Gas-Phase Construction of Compact Capping Layers for High-Performance Halide Perovskite X-Ray Detectors
Corresponding Author: Xingzhu Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 89
Abstract
Halide perovskites have emerged as promising materials for X-ray detection with exceptional properties and reasonable costs. Among them, heterostructures between 3D perovskites and low-dimensional perovskites attract intensive studies of their advantages due to low-level ion migration and decent stability. However, there is still a lack of methods to precisely construct heterostructures and a fundamental understanding of their structure-dependent optoelectronic properties. Herein, a gas-phase method was developed to grow 2D perovskites directly on 3D perovskites with nanoscale accuracy. In addition, the larger steric hindrance of organic layers of 2D perovskites was proved to enable slower ion migration, which resulted in reduced trap states and better stability. Based on MAPbBr3 single crystals with the (PA)2PbBr4 capping layer, the X-ray detector achieved a sensitivity of 22,245 μC Gyair−1 cm−2, a response speed of 240 μs, and a dark current drift of 1.17 × 10–4 nA cm−1 s−1 V−1, which were among the highest reported for state-of-the-art perovskite-based X-ray detectors. This study presents a precise synthesis method to construct perovskite-based heterostructures. It also brings an in-depth understanding of the relationship between lattice structures and properties, which are beneficial for advancing high-performance and cost-effective X-ray detectors.
Highlights:
1 A gas-phase method has been developed, which can directly grow two-dimensional perovskite on three-dimensional perovskite with nanoscale precision.
2 The steric hindrance of the organic layer within 2D perovskites influences the ion migration in lattice. Larger steric hindrance enables slower ion movement.
3 The constructed 2D/3D heterojunction device showed ultra-high sensitivity, ultra-fast response speed, and ultra-low dark current.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Deumel, A. van Breemen, G. Gelinck, B. Peeters, J. Maas et al., High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. Nat. Electron. 4(9), 681–688 (2021). https://doi.org/10.1038/s41928-021-00644-3
- Y. He, J. Song, M. Li, K. Sakhatskyi, W. Li et al., Perovskite computed tomography imager and three-dimensional reconstruction. Nat. Photonics 18(10), 1052–1058 (2024). https://doi.org/10.1038/s41566-024-01506-y
- W. Qian, X. Xu, J. Wang, Y. Xu, J. Chen et al., An aerosol-liquid-solid process for the general synthesis of halide perovskite thick films for direct-conversion X-ray detectors. Matter 4(3), 942–954 (2021). https://doi.org/10.1016/j.matt.2021.01.020
- Y.C. Kim, K.H. Kim, D.-Y. Son, D.-N. Jeong, J.-Y. Seo et al., Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550(7674), 87–91 (2017). https://doi.org/10.1038/nature24032
- E. Kang, J. Min, J.C. Ye, A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med. Phys. 44(10), e360–e375 (2017). https://doi.org/10.1002/mp.12344
- H. Wu, Y. Ge, G. Niu, J. Tang, Metal halide perovskites for X-ray detection and imaging. Matter 4(1), 144–163 (2021). https://doi.org/10.1016/j.matt.2020.11.015
- Y. Zhou, J. Chen, O.M. Bakr, O.F. Mohammed, Metal halide perovskites for X-ray imaging scintillators and detectors. ACS Energy Lett. 6(2), 739–768 (2021). https://doi.org/10.1021/acsenergylett.0c02430
- A. Jana, S. Cho, S.A. Patil, A. Meena, Y. Jo et al., Perovskite: scintillators, direct detectors, and X-ray imagers. Mater. Today 55, 110–136 (2022). https://doi.org/10.1016/j.mattod.2022.04.009
