–759 (2023). https://doi.org/10.1089/soro.2021.0201
X. Gao, J. Yang, J. Wu, X. Xin, Z. Li et al., Piezoelectric actuators and motors: materials, designs, and applications. Adv. Mater. Technol. 5(1), 1900716 (2020). https://doi.org/10.1002/admt.201900716
X. Zhou, S. Wu, X. Wang, Z. Wang, Q. Zhu et al., Review on piezoelectric actuators: materials, classifications, applications, and recent trends. Front. Mech. Eng. 19(1), 6 (2024). https://doi.org/10.1007/s11465-023-0772-0
S.-G. Roh, H. Ryeol, Differential-drive in-pipe robot for moving inside urban gas pipelines. IEEE Trans. Robot. 21(1), 1–17 (2005). https://doi.org/10.1109/TRO.2004.838000
Y.-S. Kwon, B.-J. Yi, Design and motion planning of a two-module collaborative indoor pipeline inspection robot. IEEE Trans. Robot. 28(3), 681–696 (2012). https://doi.org/10.1109/TRO.2012.2183049
A. Kakogawa, S. Ma, S. Hirose, An in-pipe robot with underactuated parallelogram crawler modules. in 2014 IEEE International Conference on Robotics and Automation (ICRA). May 31 - June 7, 2014, Hong Kong, China. IEEE, (2014), pp. 1687–1692. https://doi.org/10.1109/ICRA.2014.6907078
A. Kakogawa, T. Nishimura, S. Ma, Designing arm length of a screw drive in-pipe robot for climbing vertically positioned bent pipes. Robotica 34(2), 306–327 (2016). https://doi.org/10.1017/s026357471400143x
K. Moon, C. Seok, L. Geon, C. Ryeol, Novel mechanism for in-pipe robot based on a multiaxial differential gear mechanism. IEEE/ASME Trans. Mechatron. 22(1), 227–235 (2016). https://doi.org/10.1109/TMECH.2016.2621978
A. Kakogawa, S. Ma, A multi-link in-pipe inspection robot composed of active and passive compliant joints. in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). October 24 2020-January 24, 2021, Las Vegas, NV, USA. IEEE, (2020), pp. 6472–6478. https://doi.org/10.1109/iros45743.2020.9341478
T. Zheng, X. Wang, H. Li, C. Zhao, Z. Jiang et al., Design of a robot for inspecting the multishape pipeline systems. IEEE/ASME Trans. Mechatron. 27(6), 4608–4618 (2022). https://doi.org/10.1109/TMECH.2022.3160728
T. Idogaki, H. Kanayama, N. Ohya, H. Suzuki, T. Hattori, Characteristics of piezoelectric locomotive mechanism for an in-pipe micro inspection machine. MHS'95. in Proceedings of the Sixth International Symposium on Micro Machine and Human Science. October 4–6, 1995, Nagoya, Japan. IEEE, (1995), pp. 193–198. https://doi.org/10.1109/MHS.1995.494237
L. Sun, Y. Zhang, P. Sun, Z. Gong, Study on robots with PZT actuator for small pipe. MHS2001. in Proceedings of 2001 International Symposium on Micromechatronics and Human Science. September 9–12, 2001, Nagoya, Japan. IEEE, (2001), pp. 149–154. https://doi.org/10.1109/MHS.2001.965237
P. Liu, Z. Wen, L. Sun, An in-pipe micro robot actuated by piezoelectric bimorphs. Sci. Bull. 54(12), 2134–2142 (2009). https://doi.org/10.1007/s11434-009-0257-5
C. Ning, J. Xing, Backward motion suppression in space-constrained piezoelectric pipeline robots. Int. J. Mech. Sci. 284, 109746 (2024). https://doi.org/10.1016/j.ijmecsci.2024.109746
H. Yu, P. Ma, C. Cao, A novel in-pipe worming robot based on SMA. in IEEE International conference mechatronics and automation, 2005. July 29 - August 1, 2005, Niagara Falls, ON, Canada. IEEE, (2005), pp. 923–927. https://doi.org/10.1109/ICMA.2005.1626675
B. Kim, M.G. Lee, Y.P. Lee, Y. Kim, G. Lee, An earthworm-like micro robot using shape memory alloy actuator. Sens. Actuat. A Phys. 125(2), 429–437 (2006). https://doi.org/10.1016/j.sna.2005.05.004
Q. Fang, J. Zhang, Y. He, N. Zheng, Y. Wang et al., Drosophila larvae-inspired soft crawling robot with multimodal locomotion and versatile applications. Research 7, 0357 (2024). https://doi.org/10.34133/research.0357
