Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting
Corresponding Author: Yang Hou
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 24
Abstract
Solar-driven photoelectrochemical (PEC) water splitting systems are highly promising for converting solar energy into clean and sustainable chemical energy. In such PEC systems, an integrated photoelectrode incorporates a light harvester for absorbing solar energy, an interlayer for transporting photogenerated charge carriers, and a co-catalyst for triggering redox reactions. Thus, understanding the correlations between the intrinsic structural properties and functions of the photoelectrodes is crucial. Here we critically examine various 2D layered photoanodes/photocathodes, including graphitic carbon nitrides, transition metal dichalcogenides, layered double hydroxides, layered bismuth oxyhalide nanosheets, and MXenes, combined with advanced nanocarbons (carbon dots, carbon nanotubes, graphene, and graphdiyne) as co-catalysts to assemble integrated photoelectrodes for oxygen evolution/hydrogen evolution reactions. The fundamental principles of PEC water splitting and physicochemical properties of photoelectrodes and the associated catalytic reactions are analyzed. Elaborate strategies for the assembly of 2D photoelectrodes with nanocarbons to enhance the PEC performances are introduced. The mechanisms of interplay of 2D photoelectrodes and nanocarbon co-catalysts are further discussed. The challenges and opportunities in the field are identified to guide future research for maximizing the conversion efficiency of PEC water splitting.
Highlights:
1 Layered integrated photoelectrodes for water splitting incorporating nanocarbon co-catalysts are systematically reviewed.
2 The correlations between intrinsic structures, optimized configurations, and water splitting performances of layered integrated photoelectrodes are established and analyzed.
3 Various synthetic strategies and assembling procedures are critically examined to enhance water splitting performance of layered integrated photoelectrodes.
4 Current challenges and future directions for maximizing the efficiency of photoelectrochemical water splitting are outlined.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0
- J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29(20), 1601694 (2017). https://doi.org/10.1002/adma.201601694
- Q. Xu, L. Zhang, J. Yu, S. Wageh, A.A. Al-Ghamdi et al., Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater. Today 21(10), 1042–1063 (2018). https://doi.org/10.1016/j.mattod.2018.04.008
- T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43(22), 7520–7535 (2014). https://doi.org/10.1039/c3cs60378d
- I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017). https://doi.org/10.1038/s41570-016-0003
- W.H. Wang, Y. Himeda, J.T. Muckerman, G.F. Manbeck, E. Fujita, CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 115(23), 12936–12973 (2015). https://doi.org/10.1021/acs.chemrev.5b00197
- C. Lu, J. Yang, S. Wei, S. Bi, Y. Xia et al., Atomic Ni anchored covalent triazine framework as high efficient electrocatalyst for carbon dioxide conversion. Adv. Funct. Mater. 29(10), 1806884 (2019). https://doi.org/10.1002/adfm.201806884
- M. Ali, F. Zhou, K. Chen, C. Kotzur, C. Xiao et al., Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nat. Commun. 7, 11335 (2016). https://doi.org/10.1038/ncomms11335
- L.L. Yu, J.Z. Qin, W.J. Zhao, Z.G. Zhang, J. Ke et al., Advances in two-dimensional MXenes for nitrogen electrocatalytic reduction to ammonia. Int. J. Photoenergy 2020, 1–11 (2020). https://doi.org/10.1155/2020/5251431
- X. Zou, C. Yuan, Y. Dong, H. Ge, J. Ke et al., Lanthanum orthovanadate/bismuth oxybromide heterojunction for enhanced photocatalytic air purification and mechanism exploration. Chem. Eng. J. 379, 122380 (2020). https://doi.org/10.1016/j.cej.2019.122380
- J. Ke, H.R. Zhou, Y.Y. Peng, D.Y. Tang, In-situ construction of a two-dimensional heterojunction by stacking bismuth trioxide nanoplates with reduced graphene oxide for enhanced water oxidation performance. J. Nanosci. Nanotechnol. 19(9), 5554–5561 (2019). https://doi.org/10.1166/jnn.2019.16568
- C. Lei, Y. Wang, Y. Hou, P. Liu, J. Yang et al., Efficient alkaline hydrogen evolution on atomically dispersed Ni–Nx species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy Environ. Sci. 12(1), 149–156 (2019). https://doi.org/10.1039/C8EE01841C
- H. Xie, J. Zhang, D. Wang, J. Liu, L. Wang et al., Construction of three-dimensional g-C3N4/attapulgite hybrids for Cd(II) adsorption and the reutilization of waste adsorbent. Appl. Surf. Sci. 504, 144456 (2020). https://doi.org/10.1016/j.apsusc.2019.144456
- J. Liu, Y. Li, J. Ke, Z. Wang, H. Xiao, Synergically improving light harvesting and charge transportation of TiO2 nanobelts by deposition of MoS2 for enhanced photocatalytic removal of Cr(VI). Catalysts 7(12), 30 (2017). https://doi.org/10.3390/catal7010030
- Z. Cai, X. Bu, P. Wang, J.C. Ho, J. Yang et al., Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 7(10), 5069–5089 (2019). https://doi.org/10.1039/c8ta11273h
- D. Yang, G. Yang, J. Li, S. Gai, F. He et al., NIR-driven water splitting by layered bismuth oxyhalide sheets for effective photodynamic therapy. J. Mater. Chem. B 5(22), 4152–4161 (2017). https://doi.org/10.1039/c7tb00688h
- J. Qin, X. Hu, X. Li, Z. Yin, B. Liu et al., 0D/2D AgInS2/MXene Z-scheme heterojunction nanosheets for improved ammonia photosynthesis of N2. Nano Energy 61, 27–35 (2019). https://doi.org/10.1016/j.nanoen.2019.04.028
- W. Zheng, J. Yang, H. Chen, Y. Hou, Q. Wang et al., Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Adv. Funct. Mater. 30(4), 1907658 (2019). https://doi.org/10.1002/adfm.201907658
- J. Yang, D. Wang, H. Han, C. Li, Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 46(8), 1900–1909 (2013). https://doi.org/10.1021/ar300227e
- X. Chang, T. Wang, P. Yang, G. Zhang, J. Gong, The development of cocatalysts for photoelectrochemical CO2 reduction. Adv. Mater. 31(31), 1804710 (2019). https://doi.org/10.1002/adma.201804710
- S. Zhong, Y. Xi, S. Wu, Q. Liu, L. Zhao et al., Hybrid cocatalysts in semiconductor-based photocatalysis and photoelectrocatalysis. J. Mater. Chem. A 8(30), 14863–14894 (2020). https://doi.org/10.1039/d0ta04977h
- D. Chen, Z. Liu, Z. Guo, M. Ruan, W. Yan, 3D branched Ca-Fe2O3/Fe2O3 decorated with Pt and Co-Pi: Improved charge-separation dynamics and photoelectrochemical performance. Chemsuschem 12(14), 3286–3295 (2019). https://doi.org/10.1002/cssc.201901331
- W. Xu, W. Tian, L. Meng, F. Cao, L. Li, Ion sputtering–assisted double-side interfacial engineering for CdIn2S4 photoanode toward improved photoelectrochemical water splitting. Adv. Mater. Interfaces 7(6), 1901947 (2020). https://doi.org/10.1002/admi.201901947
- H. Li, P. Wen, D.S. Itanze, M.W. Kim, S. Adhikari et al., Phosphorus-rich colloidal cobalt diphosphide (CoP2) nanocrystals for electrochemical and photoelectrochemical hydrogen evolution. Adv. Mater. 31(24), 1900813 (2019). https://doi.org/10.1002/adma.201900813
- L. Badia-Bou, E. Mas-Marza, P. Rodenas, E.M. Barea, F. Fabregat-Santiago et al., Water oxidation at hematite photoelectrodes with an iridium-based catalyst. J. Phys. Chem. C 117(8), 3826–3833 (2013). https://doi.org/10.1021/jp311983n
- M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu et al., Surface modification of CoOx loaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J. Am. Chem. Soc. 137(15), 5053–5060 (2015). https://doi.org/10.1021/jacs.5b00256
- T.A. Kandiel, M.G. Ahmed, A.Y. Ahmed, Physical insights into band bending in pristine and Co-Pi-modified BiVO4 photoanodes with dramatically enhanced solar water splitting efficiency. J. Phys. Chem. Lett. 11(13), 5015–5020 (2020). https://doi.org/10.1021/acs.jpclett.0c01419
- Y. Wang, W. Tian, F. Cao, D. Fang, S. Chen et al., Boosting PEC performance of Si photoelectrodes by coupling bifunctional CuCo hybrid oxide cocatalysts. Nanotechnology 29(42), 425703 (2018). https://doi.org/10.1088/1361-6528/aad7a0