- S. Xiao, W. Qian, S. Yang, Interfaced structures between halide perovskites: from basics to construction to optoelectronic applications. Adv. Energy Mater. 13(33), 2201472 (2023). https://doi.org/10.1002/aenm.202201472
- L. Liu, M. Xu, X. Xu, X. Tao, Z. Gao, High sensitivity X-ray detectors with low degradation based on deuterated halide perovskite single crystals. Adv. Mater. 36(44), 2406443 (2024). https://doi.org/10.1002/adma.202406443
- D. Chu, B. Jia, N. Liu, Y. Zhang, X. Li et al., Lattice engineering for stabilized black FAPbI3 perovskite single crystals for high-resolution X-ray imaging at the lowest dose. Sci. Adv. 9(35), eadh2255 (2023). https://doi.org/10.1126/sciadv.adh2255
- W.-G. Li, X.-D. Wang, Y.-H. Huang, D.-B. Kuang, Ultrasound-assisted crystallization enables large-area perovskite quasi-monocrystalline film for high-sensitive X-ray detection and imaging. Adv. Mater. 35(31), 2210878 (2023). https://doi.org/10.1002/adma.202210878
- X. Zhang, D. Chu, B. Jia, Z. Zhao, J. Pi et al., Heterointerface design of perovskite single crystals for high-performance X-ray imaging. Adv. Mater. 36(3), 2305513 (2024). https://doi.org/10.1002/adma.202305513
- M. Yang, Z. Qin, M. Chen, X. Lin, X. Luan et al., Building scalable buried interface for high-performance perovskite photovoltaic devices. Adv. Funct. Mater. 34(37), 2402053 (2024). https://doi.org/10.1002/adfm.202402053
- Y. Bai, Z. Huang, X. Zhang, J. Lu, X. Niu et al., Initializing film homogeneity to retard phase segregation for stable perovskite solar cells. Science 378(6621), 747–754 (2022). https://doi.org/10.1126/science.abn3148
- D.L. McGott, C.P. Muzzillo, C.L. Perkins, J.J. Berry, K. Zhu et al., 3D/2D passivation as a secret to success for polycrystalline thin-film solar cells. Joule 5(5), 1057–1073 (2021). https://doi.org/10.1016/j.joule.2021.03.015
- X. Li, S. Aftab, M. Mukhtar, F. Kabir, M.F. Khan et al., Exploring nanoscale perovskite materials for next-generation photodetectors: a comprehensive review and future directions. Nano-Micro Lett. 17(1), 28 (2024). https://doi.org/10.1007/s40820-024-01501-6
- B. Yang, X. Xie, S. Zeng, B. Xue, S. Xiao et al., Numerical modeling of defects induced dark current in halide perovskite X-ray detectors. Phys. Scr. 99(2), 025995 (2024). https://doi.org/10.1088/1402-4896/ad1fc5
- T. Zhang, C. Hu, S. Yang, Ion migration: a “double-edged sword” for halide-perovskite-based electronic devices. Small Methods 4(5), 1900552 (2020). https://doi.org/10.1002/smtd.201900552
- X. Xu, W. Qian, J. Wang, J. Yang, J. Chen et al., Sequential growth of 2D/3D double-layer perovskite films with superior X-ray detection performance. Adv. Sci. 8(21), 2102730 (2021). https://doi.org/10.1002/advs.202102730
- Y. He, W. Pan, C. Guo, H. Zhang, H. Wei, B. Yang, 3D/2D perovskite single crystals heterojunction for suppressed ions migration in hard X-ray detection. Adv. Funct. Mater. 31(49), 2104880 (2021). https://doi.org/10.1002/adfm.202104880
- L. Wang, N. Wang, X. Wu, B. Liu, Q. Liu et al., Highly efficient monolithic perovskite/TOPCon silicon tandem solar cells enabled by “halide locking.” Adv. Mater. 37(7), 2416150 (2025). https://doi.org/10.1002/adma.202416150
- Z. Xu, H. Xi, X. Sun, H. Liu, J. Liu et al., Highly stable and sensitive (PEA)2PbBr4/CsPbBr3 single-crystal heterojunction X-ray detector with ultra-low detection limit. Adv. Funct. Mater. 34(34), 2400817 (2024). https://doi.org/10.1002/adfm.202400817
- S. Zeng, B. Xue, B. Zhang, B. Yang, X. Xie et al., Surface integration modulated low-temperature synthesis for high-quality halide perovskite single crystals. Chem. Eng. J. 514, 163060 (2025). https://doi.org/10.1016/j.cej.2025.163060