A.A. Calderón, J.C. Ugalde, J.C. Zagal, N.O. Pérez-Arancibia, Design, fabrication and control of a multi-material-multi-actuator soft robot inspired by burrowing worms. in 2016 IEEE International Conference on robotics and biomimetics (ROBIO). December 3–7, 2016, Qingdao, China. IEEE, (2016), pp. 31–38. https://doi.org/10.1109/ROBIO.2016.7866293
S. Yamazaki, Y. Tanise, Y. Yamada, T. Nakamura, Development of axial extension actuator for narrow pipe inspection endoscopic robot. in 2016 IEEE/SICE international symposium on system integration (SII). December 13–15, 2016, Sapporo, Japan. IEEE, (2016), pp. 634–639. https://doi.org/10.1109/SII.2016.7844070
W. Adams, S. Sridar, C.M. Thalman, B. Copenhaver, H. Elsaad et al., Water pipe robot utilizing soft inflatable actuators. in 2018 IEEE International Conference on Soft Robotics (RoboSoft). April 24–28, 2018, Livorno, Italy. IEEE, (2018), pp. 321–326. https://doi.org/10.1109/ROBOSOFT.2018.8404939
Z. Jiao, C. Ji, J. Zou, H. Yang, M. Pan, Vacuum-powered soft pneumatic twisting actuators to empower new capabilities for soft robots. Adv. Mater. Technol. 4(1), 1800429 (2019). https://doi.org/10.1002/admt.201800429
M.S. Verma, A. Ainla, D. Yang, D. Harburg, G.M. Whitesides, A soft tube-climbing robot. Soft Robot. 5(2), 133–137 (2018). https://doi.org/10.1089/soro.2016.0078
X. Zhang, T. Pan, H.L. Heung, P.W.Y. Chiu, Z. Li, A biomimetic soft robot for inspecting pipeline with significant diameter variation. in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). October 1–5, 2018, Madrid, Spain. IEEE, (2018), pp. 7486–7491. https://doi.org/10.1109/IROS.2018.8594390
B. Zhang, Y. Fan, P. Yang, T. Cao, H. Liao, Worm-like soft robot for complicated tubular environments. Soft Robot. 6(3), 399–413 (2019). https://doi.org/10.1089/soro.2018.0088
Z. Zhang, X. Wang, S. Wang, D. Meng, B. Liang, Design and modeling of a parallel-pipe-crawling pneumatic soft robot. IEEE Access 7, 134301–134317 (2019). https://doi.org/10.1109/ACCESS.2019.2941502
H. Takeshima, T. Takayama, Six-braided tube in-pipe locomotive device. in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). September 28 - October 2, 2015, Hamburg, Germany. IEEE, (2015), pp. 1125–1130. https://doi.org/10.1109/IROS.2015.7353511
R. Ishikawa, T. Tomita, Y. Yamada, T. Nakamura, Development of a peristaltic crawling robot for long-distance complex line sewer pipe inspections. in 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). July 12–15, 2016, Banff, AB, Canada. IEEE, (2016), pp. 413–418. https://doi.org/10.1109/AIM.2016.7576802
M.D. Gilbertson, G. McDonald, G. Korinek, J.D. Van de Ven, T.M. Kowalewski, Serially actuated locomotion for soft robots in tube-like environments. IEEE Robot. Autom. Lett. 2(2), 1140–1147 (2017). https://doi.org/10.1109/LRA.2017.2662060
C. Hong, Y. Wu, C. Wang, Z. Ren, C. Wang et al., Wireless flow-powered miniature robot capable of traversing tubular structures. Sci. Robot. 9(88), eadi5155 (2024). https://doi.org/10.1126/scirobotics.adi5155
Y. Zhu, N. Liu, Z. Chen, H. He, Z. Wang et al., 3D-printed high-frequency dielectric elastomer actuator toward insect-scale ultrafast soft robot. ACS Mater. Lett. 5(3), 704–714 (2023). https://doi.org/10.1021/acsmaterialslett.2c00991
H.H. Hariri, L.A. Prasetya, S. Foong, G.S. Soh, K.N. Otto et al., A tether-less Legged piezoelectric miniature robot using bounding gait locomotion for bidirectional motion. in 2016 IEEE International Conference on Robotics and Automation (ICRA). May 16–21, 2016, Stockholm, Sweden. IEEE, (2016), pp. 4743–4749. https://doi.org/10.1109/ICRA.2016.7487676
Z. Liu, W. Zhan, X. Liu, Y. Zhu, M. Qi et al., A wireless controlled robotic insect with ultrafast untethered running speeds. Nat. Commun. 15(1), 3815 (2024). https://doi.org/10.1038/s41467-024-47812-5