- Y. Wang, W. Tian, C. Chen, W. Xu, L. Li, Tungsten trioxide nanostructures for photoelectrochemical water splitting: material engineering and charge carrier dynamic manipulation. Adv. Funct. Mater. 29(23), 1809036 (2019). https://doi.org/10.1002/adfm.201809036
- C. Lei, Z. Wen, S. Lyu, J. Si, B. Yang et al., Nanostructured carbon based heterogeneous electrocatalysts for oxygen evolution reaction in alkaline media. ChemCatChem 11(24), 5855–5874 (2019). https://doi.org/10.1002/cctc.201901707
- Y. Hou, M. Qiu, M.G. Kim, P. Liu, G. Nam et al., Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 10, 1392 (2019). https://doi.org/10.1038/s41467-019-09394-5
- Y. He, X. Zhuang, C. Lei, L. Lei, Y. Hou et al., Porous carbon nanosheets: synthetic strategies and electrochemical energy related applications. Nano Today 24, 103–119 (2019). https://doi.org/10.1016/j.nantod.2018.12.004
- L. Wang, J. Cao, X. Cheng, C. Lei, Q. Dai et al., ZIF-derived carbon nanoarchitecture as a bifunctional pH-universal electrocatalyst for energy-efficient hydrogen evolution. ACS Sustainable Chem. Eng. 7(11), 10044–10051 (2019). https://doi.org/10.1021/acssuschemeng.9b01315
- N. Liu, W. Huang, X. Zhang, L. Tang, L. Wang et al., Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB. Appl. Catal. B: Environ. 221, 119–128 (2018). https://doi.org/10.1016/j.apcatb.2017.09.020
- Y. Li, L. Xu, H. Liu, Y. Li, Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem. Soc. Rev. 43(8), 2572–2586 (2014). https://doi.org/10.1039/c3cs60388a
- M. Inagaki, F. Kang, Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne. J. Mater. Chem. A 2(33), 13193–13206 (2014). https://doi.org/10.1039/c4ta01183j
- Y. Hou, M. Qiu, T. Zhang, J. Ma, S. Liu et al., Efficient electrochemical and photoelectrochemical water splitting by a 3D nanostructured carbon supported on flexible exfoliated graphene foil. Adv. Mater. 29(3), 1604480 (2017). https://doi.org/10.1002/adma.201604480
- F. Bi, X. Zhang, J. Chen, Y. Yang, Y. Wang, Excellent catalytic activity and water resistance of UiO-66-supported highly dispersed Pd nanoparticles for toluene catalytic oxidation. Appl. Catal. B: Environ. 269, 118767 (2020). https://doi.org/10.1016/j.apcatb.2020.118767
- Q. Pan, H. Liu, Y. Zhao, S. Chen, B. Xue et al., Preparation of N-graphdiyne nanosheets at liquid/liquid interface for photocatalytic NADH regeneration. ACS Appl. Mater. Interfaces 11(3), 2740–2744 (2019). https://doi.org/10.1021/acsami.8b03311
- S. Thangavel, K. Krishnamoorthy, V. Krishnaswamy, N. Raju, S.J. Kim et al., Graphdiyne-ZnO nanohybrids as an advanced photocatalytic material. J. Phys. Chem. C 119(38), 22057–22065 (2015). https://doi.org/10.1021/acs.jpcc.5b06138
- Y. Fang, Y. Xue, L. Hui, H. Yu, Y. Liu et al., In situ growth of graphdiyne based heterostructure: toward efficient overall water splitting. Nano Energy 59, 591–597 (2019). https://doi.org/10.1016/j.nanoen.2019.03.022
- X. Zou, Y. Dong, S. Li, J. Ke, Y. Cui, Facile anion exchange to construct uniform AgX (X = Cl, Br, I)/Ag2CrO4 NR hybrids for efficient visible light driven photocatalytic activity. Sol. Energy 169, 392–400 (2018). https://doi.org/10.1016/j.solener.2018.05.017
- M.A. Younis, S. Lyu, Q. Zhao, C. Lei, P. Zhang et al., Noble metal-free two dimensional carbon-based electrocatalysts for water splitting. BMC Mater. 1(1), 6 (2019). https://doi.org/10.1186/s42833-019-0006-2
- C. Lei, H. Chen, J. Cao, J. Yang, M. Qiu et al., Fe-N4 sites embedded into carbon nanofiber integrated with electrochemically exfoliated graphene for oxygen evolution in acidic medium. Adv. Energy Mater. 8(26), 1801912 (2018). https://doi.org/10.1002/aenm.201801912
- T. Wang, Q. Zhao, Y. Fu, C. Lei, B. Yang et al., Carbon-rich nonprecious metal single atom electrocatalysts for CO2 reduction and hydrogen evolution. Small Methods 3(10), 1900210 (2019). https://doi.org/10.1002/smtd.201900210
- X. Wang, Q. Zhao, B. Yang, Z. Li, Z. Bo et al., Emerging nanostructured carbon-based non-precious metal electrocatalysts for selective electrochemical CO2 reduction to CO. J. Mater. Chem. A 7(44), 25191–25202 (2019). https://doi.org/10.1039/c9ta09681g
- T. Yao, X. An, H. Han, J.Q. Chen, C. Li, Photoelectrocatalytic materials for solar water splitting. Adv. Energy Mater. 8(21), 1800210 (2018). https://doi.org/10.1002/aenm.201800210
- N. Guijarro, M.S. Prévot, K. Sivula, Surface modification of semiconductor photoelectrodes Phys. Chem. Chem. Phys. 17(24), 15655–15674 (2015). https://doi.org/10.1039/C5CP01992C
- M.G. Kibria, S.Z. Zhao, F.A. Chowdhury, Q. Wang, H.P.T. Ngugyen et al., Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting. Nat. Commun. 5, 3825 (2014). https://doi.org/10.1038/ncomms4825
- Z. Zhang, J.T. Yates Jr., Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112(10), 5520–5551 (2012). https://doi.org/10.1021/cr3000626
- N. Kaneza, P.S. Shinde, Y. Ma, S. Pan, Photoelectrochemical study of carbon-modified p-type Cu2O nanoneedles and n-type TiO2−x nanorods for Z-scheme solar water splitting in a tandem cell configuration. RSC Adv. 9(24), 13576–13585 (2019). https://doi.org/10.1039/c8ra09403a
- Z. Li, W. Wang, C. Ding, Z. Wang, S. Liao, C. Li, Biomimic electron transport via multi redox shuttles from photosystem II to photoelectrochemical cell for solar water splitting. Energy Environ. Sci. 10(3), 765–771 (2017). https://doi.org/10.1039/C6EE03401B
- W. Wang, H. Wang, Q. Zhu, W. Qin, G. Han et al., Spatially separated photosystem II and a silicon photoelectrochemical cell for overall water splitting: a natural-artificial photosynthetic hybrid. Angew. Chem. Int. Ed. 55(32), 9229–9233 (2016). https://doi.org/10.1002/anie.201604091
- R. Abe, K. Sayama, H. Sugihara, Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3−/I−. J. Phys. Chem. B 109(33), 16052–16061 (2005). https://doi.org/10.1021/jp052848l
- J. Zhang, H. Li, J. Zhang, Y. Wu, Y. Geng et al., A promising anchor group for efficient organic dye sensitized solar cells with iodine-free redox shuttles: a theoretical evaluation. J. Mater. Chem. A 1(44), 14000 (2013). https://doi.org/10.1039/c3ta12311a
- Y. Kageshima, H. Kumagai, T. Minegishi, J. Kubota, K. Domen, A photoelectrochemical solar cell consisting of a cadmium sulfide photoanode and a Ruthenium-2,2′-bipyridine redox shuttle in a non-aqueous electrolyte. Angew. Chem. Int. Ed. 54(27), 7877–7881 (2015). https://doi.org/10.1002/anie.201502586
- C.J. Gagliardi, A.K. Vannucci, J.J. Concepcion, Z. Chen, T.J. Meyer, The role of proton coupled electron transfer in water oxidation. Energy Environ. Sci. 5(7), 7704–7717 (2012). https://doi.org/10.1039/c2ee03311a
- T.H. Han, Y.H. Kim, M.H. Kim, W. Song, T.W. Lee, Synergetic influences of mixed-host emitting layer structures and hole injection layers on efficiency and lifetime of simplified phosphorescent organic light-emitting diodes. ACS Appl. Mater. Interfaces. 8(9), 6152–6163 (2016). https://doi.org/10.1021/acsami.5b11791
- K. Sivula, R. Zboril, F.L. Formal, R. Robert, A. Weidenkaff et al., Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J. Am. Chem. Soc. 132(21), 7436–7444 (2010). https://doi.org/10.1021/ja101564f
- X.T. Xu, L. Pan, X. Zhang, L. Wang, J.J. Zou, Rational design and construction of cocatalysts for semiconductor-based photo-electrochemical oxygen evolution: a comprehensive review. Adv. Sci. 6(2), 1801505 (2019). https://doi.org/10.1002/advs.201801505
- H. Zhou, Z. Wen, J. Liu, J. Ke, X. Duan et al., Z-scheme plasmonic Ag decorated WO3/Bi2WO6 hybrids for enhanced photocatalytic abatement of chlorinated-VOCs under solar light irradiation. Appl. Catal. B: Environ. 242, 76–84 (2019). https://doi.org/10.1016/j.apcatb.2018.09.090
- T. Zhang, Y. Hou, V. Dzhagan, Z. Liao, G. Chai et al., Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes. Nat. Commun. 9, 1140 (2018). https://doi.org/10.1038/s41467-018-03444-0