- E.A. Duijnstee, J.M. Ball, V.M. Le Corre, L.J.A. Koster, H.J. Snaith et al., Toward understanding space-charge limited current measurements on metal halide perovskites. ACS Energy Lett. 5(2), 376–384 (2020). https://doi.org/10.1021/acsenergylett.9b02720
- F. Xu, Y. Zou, Y. Dai, M. Li, Z. Li, Halide perovskites and high-pressure technologies: a fruitful encounter. Mater. Chem. Front. 7(11), 2102–2119 (2023). https://doi.org/10.1039/d2qm01257j
- P. Fu, M.A. Quintero, E.S. Vasileiadou, P. Raval, C. Welton et al., Chemical behavior and local structure of the Ruddlesden–Popper and Dion–Jacobson alloyed Pb/Sn bromide 2D perovskites. J. Am. Chem. Soc. 145(29), 15997–16014 (2023). https://doi.org/10.1021/jacs.3c03997
- S. Ghimire, C. Klinke, Two-dimensional halide perovskites: synthesis, optoelectronic properties, stability, and applications. Nanoscale 13(29), 12394–12422 (2021). https://doi.org/10.1039/D1NR02769G
- Y. Li, Z. Lin, J. Wang, R. Xu, K. Zhang et al., Amine salts vapor healing perfected perovskite layers for NiOx based p-i-n solar cells. Adv. Funct. Mater. 32(41), 2203995 (2022). https://doi.org/10.1002/adfm.202203995
- Y. He, Z. Lin, J. Wang, K. Zhang, X. Xu et al., A heat-liquefiable solid precursor for ambient growth of perovskites with high tunability, performance and stability. Small Methods 6(8), 2200384 (2022). https://doi.org/10.1002/smtd.202200384
- X. Xie, S. Zeng, C. Zhou, S. Xiao, Fabrication strategies for high quality halide perovskite films in solar cells. Mater. Chem. Front. 7(21), 5309–5332 (2023). https://doi.org/10.1039/D3QM00496A
- Y. Chen, X. Peng, W. Qin, S. Li, L. Zhang et al., Filterless bandpass photodetectors enabled by 2D/3D perovskite heterojunctions. Adv. Funct. Mater. 34(41), 2403942 (2024). https://doi.org/10.1002/adfm.202403942
- W. Li, S. Sidhik, B. Traore, R. Asadpour, J. Hou et al., Light-activated interlayer contraction in two-dimensional perovskites for high-efficiency solar cells. Nat. Nanotechnol. 17(1), 45–52 (2022). https://doi.org/10.1038/s41565-021-01010-2
- I. Metcalf, S. Sidhik, H. Zhang, A. Agrawal, J. Persaud et al., Synergy of 3D and 2D perovskites for durable, efficient solar cells and beyond. Chem. Rev. 123(15), 9565–9652 (2023). https://doi.org/10.1021/acs.chemrev.3c00214
- L. Mao, C.C. Stoumpos, M.G. Kanatzidis, Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 141(3), 1171–1190 (2019). https://doi.org/10.1021/jacs.8b10851
- X. Ren, X. Yan, A.S. Ahmad, H. Cheng, Y. Li et al., Pressure-induced phase transition and band gap engineering in propylammonium lead bromide perovskite. J. Phys. Chem. C 123(24), 15204–15208 (2019). https://doi.org/10.1021/acs.jpcc.9b02854
- X. Li, H. Dong, G. Volonakis, C.C. Stoumpos, J. Even et al., Ordered mixed-spacer 2D bromide perovskites and the dual role of 1, 2, 4-triazolium cation. Chem. Mater. 34(14), 6541–6552 (2022). https://doi.org/10.1021/acs.chemmater.2c01432
- P. Sengupta, P. Sadhukhan, A. Ray, S. Mal, A. Singh et al., Influence of activation energy on charge conduction mechanism and giant dielectric relaxation of sol-gel derived C3H7NH3PbBr3 perovskite; act as high performing UV photodetector. J. Alloys Compd. 892, 162216 (2022). https://doi.org/10.1016/j.jallcom.2021.162216
- M.I. Saidaminov, V. Adinolfi, R. Comin, A.L. Abdelhady, W. Peng et al., Planar-integrated single-crystalline perovskite photodetectors. Nat. Commun. 6, 8724 (2015). https://doi.org/10.1038/ncomms9724
- N. He, L. Zhang, X. He, J. Guo, X. Wu et al., PA2PbBr4/MAPbBr3 heterojunction X-ray detector with enhanced sensitivity and excellent self-powered functionality. Adv. Opt. Mater. 12(24), 2400707 (2024). https://doi.org/10.1002/adom.202400707