- Z. Zhang, S. Wang, M. Bao, J. Ren, S. Pei et al., Construction of ternary Ag/AgCl/NH2-UiO-66 hybridized heterojunction for effective photocatalytic hexavalent chromium reduction. J. Colloid Interf. Sci. 555, 342–351 (2019). https://doi.org/10.1016/j.jcis.2019.07.103
- X. Zou, Y. Dong, C. Yuan, H. Ge, J. Ke et al., Zn2SnO4 QDs decorated Bi2WO6 nanoplates for improved visible-light-driven photocatalytic removal of gaseous contaminants. J. Taiwan Inst. Chem. Eng. 96, 390–399 (2019). https://doi.org/10.1016/j.jtice.2018.12.005
- J. Liu, Y. Li, Z. Li, J. Ke, H. Xiao et al., In situ growing of Bi/Bi2O2CO3 on Bi2WO6 nanosheets for improved photocatalytic performance. Catal. Today 314, 2–9 (2018). https://doi.org/10.1016/j.cattod.2017.12.001
- J. Chen, X. Zhang, F. Bi, X. Zhang, Y. Yang et al., A facile synthesis for uniform tablet-like TiO2/C derived from Materials of Institut Lavoisier-125(Ti) (MIL-125(Ti)) and their enhanced visible light-driven photodegradation of tetracycline. J. Colloid Interf. Sci. 571, 275–284 (2020). https://doi.org/10.1016/j.jcis.2020.03.055
- J. Zhu, S. Pang, T. Dittrich, Y. Gao, W. Nie et al., Visualizing the nano cocatalyst aligned electric fields on single photocatalyst particles. Nano Lett. 17(11), 6735–6741 (2017). https://doi.org/10.1021/acs.nanolett.7b02799
- X. Zhang, Y. Wang, F. Hou, H. Li, Y. Yang et al., Effects of Ag loading on structural and photocatalytic properties of flower-like ZnO microspheres. Appl. Surf. Sci. 391, 476–483 (2017). https://doi.org/10.1016/j.apsusc.2016.06.109
- D. Yuan, C. Zhang, S. Tang, M. Sun, Y. Zhang et al., Fe3+-sulfite complexation enhanced persulfate Fenton-like process for antibiotic degradation based on response surface optimization. Sci. Total Environ. 727, 138773 (2020). https://doi.org/10.1016/j.scitotenv.2020.138773
- M.G. Ahmed, I.E. Kretschmer, T.A. Kandiel, A.Y. Ahmed, F.A. Rashwan et al., A facile surface passivation of hematite photoanodes with TiO2 overlayers for efficient solar water splitting. ACS Appl. Mater. Interfaces 7(43), 24053–24062 (2015). https://doi.org/10.1021/acsami.5b07065
- K. Kim, J. Yang, J.H. Moon, Unveiling the effects of nanostructures and core materials on charge-transport dynamics in heterojunction electrodes for photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 12(19), 21894–21902 (2020). https://doi.org/10.1021/acsami.0c03958
- J.E. Thorne, J.W. Jang, E.Y. Liu, D. Wang, Understanding the origin of photoelectrode performance enhancement by probing surface kinetics. Chem. Sci. 7(5), 3347–3354 (2016). https://doi.org/10.1039/c5sc04519c
- H. Zhang, W. Zhou, Y. Yang, C. Cheng, 3D WO3/BiVO4/cobalt phosphate composites inverse opal photoanode for efficient photoelectrochemical water splitting. Small 13(16), 1603840 (2017). https://doi.org/10.1002/smll.201603840
- I. Grigioni, M. Abdellah, A. Corti, M.V. Dozzi, L. Hammarstrom, E. Selli, Photoinduced charge-transfer dynamics in WO3/BiVO4 photoanodes probed through midinfrared transient absorption spectroscopy. J. Am. Chem. Soc. 140(43), 14042–14045 (2018). https://doi.org/10.1021/jacs.8b08309
- T.-P. Ruoko, A. Hiltunen, T. Iivonen, R. Ulkuniemi, K. Lahtonen et al., Charge carrier dynamics in tantalum oxide overlayered and tantalum doped hematite photoanodes. J. Mater. Chem. A 7(7), 3206–3215 (2019). https://doi.org/10.1039/c8ta09501a
- A. Yamakata, C.S.K. Ranasinghe, N. Hayashi, K. Kato, J.J.M. Vequizo, Identification of individual electron- and hole-transfer kinetics at CoOx/BiVO4/SnO2 double heterojunctions. ACS Appl. Energy Mater. 3(1), 1207–1214 (2019). https://doi.org/10.1021/acsaem.9b02262
- Y.-C. Pu, W.-T. Chen, M.-J. Fang, Y.-L. Chen, K.-A. Tsai et al., Au–Cd1−xZnxS core–alloyed shell nanocrystals: boosting the interfacial charge dynamics by adjusting the shell composition. J. Mater. Chem. A 6(36), 17503–17513 (2018). https://doi.org/10.1039/c8ta05539d
- Y. Liu, H. Zhang, J. Ke, J. Zhang, W. Tian et al., 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution. Appl. Catal. B: Environ. 228, 64–74 (2018). https://doi.org/10.1016/j.apcatb.2018.01.067
- X. Zhang, Y. Yang, W. Huang, Y. Yang, Y. Wang et al., g-C3N4/UiO-66 nanohybrids with enhanced photocatalytic activities for the oxidation of dye under visible light irradiation. Mater. Res. Bull. 99, 349–358 (2018). https://doi.org/10.1016/j.materresbull.2017.11.028
- X. Zou, Y. Dong, S. Li, J. Ke, Y. Cui et al., Fabrication of V2O5/g-C3N4 heterojunction composites and its enhanced visible light photocatalytic performance for degradation of gaseous ortho-dichlorobenzene. J. Taiwan Inst. Chem. Eng. 93, 158–165 (2018). https://doi.org/10.1016/j.jtice.2018.05.041
- Q. Liu, T. Chen, Y. Guo, Z. Zhang, X. Fang, Ultrathin g-C3N4 nanosheets coupled with carbon nanodots as 2D/0D composites for efficient photocatalytic H2 evolution. Appl. Catal. B: Environ. 193, 248–258 (2016). https://doi.org/10.1016/j.apcatb.2016.04.034
- M. Faraji, M. Yousefi, S. Yousefzadeh, M. Zirak, N. Naseri et al., Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy Environ. Sci. 12(1), 59–95 (2019). https://doi.org/10.1039/c8ee00886h
- G. Gao, Y. Jiao, F. Ma, Y. Jiao, E. Waclawik et al., Carbon nanodot decorated graphitic carbon nitride: new insights into the enhanced photocatalytic water splitting from ab initio studies. Phys. Chem. Chem. Phys. 17(46), 31140–31144 (2015). https://doi.org/10.1039/c5cp05512a
- J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang et al., Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347(6225), 970–974 (2015). https://doi.org/10.1126/science.aaa3145
- Y. Wei, Z. Wang, J. Su, L. Guo, Metal-free flexible protonated g-C3N4/carbon dots photoanode for photoelectrochemical water splitting. ChemElectroChem 5(19), 2734–2737 (2018). https://doi.org/10.1002/celc.201800550
- G. Peng, M. Volokh, J. Tzadikov, J. Sun, M. Shalom, Carbonnitride/reduced graphene oxide film with enhanced electron diffusion length: an efficient photo-electrochemical cell for hydrogen generation. Adv. Energy Mater. 8(23), 1800566 (2018). https://doi.org/10.1002/aenm.201800566
- X. Zhao, D. Pan, X. Chen, R. Li, T. Jiang et al., g-C3N4 photoanode for photoelectrocatalytic synergistic pollutant degradation and hydrogen evolution. Appl. Surf. Sci. 467–468, 658–665 (2019). https://doi.org/10.1016/j.apsusc.2018.10.090
- Y. Hou, Z. Wen, S. Cui, X. Guo, J. Chen, Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 25(43), 6291–6297 (2013). https://doi.org/10.1002/adma.201303116
- X. Gao, Y. Zhu, D. Yi, J. Zhou, S. Zhang et al., Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Sci. Adv. 4(7), eaat6378 (2018). https://doi.org/10.1126/sciadv.aat6378
- X. Gao, J. Li, R. Du, J. Zhou, M.Y. Huang et al., Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell. Adv. Mater. 29(9), 1605308 (2017). https://doi.org/10.1002/adma.201605308
- J. Li, X. Gao, B. Liu, Q. Feng, X.B. Li et al., Graphdiyne: a metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production. J. Am. Chem. Soc. 138(12), 3954–3957 (2016). https://doi.org/10.1021/jacs.5b12758
- Y.Y. Han, X.L. Lu, S.F. Tang, X.P. Yin, Z.W. Wei et al., Metal-free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne for improving the hole mobility of graphitic carbon nitride. Adv. Energy Mater. 8(16), 1702992 (2018). https://doi.org/10.1002/aenm.201702992
- Q. Quan, T. Zhang, C. Lei, B. Yang, Z. Li et al., Confined carburization-engineered synthesis of ultrathin nickel oxide/nickel heterostructured nanosheets for enhanced oxygen evolution reaction. Nanoscale 11(46), 22261–22269 (2019). https://doi.org/10.1039/c9nr07986f
- Y. Li, Y. Li, C.M. Araujo, W. Luo, R. Ahuja, Single-layer MoS2 as an efficient photocatalyst. Catal. Sci. Technol. 3(9), 2214–2220 (2013). https://doi.org/10.1039/c3cy00207a
- Z. Chen, A.J. Forman, T.F. Jaramillo, Bridging the gap between bulk and nanostructured photoelectrodes: the impact of surface states on the electrocatalytic and photoelectrochemical properties of MoS2. J. Phys. Chem. C 117(19), 9713–9722 (2013). https://doi.org/10.1021/jp311375k