- Y. Zhao, X. Luan, L. Han, Y. Wang, Post-assembled alkylphosphonic acids for efficient and stable inverted perovskite solar cells. Adv. Funct. Mater. 34(46), 2405646 (2024). https://doi.org/10.1002/adfm.202405646
- J. Sun, M. Chen, T. Huang, G. Ding, Z. Wang, Coexistence of the band filling effect and trap-state filling in the size-dependent photoluminescence blue shift of MAPbBr3 nanops. Nanomaterials 14(19), 1546 (2024). https://doi.org/10.3390/nano14191546
- Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014). https://doi.org/10.1038/ncomms6784
- C. Sun, Z. Wu, H.-L. Yip, H. Zhang, X.-F. Jiang et al., Amino-functionalized conjugated polymer as an efficient electron transport layer for high-performance planar-heterojunction perovskite solar cells. Adv. Energy Mater. 6(5), 1501534 (2016). https://doi.org/10.1002/aenm.201501534
- M. Salado, A.D. Jodlowski, C. Roldan-Carmona, G. de Miguel, S. Kazim et al., Surface passivation of perovskite layers using heterocyclic halides: improved photovoltaic properties and intrinsic stability. Nano Energy 50, 220–228 (2018). https://doi.org/10.1016/j.nanoen.2018.05.035
- X. Jiang, B. Liu, X. Wu, S. Zhang, D. Zhang et al., Top-down induced crystallization orientation toward highly efficient p-i-n perovskite solar cells. Adv. Mater. 36(24), 2313524 (2024). https://doi.org/10.1002/adma.202313524
- M. Girolami, F. Matteocci, S. Pettinato, V. Serpente, E. Bolli et al., Metal-halide perovskite submicrometer-thick films for ultra-stable self-powered direct X-ray detectors. Nano-Micro Lett. 16(1), 182 (2024). https://doi.org/10.1007/s40820-024-01393-6
- Y. Liu, Z. Xu, Z. Yang, Y. Zhang, J. Cui et al., Inch-size 0D-structured lead-free perovskite single crystals for highly sensitive stable X-ray imaging. Matter 3(1), 180–196 (2020). https://doi.org/10.1016/j.matt.2020.04.017
- X. Xu, W. Qian, S. Xiao, J. Wang, S. Zheng et al., Halide perovskites: a dark horse for direct X-ray imaging. EcoMat 2(4), e12064 (2020). https://doi.org/10.1002/eom2.12064
- H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H.-H. Fang et al., Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 10(5), 333–339 (2016). https://doi.org/10.1038/nphoton.2016.41
- W. Pan, B. Yang, G. Niu, K.-H. Xue, X. Du et al., Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection. Adv. Mater. 31(44), 1904405 (2019). https://doi.org/10.1002/adma.201904405
- Y. Shen, Y. Liu, H. Ye, Y. Zheng, Q. Wei et al., Centimeter-sized single crystal of two-dimensional halide perovskites incorporating straight-chain symmetric diammonium ion for X-ray detection. Angew. Chem. Int. Ed. 59(35), 14896–14902 (2020). https://doi.org/10.1002/anie.202004160
- R. Zhuang, X. Wang, W. Ma, Y. Wu, X. Chen et al., Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nat. Photonics 13(9), 602–608 (2019). https://doi.org/10.1038/s41566-019-0466-7
- M. Vonder, N.R. van der Werf, T. Leiner, M.J.W. Greuter, D. Fleischmann et al., The impact of dose reduction on the quantification of coronary artery calcifications and risk categorization: a systematic review. J. Cardiovasc. Comput. Tomogr. 12(5), 352–363 (2018). https://doi.org/10.1016/j.jcct.2018.06.001
- M. Girolami, M. Bosi, V. Serpente, M. Mastellone, L. Seravalli et al., Orthorhombic undoped κ-Ga2O3 epitaxial thin films for sensitive, fast, and stable direct X-ray detectors. J. Mater. Chem. C 11(11), 3759–3769 (2023). https://doi.org/10.1039/D2TC05297K
- L. McGovern, M.H. Futscher, L.A. Muscarella, B. Ehrler, Understanding the stability of MAPbBr3 versus MAPbI3: suppression of methylammonium migration and reduction of halide migration. J. Phys. Chem. Lett. 11(17), 7127–7132 (2020). https://doi.org/10.1021/acs.jpclett.0c01822
- N. Yantara, N. Mathews, Toolsets for assessing ionic migration in halide perovskites. Joule 8(5), 1239–1273 (2024). https://doi.org/10.1016/j.joule.2024.02.022
- J. Jiang, M. Xiong, K. Fan, C. Bao, D. Xin et al., Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring. Nat. Photonics 16(8), 575–581 (2022). https://doi.org/10.1038/s41566-022-01024-9
- F. Cui, P. Zhang, L. Zhang, Y. Hua, X. Sun et al., Liquid-phase epitaxial growth of large-area MAPbBr3–nCln/CsPbBr3 perovskite single-crystal heterojunction for enhancing sensitivity and stability of X-ray detector. Chem. Mater. 34(21), 9601–9612 (2022). https://doi.org/10.1021/acs.chemmater.2c02266
- X. Ren, J. Wang, Y. Lin, Y. Wang, H. Xie et al., Mobile iodides capture for highly photolysis- and reverse-bias-stable perovskite solar cells. Nat. Mater. 23(6), 810–817 (2024). https://doi.org/10.1038/s41563-024-01876-2
- J. Huang, Y. Yuan, Y. Shao, Y. Yan, Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2, 17042 (2017). https://doi.org/10.1038/natrevmats.2017.42
References
S. Deumel, A. van Breemen, G. Gelinck, B. Peeters, J. Maas et al., High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. Nat. Electron. 4(9), 681–688 (2021). https://doi.org/10.1038/s41928-021-00644-3
Y. He, J. Song, M. Li, K. Sakhatskyi, W. Li et al., Perovskite computed tomography imager and three-dimensional reconstruction. Nat. Photonics 18(10), 1052–1058 (2024). https://doi.org/10.1038/s41566-024-01506-y
W. Qian, X. Xu, J. Wang, Y. Xu, J. Chen et al., An aerosol-liquid-solid process for the general synthesis of halide perovskite thick films for direct-conversion X-ray detectors. Matter 4(3), 942–954 (2021). https://doi.org/10.1016/j.matt.2021.01.020
Y.C. Kim, K.H. Kim, D.-Y. Son, D.-N. Jeong, J.-Y. Seo et al., Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550(7674), 87–91 (2017). https://doi.org/10.1038/nature24032
E. Kang, J. Min, J.C. Ye, A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med. Phys. 44(10), e360–e375 (2017). https://doi.org/10.1002/mp.12344
H. Wu, Y. Ge, G. Niu, J. Tang, Metal halide perovskites for X-ray detection and imaging. Matter 4(1), 144–163 (2021). https://doi.org/10.1016/j.matt.2020.11.015
Y. Zhou, J. Chen, O.M. Bakr, O.F. Mohammed, Metal halide perovskites for X-ray imaging scintillators and detectors. ACS Energy Lett. 6(2), 739–768 (2021). https://doi.org/10.1021/acsenergylett.0c02430
A. Jana, S. Cho, S.A. Patil, A. Meena, Y. Jo et al., Perovskite: scintillators, direct detectors, and X-ray imagers. Mater. Today 55, 110–136 (2022). https://doi.org/10.1016/j.mattod.2022.04.009
S. Xiao, W. Qian, S. Yang, Interfaced structures between halide perovskites: from basics to construction to optoelectronic applications. Adv. Energy Mater. 13(33), 2201472 (2023). https://doi.org/10.1002/aenm.202201472
L. Liu, M. Xu, X. Xu, X. Tao, Z. Gao, High sensitivity X-ray detectors with low degradation based on deuterated halide perovskite single crystals. Adv. Mater. 36(44), 2406443 (2024). https://doi.org/10.1002/adma.202406443
D. Chu, B. Jia, N. Liu, Y. Zhang, X. Li et al., Lattice engineering for stabilized black FAPbI3 perovskite single crystals for high-resolution X-ray imaging at the lowest dose. Sci. Adv. 9(35), eadh2255 (2023). https://doi.org/10.1126/sciadv.adh2255
W.-G. Li, X.-D. Wang, Y.-H. Huang, D.-B. Kuang, Ultrasound-assisted crystallization enables large-area perovskite quasi-monocrystalline film for high-sensitive X-ray detection and imaging. Adv. Mater. 35(31), 2210878 (2023). https://doi.org/10.1002/adma.202210878