- K. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouyang et al., MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 8(7), 7078–7087 (2014). https://doi.org/10.1021/nn5019945
- C. Guo, X. Tong, X. Guo, Solvothermal synthesis of FeS2 nanoparticles for photoelectrochemical hydrogen generation in neutral water. Mater. Lett. 161, 220–223 (2015). https://doi.org/10.1016/j.matlet.2015.08.112
- Y. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu et al., Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 136(44), 15670–15675 (2014). https://doi.org/10.1021/ja5085157
- I.H. Kwak, H.S. Im, D.M. Jang, Y.W. Kim, K. Park et al., CoSe2 and NiSe2 nanocrystals as superior bifunctional catalysts for electrochemical and photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 8(8), 5327–5334 (2016). https://doi.org/10.1021/acsami.5b12093
- L. Wang, J. Cao, C. Lei, Q. Dai, B. Yang et al., Strongly coupled 3D N-doped MoO2/Ni3S2 hybrid for high current density hydrogen evolution electrocatalysis and biomass upgrading. ACS Appl. Mater. Interfaces. 11(31), 27743–27750 (2019). https://doi.org/10.1021/acsami.9b06502
- Y. Hou, M. Qiu, G. Nam, M.G. Kim, T. Zhang et al., Integrated hierarchical cobalt sulfide/nickel selenide hybrid nanosheets as an efficient three-dimensional electrode for electrochemical and photoelectrochemical water splitting. Nano Lett. 17(7), 4202–4209 (2017). https://doi.org/10.1021/acs.nanolett.7b01030
- Y. Li, J. Shi, Y. Mi, X. Sui, H. Xu et al., Ultrafast carrier dynamics in two-dimensional transition metal dichalcogenides. J. Mater. Chem. C 7(15), 4304–4319 (2019). https://doi.org/10.1039/c8tc06343e
- J. Ke, J. Liu, H. Sun, H. Zhang, X. Duan et al., Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation. Appl. Catal. B: Environ. 200, 47–55 (2017). https://doi.org/10.1016/j.apcatb.2016.06.071
- N.N. Rosman, R.M. Yunus, L.J. Minggu, K. Arifin, M.N.I. Salehmin et al., Photocatalytic properties of two-dimensional graphene and layered transition-metal dichalcogenides based photocatalyst for photoelectrochemical hydrogen generation: an overview. Int. J. Hydrogen Energ. 43, 18925–18945 (2018). https://doi.org/10.1016/j.ijhydene.2018.08.126
- F. Carraro, L. Calvillo, M. Cattelan, M. Favaro, M. Righetto et al., Fast one-pot synthesis of MoS2/crumpled graphene p-n nanonjunctions for enhanced photoelectrochemical hydrogen production. ACS Appl. Mater. Interfaces 7(46), 25685–25692 (2015). https://doi.org/10.1021/acsami.5b06668
- R. Ranjan, M. Kumar, A.S.K. Sinha, Development and characterization of rGO supported CdS/MoS2 photoelectrochemical catalyst for splitting water by visible light. Int. J. Hydrogen Energ. 44(31), 16176–16189 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.126
- Y. Jiao, Q. Huang, J. Wang, Z. He, Z. Li, A novel MoS2 quantum dots (QDs) decorated Z-scheme g-C3N4 nanosheet/N doped carbon dots heterostructure photocatalyst for photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 247, 124–132 (2019). https://doi.org/10.1016/j.apcatb.2019.01.073
- N. Li, Z. Liu, M. Liu, C. Xue, Q. Chang et al., Facile synthesis of carbon dots@2D MoS2 heterostructure with enhanced photocatalytic properties. Inorg. Chem. 58(9), 5746–5752 (2019). https://doi.org/10.1021/acs.inorgchem.9b00111
- J. Zheng, R. Zhang, X. Wang, P. Yu, Importance of carbon quantum dots for improving the electrochemical performance of MoS2@ZnS composite. J. Mater. Sci. 54, 13509–13522 (2019). https://doi.org/10.1007/s10853-019-03860-7
- S. Zhao, C. Li, L. Wang, N. Liu, S. Qiao et al., Carbon quantum dots modified MoS2 with visible-light-induced high hydrogen evolution catalytic ability. Carbon 99, 599–606 (2016). https://doi.org/10.1016/j.carbon.2015.12.088
- L. Hui, Y. Xue, F. He, D. Jia, Y. Li, Efficient hydrogen generation on graphdiyne-based heterostructure. Nano Energy 55, 135–142 (2019). https://doi.org/10.1016/j.nanoen.2018.10.062
- J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48(1), 72–133 (2019). https://doi.org/10.1039/c8cs00324f
- X. Zang, C. Jian, T. Zhu, Z. Fan, W. Wang et al., Laser-sculptured ultrathin transition metal carbide layers for energy storage and energy harvesting applications. Nat. Commun. 10, 3112 (2019). https://doi.org/10.1038/s41467-019-10999-z
- H. Wang, Y. Sun, Y. Wu, W. Tu, S. Wu et al., Electrical promotion of spatially photoinduced charge separation via interfacial-built-in quasi-alloying effect in hierarchical Zn2In2S5/Ti3C2(O, OH)x hybrids toward efficient photocatalytic hydrogen evolution and environmental remediation. Appl. Catal. B: Environ. 245, 290–301 (2019). https://doi.org/10.1016/j.apcatb.2018.12.051
- J. Peng, X. Chen, W.-J. Ong, X. Zhao, N. Li, Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis. Chem 5(1), 18–50 (2019). https://doi.org/10.1016/j.chempr.2018.08.037
- T.A. Le, Q.V. Bui, N.Q. Tran, Y. Cho, Y. Hong et al., Synergistic effects of nitrogen doping on MXene for enhancement of hydrogen evolution reaction. ACS Sustainable Chem. Eng. 7(19), 16879–16888 (2019). https://doi.org/10.1021/acssuschemeng.9b04470
- Y. Zhang, H. Jiang, Y. Lin, H. Liu, Q. He et al., In situ growth of cobalt nanoparticles encapsulated nitrogen-doped carbon nanotubes among Ti3C2Tx (MXene) matrix for oxygen reduction and evolution. Adv. Mater. Interfaces 5(16), 1800392 (2018). https://doi.org/10.1002/admi.201800392
- S. Zhou, X. Yang, W. Pei, N. Liu, J. Zhao, Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts. Nanoscale 10(23), 10876–10883 (2018). https://doi.org/10.1039/c8nr01090k
- X. Wu, Z. Wang, M. Yu, L. Xiu, J. Qiu, Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv. Mater. 29(24), 1607017 (2017). https://doi.org/10.1002/adma.201607017
- J. Chen, X. Yuan, F. Lyu, Q. Zhong, H. Hu et al., Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A 7(3), 1281–1286 (2019). https://doi.org/10.1039/c8ta10574j
- R. Gao, D. Yan, Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater. 10(11), 1900954 (2019). https://doi.org/10.1002/aenm.201900954
- J. Mohammed-Ibrahim, A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction. J. Power Sources 448, 227375 (2020). https://doi.org/10.1016/j.jpowsour.2019.227375
- W. Zhang, D. Li, L. Zhang, X. She, D. Yang, NiFe-based nanostructures on nickel foam as highly efficiently electrocatalysts for oxygen and hydrogen evolution reactions. J. Energy Chem. 39, 39–53 (2019). https://doi.org/10.1016/j.jechem.2019.01.017
- S. Kment, F. Riboni, S. Pausova, L. Wang, L. Wang et al., Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting-superior role of 1D nanoarchitectures and of combined heterostructures. Chem. Soc. Rev. 46(12), 3716–3769 (2017). https://doi.org/10.1039/c6cs00015k
- K. Sivula, F. Le Formal, M. Gratzel, Solar water splitting: progress using hematite alpha-Fe2O3 photoelectrodes. Chemsuschem 4(4), 432–449 (2011). https://doi.org/10.1002/cssc.201000416
- J. Ke, H. Zhou, J. Liu, X. Duan, H. Zhang et al., Crystal transformation of 2D tungstic acid H2WO4 to WO3 for enhanced photocatalytic water oxidation. J. Colloid Interf. Sci. 514, 576–583 (2018). https://doi.org/10.1016/j.jcis.2017.12.066
- X. Gao, H. Lv, Z. Li, Q. Xu, H. Liu et al., Low-cost and high-performance of a vertically grown 3D Ni-Fe layered double hydroxide/graphene aerogel supercapacitor electrode material. RSC Adv. 6(109), 107278–107285 (2016). https://doi.org/10.1039/c6ra19495h
- J. Huang, G. Hu, Y. Ding, M. Pang, B. Ma, Mn-doping and NiFe layered double hydroxide coating: effective approaches to enhancing the performance of α-Fe2O3 in photoelectrochemical water oxidation. J. Catal. 340, 261–269 (2016). https://doi.org/10.1016/j.jcat.2016.05.007
- R. Zhang, M. Shao, S. Xu, F. Ning, L. Zhou et al., Photo-assisted synthesis of zinc-iron layered double hydroxides/TiO2 nanoarrays toward highly-efficient photoelectrochemical water splitting. Nano Energy 33, 21–28 (2017). https://doi.org/10.1016/j.nanoen.2017.01.020