X. Zhang, D. Chu, B. Jia, Z. Zhao, J. Pi et al., Heterointerface design of perovskite single crystals for high-performance X-ray imaging. Adv. Mater. 36(3), 2305513 (2024). https://doi.org/10.1002/adma.202305513
M. Yang, Z. Qin, M. Chen, X. Lin, X. Luan et al., Building scalable buried interface for high-performance perovskite photovoltaic devices. Adv. Funct. Mater. 34(37), 2402053 (2024). https://doi.org/10.1002/adfm.202402053
Y. Bai, Z. Huang, X. Zhang, J. Lu, X. Niu et al., Initializing film homogeneity to retard phase segregation for stable perovskite solar cells. Science 378(6621), 747–754 (2022). https://doi.org/10.1126/science.abn3148
D.L. McGott, C.P. Muzzillo, C.L. Perkins, J.J. Berry, K. Zhu et al., 3D/2D passivation as a secret to success for polycrystalline thin-film solar cells. Joule 5(5), 1057–1073 (2021). https://doi.org/10.1016/j.joule.2021.03.015
X. Li, S. Aftab, M. Mukhtar, F. Kabir, M.F. Khan et al., Exploring nanoscale perovskite materials for next-generation photodetectors: a comprehensive review and future directions. Nano-Micro Lett. 17(1), 28 (2024). https://doi.org/10.1007/s40820-024-01501-6
B. Yang, X. Xie, S. Zeng, B. Xue, S. Xiao et al., Numerical modeling of defects induced dark current in halide perovskite X-ray detectors. Phys. Scr. 99(2), 025995 (2024). https://doi.org/10.1088/1402-4896/ad1fc5
T. Zhang, C. Hu, S. Yang, Ion migration: a “double-edged sword” for halide-perovskite-based electronic devices. Small Methods 4(5), 1900552 (2020). https://doi.org/10.1002/smtd.201900552
X. Xu, W. Qian, J. Wang, J. Yang, J. Chen et al., Sequential growth of 2D/3D double-layer perovskite films with superior X-ray detection performance. Adv. Sci. 8(21), 2102730 (2021). https://doi.org/10.1002/advs.202102730
Y. He, W. Pan, C. Guo, H. Zhang, H. Wei, B. Yang, 3D/2D perovskite single crystals heterojunction for suppressed ions migration in hard X-ray detection. Adv. Funct. Mater. 31(49), 2104880 (2021). https://doi.org/10.1002/adfm.202104880
L. Wang, N. Wang, X. Wu, B. Liu, Q. Liu et al., Highly efficient monolithic perovskite/TOPCon silicon tandem solar cells enabled by “halide locking.” Adv. Mater. 37(7), 2416150 (2025). https://doi.org/10.1002/adma.202416150
Z. Xu, H. Xi, X. Sun, H. Liu, J. Liu et al., Highly stable and sensitive (PEA)2PbBr4/CsPbBr3 single-crystal heterojunction X-ray detector with ultra-low detection limit. Adv. Funct. Mater. 34(34), 2400817 (2024). https://doi.org/10.1002/adfm.202400817
S. Zeng, B. Xue, B. Zhang, B. Yang, X. Xie et al., Surface integration modulated low-temperature synthesis for high-quality halide perovskite single crystals. Chem. Eng. J. 514, 163060 (2025). https://doi.org/10.1016/j.cej.2025.163060
E.A. Duijnstee, J.M. Ball, V.M. Le Corre, L.J.A. Koster, H.J. Snaith et al., Toward understanding space-charge limited current measurements on metal halide perovskites. ACS Energy Lett. 5(2), 376–384 (2020). https://doi.org/10.1021/acsenergylett.9b02720
F. Xu, Y. Zou, Y. Dai, M. Li, Z. Li, Halide perovskites and high-pressure technologies: a fruitful encounter. Mater. Chem. Front. 7(11), 2102–2119 (2023). https://doi.org/10.1039/d2qm01257j
P. Fu, M.A. Quintero, E.S. Vasileiadou, P. Raval, C. Welton et al., Chemical behavior and local structure of the Ruddlesden–Popper and Dion–Jacobson alloyed Pb/Sn bromide 2D perovskites. J. Am. Chem. Soc. 145(29), 15997–16014 (2023). https://doi.org/10.1021/jacs.3c03997
S. Ghimire, C. Klinke, Two-dimensional halide perovskites: synthesis, optoelectronic properties, stability, and applications. Nanoscale 13(29), 12394–12422 (2021). https://doi.org/10.1039/D1NR02769G