- S.O. Ganiyu, T.X.H. Le, M. Bechelany, G. Esposito, E.D. van Hullebusch et al., A hierarchical CoFe-layered double hydroxide modified carbon-felt cathode for heterogeneous electro-Fenton process. J. Mater. Chem. A 5(7), 3655–3666 (2017). https://doi.org/10.1039/c6ta09100h
- Y. Tang, R. Wang, Y. Yang, D. Yan, X. Xiang, Highly enhanced photoelectrochemical water oxidation efficiency based on triadic quantum dot/layered double hydroxide/BiVO4 photoanodes. ACS Appl. Mater. Interfaces. 8(30), 19446–19455 (2016). https://doi.org/10.1021/acsami.6b04937
- Y. Zhao, B. Li, Q. Wang, W. Gao, C.J. Wang et al., NiTi-layered double hydroxides nanosheets as efficient photocatalysts for oxygen evolution from water using visible light. Chem. Sci. 5(3), 951–958 (2014). https://doi.org/10.1039/c3sc52546e
- R. Boppella, C.H. Choi, J. Moon, D.H. Kim, Spatial charge separation on strongly coupled 2D-hybrid of rGO/La2Ti2O7/NiFe-LDH heterostructures for highly efficient noble metal free photocatalytic hydrogen generation. Appl. Catal. B: Environ. 239, 178–186 (2018). https://doi.org/10.1016/j.apcatb.2018.07.063
- L. Mohapatra, K. Parida, A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts. J. Mater. Chem. A 4(28), 10744–10766 (2016). https://doi.org/10.1039/c6ta01668e
- M. Shao, F. Ning, M. Wei, D.G. Evans, X. Duan, Hierarchical nanowire arrays based on ZnO core-layered double hydroxide shell for largely enhanced photoelectrochemical water splitting. Adv. Funct. Mater. 24(5), 580–586 (2014). https://doi.org/10.1002/adfm.201301889
- Q. Wang, D. O’Hare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112(7), 4124–4155 (2012). https://doi.org/10.1021/cr200434v
- L. Ren, C. Wang, W. Li, R. Dong, H. Sun et al., Heterostructural NiFe-LDH@Ni3S2 nanosheet arrays as an efficient electrocatalyst for overall water splitting. Electrochim. Acta 318, 42–50 (2019). https://doi.org/10.1016/j.electacta.2019.06.060
- P.F. Liu, S. Yang, B. Zhang, H.G. Yang, Defect-rich ultrathin cobalt-iron layered double hydroxide for electrochemical overall water splitting. ACS Appl. Mater. Interfaces 8(50), 34474–34481 (2016). https://doi.org/10.1021/acsami.6b12803
- Z. Liu, R. Ma, M. Osada, N. Iyi, Y. Ebina et al., Synthesis, anion exchange, and delamination of Co–Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J. Am. Chem. Soc. 128(14), 4872–4880 (2006). https://doi.org/10.1021/ja0584471
- H. Chen, Q. Zhao, L. Gao, J. Ran, Y. Hou, Water-plasma assisted synthesis of oxygen-enriched Ni–Fe layered double hydroxide nanosheets for efficient oxygen evolution reaction. ACS Sustainable Chem. Eng. 7(4), 4247–4254 (2019). https://doi.org/10.1021/acssuschemeng.8b05953
- L. Lv, Z. Yang, K. Chen, C. Wang, Y. Xiong, 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application. Adv. Energy Mater. 9(17), 1803358 (2019). https://doi.org/10.1002/aenm.201803358
- K. He, T. Tadesse Tsega, X. Liu, J. Zai, X.H. Li et al., Utilizing the space-charge region of the FeNi-LDH/CoP p-n junction to promote performance in oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 58(34), 11903–11909 (2019). https://doi.org/10.1002/anie.201905281
- X. Long, J. Li, S. Xiao, K. Yan, Z. Wang et al., A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem. Int. Ed. 53(29), 7584–7588 (2014). https://doi.org/10.1002/anie.201402822
- Z. Zhang, D. Zhou, J. Liao, X. Bao, H. Yu, Synthesis of high crystalline nickel-iron hydrotalcite-like compound as an efficient electrocatalyst for oxygen evolution reaction. Int. J. Energ. Res. 43(4), 1460–1467 (2019). https://doi.org/10.1002/er.4359
- S. Samuei, Z. Rezvani, B. Habibi, M.S. Oskoui, Synthesis and characterization of oxidized CoMnAl-layered double hydroxide and graphene oxide nanocomposite as a more efficient electrocatalyst for oxygen evolution reaction. Appl. Clay Sci. 169, 31–39 (2019). https://doi.org/10.1016/j.clay.2018.12.008
- X. Han, N. Suo, C. Chen, Z. Lin, Z. Dou et al., Graphene oxide guiding the constructing of nickel-iron layered double hydroxides arrays as a desirable bifunctional electrocatalyst for HER and OER. Int. J. Hydrog. Energy 44(57), 29876–29888 (2019). https://doi.org/10.1016/j.ijhydene.2019.09.116
- M. Gong, Y. Li, H. Wang, Y. Liang, J.Z. Wu et al., An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135(23), 8452–8455 (2013). https://doi.org/10.1021/ja4027715
- D. Tang, Y. Han, W. Ji, S. Qiao, X. Zhou et al., A high-performance reduced graphene oxide/ZnCo layered double hydroxide electrocatalyst for efficient water oxidation. Dalton Trans. 43(40), 15119–15125 (2014). https://doi.org/10.1039/c4dt01924e
- D.H. Youn, Y.B. Park, J.Y. Kim, G. Magesh, Y.J. Jang et al., One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation. J. Power Sources 294, 437–443 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.098
- Y. Hou, Z. Wen, S. Cui, X. Feng, J. Chen, Strongly coupled ternary hybrid aerogels of N-deficient porous graphitic-C3N4 nanosheets/N-doped graphene/NiFe-layered double hydroxide for solar-driven photoelectrochemical water oxidation. Nano Lett. 16(4), 2268–2277 (2016). https://doi.org/10.1021/acs.nanolett.5b04496
- J. Li, X. Gao, Z. Li, J.H. Wang, L. Zhu et al., Superhydrophilic graphdiyne accelerates interfacial mass/electron transportation to boost electrocatalytic and photoelectrocatalytic water oxidation activity. Adv. Funct. Mater. 29(16), 1808079 (2019). https://doi.org/10.1002/adfm.201808079
- L. Sun, J. Sun, X. Yang, S. Bai, Y. Feng et al., An integrating photoanode consisting of BiVO4, rGO and LDH for photoelectrochemical water splitting. Dalton Trans. 48(42), 16091–16098 (2019). https://doi.org/10.1039/c9dt01819k
- H. Qi, J. Wolfe, D. Fichou, Z. Chen, Cu2O photocathode for low bias photoelectrochemical water splitting enabled by NiFe-layered double hydroxide co-catalyst. Sci. Rep. 6, 30882 (2016). https://doi.org/10.1038/srep30882
- Y. Huang, Y. Yu, Y. Xin, N. Meng, Y. Yu et al., Promoting charge carrier utilization by integrating layered double hydroxide nanosheet arrays with porous BiVO4 photoanode for efficient photoelectrochemical water splitting. Sci. China Mater. 60(3), 193–207 (2017). https://doi.org/10.1007/s40843-016-5168-0
- J. Liu, J. Ke, Y. Li, B. Liu, L. Wang et al., Co3O4 quantum dots/TiO2 nanobelt hybrids for highly efficient photocatalytic overall water splitting. Appl. Catal. B: Environ. 236, 396–403 (2018). https://doi.org/10.1016/j.apcatb.2018.05.042
- F. Ning, M. Shao, S. Xu, Y. Fu, R. Zhang et al., TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting. Energy Environ. Sci. 9(8), 2633–2643 (2016). https://doi.org/10.1039/c6ee01092j
- X. Zhang, R. Wang, F. Li, Z. An, M. Pu et al., Enhancing photoelectrochemical water oxidation efficiency of BiVO4 photoanodes by a hybrid structure of layered double hydroxide and graphene. Ind. Eng. Chem. Res. 56(38), 10711–10719 (2017). https://doi.org/10.1021/acs.iecr.7b02960
- X. Lv, X. Xiao, M. Cao, Y. Bu, C. Wang et al., Efficient carbon dots/NiFe-layered double hydroxide/BiVO4 photoanodes for photoelectrochemical water splitting. Appl. Surf. Sci. 439, 1065–1071 (2018). https://doi.org/10.1016/j.apsusc.2017.12.182
- Y. Hou, F. Zuo, A. Dagg, P. Feng, Visible light-driven α-Fe2O3 nanorod/graphene/BiV1−xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting. Nano Lett. 12(12), 6464–6473 (2012). https://doi.org/10.1021/nl303961c
- D. Li, Z. Xing, X. Yu, X. Cheng, One-step hydrothermal synthesis of C-N-S-tridoped TiO2-based nanosheets photoelectrode for enhanced photoelectrocatalytic performance and mechanism. Electrochim. Acta 170, 182–190 (2015). https://doi.org/10.1016/j.electacta.2015.04.148
- Z. Kang, H. Si, S. Zhang, J. Wu, Y. Sun et al., Interface engineering for modulation of charge carrier behavior in ZnO photoelectrochemical water splitting. Adv. Funct. Mater. 29(15), 1808032 (2019). https://doi.org/10.1002/adfm.201808032
- J. Ke, H. Zhou, J. Liu, Z. Zhang, X. Duan et al., Enhanced light-driven water splitting by fast electron transfer in 2D/2D reduced graphene oxide/tungsten trioxide heterojunction with preferential facets. J. Colloid Interf. Sci. 555, 413–422 (2019). https://doi.org/10.1016/j.jcis.2019.08.008
- Y. Hou, F. Zuo, A.P. Dagg, J. Liu, P. Feng, Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Adv. Mater. 26(29), 5043–5049 (2014). https://doi.org/10.1002/adma.201401032
- A. Saad, H. Shen, Z. Cheng, R. Arbi, B. Guo et al., Mesoporous ternary nitrides of earth-abundant metals as oxygen evolution electrocatalyst. Nano-Micro Lett. 12, 79 (2020). https://doi.org/10.1007/s40820-020-0412-8
- J. Liu, J. Zhang, D. Wang, D. Li, J. Ke et al., Highly dispersed NiCo2O4 nanodots decorated three-dimensional g-C3N4 for enhanced photocatalytic H2 generation. ACS Sustainable Chem. Eng. 7(14), 12428–12438 (2019). https://doi.org/10.1021/acssuschemeng.9b01965
- J.H. Kim, J.S. Lee, Elaborately modified BiVO4 photoanodes for solar water splitting. Adv. Mater. 31(20), 1806938 (2019). https://doi.org/10.1002/adma.201806938
- M. García-Tecedor, D. Cardenas-Morcoso, R. Fernández-Climent, S. Giménez, The role of underlayers and overlayers in thin film BiVO4 photoanodes for solar water splitting. Adv. Mater. Interfaces 6(15), 1900299 (2019). https://doi.org/10.1002/admi.201900299
- M. Tayebi, B.-K. Lee, Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting. Renew. Sust. Energ. Rev. 111, 332–343 (2019). https://doi.org/10.1016/j.rser.2019.05.030
- K. Sharma, V. Dutta, S. Sharma, P. Raizada, A. Hosseini-Bandegharaei et al., Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: a review. J. Ind. Eng. Chem. 78, 1–20 (2019). https://doi.org/10.1016/j.jiec.2019.06.022
- X. Jin, L. Ye, H. Xie, G. Chen, Bismuth-rich bismuth oxyhalides for environmental and energy photocatalysis. Coordin. Chem. Rev. 349, 84–101 (2017). https://doi.org/10.1016/j.ccr.2017.08.010
- Y. Long, Q. Han, Z. Yang, Y. Ai, S. Sun et al., A novel solvent-free strategy for the synthesis of bismuth oxyhalides. J. Mater. Chem. A 6(27), 13005–13011 (2018). https://doi.org/10.1039/c8ta04529a
- J. Li, H. Li, G. Zhan, L. Zhang, Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Acc. Chem. Res. 50(1), 112–121 (2017). https://doi.org/10.1021/acs.accounts.6b00523
- D.S. Bhachu, S.J.A. Moniz, S. Sathasivam, D.O. Scanlon, A. Walsh et al., Bismuth oxyhalides: synthesis, structure and photoelectrochemical activity. Chem. Sci. 7(8), 4832–4841 (2016). https://doi.org/10.1039/c6sc00389c
- X. Wu, Y.H. Ng, L. Wang, Y. Du, S.X. Dou et al., Improving the photo-oxidative capability of BiOBr via crystal facet engineering. J. Mater. Chem. A 5(17), 8117–8124 (2017). https://doi.org/10.1039/c6ta10964k
- K. Zhao, X. Zhang, L. Zhang, The first BiOI-based solar cells. Electrochem. Commun. 11(3), 612–615 (2009). https://doi.org/10.1016/j.elecom.2008.12.041
- Y. Ye, G. Gu, X. Wang, T. Ouyang, Y. Chen et al., 3D cross-linked BiOI decorated ZnO/CdS nanorod arrays: a cost-effective hydrogen evolution photoanode with high photoelectrocatalytic activity. Int. J. Hydrogen Energ. 44(39), 21865–21872 (2019). https://doi.org/10.1016/j.ijhydene.2019.06.059
- P.J. Mafa, A.T. Kuvarega, B.B. Mamba, B. Ntsendwana, Photoelectrocatalytic degradation of sulfamethoxazole on g-C3N4/BiOI/EG p–n heterojunction photoanode under visible light irradiation. Appl. Surf. Sci. 483, 506–520 (2019). https://doi.org/10.1016/j.apsusc.2019.03.281
- Y. Bai, T. Chen, P. Wang, L. Wang, L. Ye, Bismuth-rich Bi4O5X2 (X = Br, and I) nanosheets with dominant 1 0 1 facets exposure for photocatalytic H2 evolution. Chem. Eng. J. 304, 454–460 (2016). https://doi.org/10.1016/j.cej.2016.06.100
- M. Wang, Q. Wang, J. Li, H. Zhang, W. Zhang et al., Assembly of large-area reduced graphene oxide films for the construction of Z-scheme over single-crystal porous Bi5O7I nanosheets. J. Colloid Interf. Sci. 552, 651–658 (2019). https://doi.org/10.1016/j.jcis.2019.05.107
- Q. Wang, Z. Liu, D. Liu, G. Liu, M. Yang et al., Ultrathin two-dimensional BiOBrxI1−x solid solution with rich oxygen vacancies for enhanced visible-light-driven photoactivity in environmental remediation. Appl. Catal. B: Environ. 236, 222–232 (2018). https://doi.org/10.1016/j.apcatb.2018.05.029
- T. Li, X. Zhang, C. Zhang, R. Li, J. Liu et al., Theoretical insights into photo-induced electron transfer at BiOX (X = F, Cl, Br, I) (001) surfaces and interfaces. Phys. Chem. Chem. Phys. 21(2), 868–875 (2019). https://doi.org/10.1039/c8cp05671d
- J. Di, J. Xia, M. Ji, B. Wang, S. Yin et al., Carbon quantum dots induced ultrasmall BiOI nanosheets with assembled hollow structures for broad spectrum photocatalytic activity and mechanism insight. Langmuir 32(8), 2075–2084 (2016). https://doi.org/10.1021/acs.langmuir.5b04308
- W. Sun, X. Wang, J. Feng, T. Li, Y. Huan et al., Controlled synthesis of 2D Mo2Cgraphene heterostructure on liquid Au substrates as enhanced electrocatalytic electrodes. Nanotechnology 30(38), 385601 (2019). https://doi.org/10.1088/1361-6528/ab2c0d
- W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability. Chem. Rev. 116(12), 7159–7329 (2016). https://doi.org/10.1021/acs.chemrev.6b00075
- T. Li, H. Miras, Y. Song, Polyoxometalate (POM)-layered double hydroxides (LDH) composite materials: design and catalytic applications. Catalysts 7(9), 260 (2017). https://doi.org/10.3390/catal7090260
- Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8(3), 702–730 (2015). https://doi.org/10.1039/c4ee03229b
- H. Terrones, F. Lopez-Urias, M. Terrones, Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci. Rep. 3, 1549 (2013). https://doi.org/10.1038/srep01549
References
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0
J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29(20), 1601694 (2017). https://doi.org/10.1002/adma.201601694
Q. Xu, L. Zhang, J. Yu, S. Wageh, A.A. Al-Ghamdi et al., Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater. Today 21(10), 1042–1063 (2018). https://doi.org/10.1016/j.mattod.2018.04.008
T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43(22), 7520–7535 (2014). https://doi.org/10.1039/c3cs60378d
I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017). https://doi.org/10.1038/s41570-016-0003
W.H. Wang, Y. Himeda, J.T. Muckerman, G.F. Manbeck, E. Fujita, CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 115(23), 12936–12973 (2015). https://doi.org/10.1021/acs.chemrev.5b00197
C. Lu, J. Yang, S. Wei, S. Bi, Y. Xia et al., Atomic Ni anchored covalent triazine framework as high efficient electrocatalyst for carbon dioxide conversion. Adv. Funct. Mater. 29(10), 1806884 (2019). https://doi.org/10.1002/adfm.201806884
M. Ali, F. Zhou, K. Chen, C. Kotzur, C. Xiao et al., Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nat. Commun. 7, 11335 (2016). https://doi.org/10.1038/ncomms11335
L.L. Yu, J.Z. Qin, W.J. Zhao, Z.G. Zhang, J. Ke et al., Advances in two-dimensional MXenes for nitrogen electrocatalytic reduction to ammonia. Int. J. Photoenergy 2020, 1–11 (2020). https://doi.org/10.1155/2020/5251431
X. Zou, C. Yuan, Y. Dong, H. Ge, J. Ke et al., Lanthanum orthovanadate/bismuth oxybromide heterojunction for enhanced photocatalytic air purification and mechanism exploration. Chem. Eng. J. 379, 122380 (2020). https://doi.org/10.1016/j.cej.2019.122380
J. Ke, H.R. Zhou, Y.Y. Peng, D.Y. Tang, In-situ construction of a two-dimensional heterojunction by stacking bismuth trioxide nanoplates with reduced graphene oxide for enhanced water oxidation performance. J. Nanosci. Nanotechnol. 19(9), 5554–5561 (2019). https://doi.org/10.1166/jnn.2019.16568
C. Lei, Y. Wang, Y. Hou, P. Liu, J. Yang et al., Efficient alkaline hydrogen evolution on atomically dispersed Ni–Nx species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy Environ. Sci. 12(1), 149–156 (2019). https://doi.org/10.1039/C8EE01841C
H. Xie, J. Zhang, D. Wang, J. Liu, L. Wang et al., Construction of three-dimensional g-C3N4/attapulgite hybrids for Cd(II) adsorption and the reutilization of waste adsorbent. Appl. Surf. Sci. 504, 144456 (2020). https://doi.org/10.1016/j.apsusc.2019.144456