Y. Li, Z. Lin, J. Wang, R. Xu, K. Zhang et al., Amine salts vapor healing perfected perovskite layers for NiOx based p-i-n solar cells. Adv. Funct. Mater. 32(41), 2203995 (2022). https://doi.org/10.1002/adfm.202203995
Y. He, Z. Lin, J. Wang, K. Zhang, X. Xu et al., A heat-liquefiable solid precursor for ambient growth of perovskites with high tunability, performance and stability. Small Methods 6(8), 2200384 (2022). https://doi.org/10.1002/smtd.202200384
X. Xie, S. Zeng, C. Zhou, S. Xiao, Fabrication strategies for high quality halide perovskite films in solar cells. Mater. Chem. Front. 7(21), 5309–5332 (2023). https://doi.org/10.1039/D3QM00496A
Y. Chen, X. Peng, W. Qin, S. Li, L. Zhang et al., Filterless bandpass photodetectors enabled by 2D/3D perovskite heterojunctions. Adv. Funct. Mater. 34(41), 2403942 (2024). https://doi.org/10.1002/adfm.202403942
W. Li, S. Sidhik, B. Traore, R. Asadpour, J. Hou et al., Light-activated interlayer contraction in two-dimensional perovskites for high-efficiency solar cells. Nat. Nanotechnol. 17(1), 45–52 (2022). https://doi.org/10.1038/s41565-021-01010-2
I. Metcalf, S. Sidhik, H. Zhang, A. Agrawal, J. Persaud et al., Synergy of 3D and 2D perovskites for durable, efficient solar cells and beyond. Chem. Rev. 123(15), 9565–9652 (2023). https://doi.org/10.1021/acs.chemrev.3c00214
L. Mao, C.C. Stoumpos, M.G. Kanatzidis, Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 141(3), 1171–1190 (2019). https://doi.org/10.1021/jacs.8b10851
X. Ren, X. Yan, A.S. Ahmad, H. Cheng, Y. Li et al., Pressure-induced phase transition and band gap engineering in propylammonium lead bromide perovskite. J. Phys. Chem. C 123(24), 15204–15208 (2019). https://doi.org/10.1021/acs.jpcc.9b02854
X. Li, H. Dong, G. Volonakis, C.C. Stoumpos, J. Even et al., Ordered mixed-spacer 2D bromide perovskites and the dual role of 1, 2, 4-triazolium cation. Chem. Mater. 34(14), 6541–6552 (2022). https://doi.org/10.1021/acs.chemmater.2c01432
P. Sengupta, P. Sadhukhan, A. Ray, S. Mal, A. Singh et al., Influence of activation energy on charge conduction mechanism and giant dielectric relaxation of sol-gel derived C3H7NH3PbBr3 perovskite; act as high performing UV photodetector. J. Alloys Compd. 892, 162216 (2022). https://doi.org/10.1016/j.jallcom.2021.162216
M.I. Saidaminov, V. Adinolfi, R. Comin, A.L. Abdelhady, W. Peng et al., Planar-integrated single-crystalline perovskite photodetectors. Nat. Commun. 6, 8724 (2015). https://doi.org/10.1038/ncomms9724
N. He, L. Zhang, X. He, J. Guo, X. Wu et al., PA2PbBr4/MAPbBr3 heterojunction X-ray detector with enhanced sensitivity and excellent self-powered functionality. Adv. Opt. Mater. 12(24), 2400707 (2024). https://doi.org/10.1002/adom.202400707
Y. Zhao, X. Luan, L. Han, Y. Wang, Post-assembled alkylphosphonic acids for efficient and stable inverted perovskite solar cells. Adv. Funct. Mater. 34(46), 2405646 (2024). https://doi.org/10.1002/adfm.202405646
J. Sun, M. Chen, T. Huang, G. Ding, Z. Wang, Coexistence of the band filling effect and trap-state filling in the size-dependent photoluminescence blue shift of MAPbBr3 nanops. Nanomaterials 14(19), 1546 (2024). https://doi.org/10.3390/nano14191546
Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014). https://doi.org/10.1038/ncomms6784
C. Sun, Z. Wu, H.-L. Yip, H. Zhang, X.-F. Jiang et al., Amino-functionalized conjugated polymer as an efficient electron transport layer for high-performance planar-heterojunction perovskite solar cells. Adv. Energy Mater. 6(5), 1501534 (2016). https://doi.org/10.1002/aenm.201501534
M. Salado, A.D. Jodlowski, C. Roldan-Carmona, G. de Miguel, S. Kazim et al., Surface passivation of perovskite layers using heterocyclic halides: improved photovoltaic properties and intrinsic stability. Nano Energy 50, 220–228 (2018). https://doi.org/10.1016/j.nanoen.2018.05.035