J. Liu, Y. Li, J. Ke, Z. Wang, H. Xiao, Synergically improving light harvesting and charge transportation of TiO2 nanobelts by deposition of MoS2 for enhanced photocatalytic removal of Cr(VI). Catalysts 7(12), 30 (2017). https://doi.org/10.3390/catal7010030
Z. Cai, X. Bu, P. Wang, J.C. Ho, J. Yang et al., Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 7(10), 5069–5089 (2019). https://doi.org/10.1039/c8ta11273h
D. Yang, G. Yang, J. Li, S. Gai, F. He et al., NIR-driven water splitting by layered bismuth oxyhalide sheets for effective photodynamic therapy. J. Mater. Chem. B 5(22), 4152–4161 (2017). https://doi.org/10.1039/c7tb00688h
J. Qin, X. Hu, X. Li, Z. Yin, B. Liu et al., 0D/2D AgInS2/MXene Z-scheme heterojunction nanosheets for improved ammonia photosynthesis of N2. Nano Energy 61, 27–35 (2019). https://doi.org/10.1016/j.nanoen.2019.04.028
W. Zheng, J. Yang, H. Chen, Y. Hou, Q. Wang et al., Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Adv. Funct. Mater. 30(4), 1907658 (2019). https://doi.org/10.1002/adfm.201907658
J. Yang, D. Wang, H. Han, C. Li, Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 46(8), 1900–1909 (2013). https://doi.org/10.1021/ar300227e
X. Chang, T. Wang, P. Yang, G. Zhang, J. Gong, The development of cocatalysts for photoelectrochemical CO2 reduction. Adv. Mater. 31(31), 1804710 (2019). https://doi.org/10.1002/adma.201804710
S. Zhong, Y. Xi, S. Wu, Q. Liu, L. Zhao et al., Hybrid cocatalysts in semiconductor-based photocatalysis and photoelectrocatalysis. J. Mater. Chem. A 8(30), 14863–14894 (2020). https://doi.org/10.1039/d0ta04977h
D. Chen, Z. Liu, Z. Guo, M. Ruan, W. Yan, 3D branched Ca-Fe2O3/Fe2O3 decorated with Pt and Co-Pi: Improved charge-separation dynamics and photoelectrochemical performance. Chemsuschem 12(14), 3286–3295 (2019). https://doi.org/10.1002/cssc.201901331
W. Xu, W. Tian, L. Meng, F. Cao, L. Li, Ion sputtering–assisted double-side interfacial engineering for CdIn2S4 photoanode toward improved photoelectrochemical water splitting. Adv. Mater. Interfaces 7(6), 1901947 (2020). https://doi.org/10.1002/admi.201901947
H. Li, P. Wen, D.S. Itanze, M.W. Kim, S. Adhikari et al., Phosphorus-rich colloidal cobalt diphosphide (CoP2) nanocrystals for electrochemical and photoelectrochemical hydrogen evolution. Adv. Mater. 31(24), 1900813 (2019). https://doi.org/10.1002/adma.201900813
L. Badia-Bou, E. Mas-Marza, P. Rodenas, E.M. Barea, F. Fabregat-Santiago et al., Water oxidation at hematite photoelectrodes with an iridium-based catalyst. J. Phys. Chem. C 117(8), 3826–3833 (2013). https://doi.org/10.1021/jp311983n
M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu et al., Surface modification of CoOx loaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J. Am. Chem. Soc. 137(15), 5053–5060 (2015). https://doi.org/10.1021/jacs.5b00256
T.A. Kandiel, M.G. Ahmed, A.Y. Ahmed, Physical insights into band bending in pristine and Co-Pi-modified BiVO4 photoanodes with dramatically enhanced solar water splitting efficiency. J. Phys. Chem. Lett. 11(13), 5015–5020 (2020). https://doi.org/10.1021/acs.jpclett.0c01419
Y. Wang, W. Tian, F. Cao, D. Fang, S. Chen et al., Boosting PEC performance of Si photoelectrodes by coupling bifunctional CuCo hybrid oxide cocatalysts. Nanotechnology 29(42), 425703 (2018). https://doi.org/10.1088/1361-6528/aad7a0
Y. Wang, W. Tian, C. Chen, W. Xu, L. Li, Tungsten trioxide nanostructures for photoelectrochemical water splitting: material engineering and charge carrier dynamic manipulation. Adv. Funct. Mater. 29(23), 1809036 (2019). https://doi.org/10.1002/adfm.201809036
C. Lei, Z. Wen, S. Lyu, J. Si, B. Yang et al., Nanostructured carbon based heterogeneous electrocatalysts for oxygen evolution reaction in alkaline media. ChemCatChem 11(24), 5855–5874 (2019). https://doi.org/10.1002/cctc.201901707
Y. Hou, M. Qiu, M.G. Kim, P. Liu, G. Nam et al., Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 10, 1392 (2019). https://doi.org/10.1038/s41467-019-09394-5
Y. He, X. Zhuang, C. Lei, L. Lei, Y. Hou et al., Porous carbon nanosheets: synthetic strategies and electrochemical energy related applications. Nano Today 24, 103–119 (2019). https://doi.org/10.1016/j.nantod.2018.12.004
L. Wang, J. Cao, X. Cheng, C. Lei, Q. Dai et al., ZIF-derived carbon nanoarchitecture as a bifunctional pH-universal electrocatalyst for energy-efficient hydrogen evolution. ACS Sustainable Chem. Eng. 7(11), 10044–10051 (2019). https://doi.org/10.1021/acssuschemeng.9b01315
N. Liu, W. Huang, X. Zhang, L. Tang, L. Wang et al., Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB. Appl. Catal. B: Environ. 221, 119–128 (2018). https://doi.org/10.1016/j.apcatb.2017.09.020
Y. Li, L. Xu, H. Liu, Y. Li, Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem. Soc. Rev. 43(8), 2572–2586 (2014). https://doi.org/10.1039/c3cs60388a
M. Inagaki, F. Kang, Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne. J. Mater. Chem. A 2(33), 13193–13206 (2014). https://doi.org/10.1039/c4ta01183j
Y. Hou, M. Qiu, T. Zhang, J. Ma, S. Liu et al., Efficient electrochemical and photoelectrochemical water splitting by a 3D nanostructured carbon supported on flexible exfoliated graphene foil. Adv. Mater. 29(3), 1604480 (2017). https://doi.org/10.1002/adma.201604480
F. Bi, X. Zhang, J. Chen, Y. Yang, Y. Wang, Excellent catalytic activity and water resistance of UiO-66-supported highly dispersed Pd nanoparticles for toluene catalytic oxidation. Appl. Catal. B: Environ. 269, 118767 (2020). https://doi.org/10.1016/j.apcatb.2020.118767
Q. Pan, H. Liu, Y. Zhao, S. Chen, B. Xue et al., Preparation of N-graphdiyne nanosheets at liquid/liquid interface for photocatalytic NADH regeneration. ACS Appl. Mater. Interfaces 11(3), 2740–2744 (2019). https://doi.org/10.1021/acsami.8b03311
S. Thangavel, K. Krishnamoorthy, V. Krishnaswamy, N. Raju, S.J. Kim et al., Graphdiyne-ZnO nanohybrids as an advanced photocatalytic material. J. Phys. Chem. C 119(38), 22057–22065 (2015). https://doi.org/10.1021/acs.jpcc.5b06138
Y. Fang, Y. Xue, L. Hui, H. Yu, Y. Liu et al., In situ growth of graphdiyne based heterostructure: toward efficient overall water splitting. Nano Energy 59, 591–597 (2019). https://doi.org/10.1016/j.nanoen.2019.03.022
X. Zou, Y. Dong, S. Li, J. Ke, Y. Cui, Facile anion exchange to construct uniform AgX (X = Cl, Br, I)/Ag2CrO4 NR hybrids for efficient visible light driven photocatalytic activity. Sol. Energy 169, 392–400 (2018). https://doi.org/10.1016/j.solener.2018.05.017
M.A. Younis, S. Lyu, Q. Zhao, C. Lei, P. Zhang et al., Noble metal-free two dimensional carbon-based electrocatalysts for water splitting. BMC Mater. 1(1), 6 (2019). https://doi.org/10.1186/s42833-019-0006-2
C. Lei, H. Chen, J. Cao, J. Yang, M. Qiu et al., Fe-N4 sites embedded into carbon nanofiber integrated with electrochemically exfoliated graphene for oxygen evolution in acidic medium. Adv. Energy Mater. 8(26), 1801912 (2018). https://doi.org/10.1002/aenm.201801912
T. Wang, Q. Zhao, Y. Fu, C. Lei, B. Yang et al., Carbon-rich nonprecious metal single atom electrocatalysts for CO2 reduction and hydrogen evolution. Small Methods 3(10), 1900210 (2019). https://doi.org/10.1002/smtd.201900210
X. Wang, Q. Zhao, B. Yang, Z. Li, Z. Bo et al., Emerging nanostructured carbon-based non-precious metal electrocatalysts for selective electrochemical CO2 reduction to CO. J. Mater. Chem. A 7(44), 25191–25202 (2019). https://doi.org/10.1039/c9ta09681g
T. Yao, X. An, H. Han, J.Q. Chen, C. Li, Photoelectrocatalytic materials for solar water splitting. Adv. Energy Mater. 8(21), 1800210 (2018). https://doi.org/10.1002/aenm.201800210
N. Guijarro, M.S. Prévot, K. Sivula, Surface modification of semiconductor photoelectrodes Phys. Chem. Chem. Phys. 17(24), 15655–15674 (2015). https://doi.org/10.1039/C5CP01992C
M.G. Kibria, S.Z. Zhao, F.A. Chowdhury, Q. Wang, H.P.T. Ngugyen et al., Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting. Nat. Commun. 5, 3825 (2014). https://doi.org/10.1038/ncomms4825