X. Jiang, B. Liu, X. Wu, S. Zhang, D. Zhang et al., Top-down induced crystallization orientation toward highly efficient p-i-n perovskite solar cells. Adv. Mater. 36(24), 2313524 (2024). https://doi.org/10.1002/adma.202313524
M. Girolami, F. Matteocci, S. Pettinato, V. Serpente, E. Bolli et al., Metal-halide perovskite submicrometer-thick films for ultra-stable self-powered direct X-ray detectors. Nano-Micro Lett. 16(1), 182 (2024). https://doi.org/10.1007/s40820-024-01393-6
Y. Liu, Z. Xu, Z. Yang, Y. Zhang, J. Cui et al., Inch-size 0D-structured lead-free perovskite single crystals for highly sensitive stable X-ray imaging. Matter 3(1), 180–196 (2020). https://doi.org/10.1016/j.matt.2020.04.017
X. Xu, W. Qian, S. Xiao, J. Wang, S. Zheng et al., Halide perovskites: a dark horse for direct X-ray imaging. EcoMat 2(4), e12064 (2020). https://doi.org/10.1002/eom2.12064
H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H.-H. Fang et al., Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 10(5), 333–339 (2016). https://doi.org/10.1038/nphoton.2016.41
W. Pan, B. Yang, G. Niu, K.-H. Xue, X. Du et al., Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection. Adv. Mater. 31(44), 1904405 (2019). https://doi.org/10.1002/adma.201904405
Y. Shen, Y. Liu, H. Ye, Y. Zheng, Q. Wei et al., Centimeter-sized single crystal of two-dimensional halide perovskites incorporating straight-chain symmetric diammonium ion for X-ray detection. Angew. Chem. Int. Ed. 59(35), 14896–14902 (2020). https://doi.org/10.1002/anie.202004160
R. Zhuang, X. Wang, W. Ma, Y. Wu, X. Chen et al., Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nat. Photonics 13(9), 602–608 (2019). https://doi.org/10.1038/s41566-019-0466-7
M. Vonder, N.R. van der Werf, T. Leiner, M.J.W. Greuter, D. Fleischmann et al., The impact of dose reduction on the quantification of coronary artery calcifications and risk categorization: a systematic review. J. Cardiovasc. Comput. Tomogr. 12(5), 352–363 (2018). https://doi.org/10.1016/j.jcct.2018.06.001
M. Girolami, M. Bosi, V. Serpente, M. Mastellone, L. Seravalli et al., Orthorhombic undoped κ-Ga2O3 epitaxial thin films for sensitive, fast, and stable direct X-ray detectors. J. Mater. Chem. C 11(11), 3759–3769 (2023). https://doi.org/10.1039/D2TC05297K
L. McGovern, M.H. Futscher, L.A. Muscarella, B. Ehrler, Understanding the stability of MAPbBr3 versus MAPbI3: suppression of methylammonium migration and reduction of halide migration. J. Phys. Chem. Lett. 11(17), 7127–7132 (2020). https://doi.org/10.1021/acs.jpclett.0c01822
N. Yantara, N. Mathews, Toolsets for assessing ionic migration in halide perovskites. Joule 8(5), 1239–1273 (2024). https://doi.org/10.1016/j.joule.2024.02.022
J. Jiang, M. Xiong, K. Fan, C. Bao, D. Xin et al., Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring. Nat. Photonics 16(8), 575–581 (2022). https://doi.org/10.1038/s41566-022-01024-9
F. Cui, P. Zhang, L. Zhang, Y. Hua, X. Sun et al., Liquid-phase epitaxial growth of large-area MAPbBr3–nCln/CsPbBr3 perovskite single-crystal heterojunction for enhancing sensitivity and stability of X-ray detector. Chem. Mater. 34(21), 9601–9612 (2022). https://doi.org/10.1021/acs.chemmater.2c02266
X. Ren, J. Wang, Y. Lin, Y. Wang, H. Xie et al., Mobile iodides capture for highly photolysis- and reverse-bias-stable perovskite solar cells. Nat. Mater. 23(6), 810–817 (2024). https://doi.org/10.1038/s41563-024-01876-2
J. Huang, Y. Yuan, Y. Shao, Y. Yan, Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2, 17042 (2017). https://doi.org/10.1038/natrevmats.2017.42