Z. Zhang, J.T. Yates Jr., Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112(10), 5520–5551 (2012). https://doi.org/10.1021/cr3000626
N. Kaneza, P.S. Shinde, Y. Ma, S. Pan, Photoelectrochemical study of carbon-modified p-type Cu2O nanoneedles and n-type TiO2−x nanorods for Z-scheme solar water splitting in a tandem cell configuration. RSC Adv. 9(24), 13576–13585 (2019). https://doi.org/10.1039/c8ra09403a
Z. Li, W. Wang, C. Ding, Z. Wang, S. Liao, C. Li, Biomimic electron transport via multi redox shuttles from photosystem II to photoelectrochemical cell for solar water splitting. Energy Environ. Sci. 10(3), 765–771 (2017). https://doi.org/10.1039/C6EE03401B
W. Wang, H. Wang, Q. Zhu, W. Qin, G. Han et al., Spatially separated photosystem II and a silicon photoelectrochemical cell for overall water splitting: a natural-artificial photosynthetic hybrid. Angew. Chem. Int. Ed. 55(32), 9229–9233 (2016). https://doi.org/10.1002/anie.201604091
R. Abe, K. Sayama, H. Sugihara, Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3−/I−. J. Phys. Chem. B 109(33), 16052–16061 (2005). https://doi.org/10.1021/jp052848l
J. Zhang, H. Li, J. Zhang, Y. Wu, Y. Geng et al., A promising anchor group for efficient organic dye sensitized solar cells with iodine-free redox shuttles: a theoretical evaluation. J. Mater. Chem. A 1(44), 14000 (2013). https://doi.org/10.1039/c3ta12311a
Y. Kageshima, H. Kumagai, T. Minegishi, J. Kubota, K. Domen, A photoelectrochemical solar cell consisting of a cadmium sulfide photoanode and a Ruthenium-2,2′-bipyridine redox shuttle in a non-aqueous electrolyte. Angew. Chem. Int. Ed. 54(27), 7877–7881 (2015). https://doi.org/10.1002/anie.201502586
C.J. Gagliardi, A.K. Vannucci, J.J. Concepcion, Z. Chen, T.J. Meyer, The role of proton coupled electron transfer in water oxidation. Energy Environ. Sci. 5(7), 7704–7717 (2012). https://doi.org/10.1039/c2ee03311a
T.H. Han, Y.H. Kim, M.H. Kim, W. Song, T.W. Lee, Synergetic influences of mixed-host emitting layer structures and hole injection layers on efficiency and lifetime of simplified phosphorescent organic light-emitting diodes. ACS Appl. Mater. Interfaces. 8(9), 6152–6163 (2016). https://doi.org/10.1021/acsami.5b11791
K. Sivula, R. Zboril, F.L. Formal, R. Robert, A. Weidenkaff et al., Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J. Am. Chem. Soc. 132(21), 7436–7444 (2010). https://doi.org/10.1021/ja101564f
X.T. Xu, L. Pan, X. Zhang, L. Wang, J.J. Zou, Rational design and construction of cocatalysts for semiconductor-based photo-electrochemical oxygen evolution: a comprehensive review. Adv. Sci. 6(2), 1801505 (2019). https://doi.org/10.1002/advs.201801505
H. Zhou, Z. Wen, J. Liu, J. Ke, X. Duan et al., Z-scheme plasmonic Ag decorated WO3/Bi2WO6 hybrids for enhanced photocatalytic abatement of chlorinated-VOCs under solar light irradiation. Appl. Catal. B: Environ. 242, 76–84 (2019). https://doi.org/10.1016/j.apcatb.2018.09.090
T. Zhang, Y. Hou, V. Dzhagan, Z. Liao, G. Chai et al., Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes. Nat. Commun. 9, 1140 (2018). https://doi.org/10.1038/s41467-018-03444-0
Z. Zhang, S. Wang, M. Bao, J. Ren, S. Pei et al., Construction of ternary Ag/AgCl/NH2-UiO-66 hybridized heterojunction for effective photocatalytic hexavalent chromium reduction. J. Colloid Interf. Sci. 555, 342–351 (2019). https://doi.org/10.1016/j.jcis.2019.07.103
X. Zou, Y. Dong, C. Yuan, H. Ge, J. Ke et al., Zn2SnO4 QDs decorated Bi2WO6 nanoplates for improved visible-light-driven photocatalytic removal of gaseous contaminants. J. Taiwan Inst. Chem. Eng. 96, 390–399 (2019). https://doi.org/10.1016/j.jtice.2018.12.005
J. Liu, Y. Li, Z. Li, J. Ke, H. Xiao et al., In situ growing of Bi/Bi2O2CO3 on Bi2WO6 nanosheets for improved photocatalytic performance. Catal. Today 314, 2–9 (2018). https://doi.org/10.1016/j.cattod.2017.12.001
J. Chen, X. Zhang, F. Bi, X. Zhang, Y. Yang et al., A facile synthesis for uniform tablet-like TiO2/C derived from Materials of Institut Lavoisier-125(Ti) (MIL-125(Ti)) and their enhanced visible light-driven photodegradation of tetracycline. J. Colloid Interf. Sci. 571, 275–284 (2020). https://doi.org/10.1016/j.jcis.2020.03.055
J. Zhu, S. Pang, T. Dittrich, Y. Gao, W. Nie et al., Visualizing the nano cocatalyst aligned electric fields on single photocatalyst particles. Nano Lett. 17(11), 6735–6741 (2017). https://doi.org/10.1021/acs.nanolett.7b02799
X. Zhang, Y. Wang, F. Hou, H. Li, Y. Yang et al., Effects of Ag loading on structural and photocatalytic properties of flower-like ZnO microspheres. Appl. Surf. Sci. 391, 476–483 (2017). https://doi.org/10.1016/j.apsusc.2016.06.109
D. Yuan, C. Zhang, S. Tang, M. Sun, Y. Zhang et al., Fe3+-sulfite complexation enhanced persulfate Fenton-like process for antibiotic degradation based on response surface optimization. Sci. Total Environ. 727, 138773 (2020). https://doi.org/10.1016/j.scitotenv.2020.138773
M.G. Ahmed, I.E. Kretschmer, T.A. Kandiel, A.Y. Ahmed, F.A. Rashwan et al., A facile surface passivation of hematite photoanodes with TiO2 overlayers for efficient solar water splitting. ACS Appl. Mater. Interfaces 7(43), 24053–24062 (2015). https://doi.org/10.1021/acsami.5b07065
K. Kim, J. Yang, J.H. Moon, Unveiling the effects of nanostructures and core materials on charge-transport dynamics in heterojunction electrodes for photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 12(19), 21894–21902 (2020). https://doi.org/10.1021/acsami.0c03958
J.E. Thorne, J.W. Jang, E.Y. Liu, D. Wang, Understanding the origin of photoelectrode performance enhancement by probing surface kinetics. Chem. Sci. 7(5), 3347–3354 (2016). https://doi.org/10.1039/c5sc04519c
H. Zhang, W. Zhou, Y. Yang, C. Cheng, 3D WO3/BiVO4/cobalt phosphate composites inverse opal photoanode for efficient photoelectrochemical water splitting. Small 13(16), 1603840 (2017). https://doi.org/10.1002/smll.201603840
I. Grigioni, M. Abdellah, A. Corti, M.V. Dozzi, L. Hammarstrom, E. Selli, Photoinduced charge-transfer dynamics in WO3/BiVO4 photoanodes probed through midinfrared transient absorption spectroscopy. J. Am. Chem. Soc. 140(43), 14042–14045 (2018). https://doi.org/10.1021/jacs.8b08309
T.-P. Ruoko, A. Hiltunen, T. Iivonen, R. Ulkuniemi, K. Lahtonen et al., Charge carrier dynamics in tantalum oxide overlayered and tantalum doped hematite photoanodes. J. Mater. Chem. A 7(7), 3206–3215 (2019). https://doi.org/10.1039/c8ta09501a
A. Yamakata, C.S.K. Ranasinghe, N. Hayashi, K. Kato, J.J.M. Vequizo, Identification of individual electron- and hole-transfer kinetics at CoOx/BiVO4/SnO2 double heterojunctions. ACS Appl. Energy Mater. 3(1), 1207–1214 (2019). https://doi.org/10.1021/acsaem.9b02262
Y.-C. Pu, W.-T. Chen, M.-J. Fang, Y.-L. Chen, K.-A. Tsai et al., Au–Cd1−xZnxS core–alloyed shell nanocrystals: boosting the interfacial charge dynamics by adjusting the shell composition. J. Mater. Chem. A 6(36), 17503–17513 (2018). https://doi.org/10.1039/c8ta05539d
Y. Liu, H. Zhang, J. Ke, J. Zhang, W. Tian et al., 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution. Appl. Catal. B: Environ. 228, 64–74 (2018). https://doi.org/10.1016/j.apcatb.2018.01.067
X. Zhang, Y. Yang, W. Huang, Y. Yang, Y. Wang et al., g-C3N4/UiO-66 nanohybrids with enhanced photocatalytic activities for the oxidation of dye under visible light irradiation. Mater. Res. Bull. 99, 349–358 (2018). https://doi.org/10.1016/j.materresbull.2017.11.028
X. Zou, Y. Dong, S. Li, J. Ke, Y. Cui et al., Fabrication of V2O5/g-C3N4 heterojunction composites and its enhanced visible light photocatalytic performance for degradation of gaseous ortho-dichlorobenzene. J. Taiwan Inst. Chem. Eng. 93, 158–165 (2018). https://doi.org/10.1016/j.jtice.2018.05.041
Q. Liu, T. Chen, Y. Guo, Z. Zhang, X. Fang, Ultrathin g-C3N4 nanosheets coupled with carbon nanodots as 2D/0D composites for efficient photocatalytic H2 evolution. Appl. Catal. B: Environ. 193, 248–258 (2016). https://doi.org/10.1016/j.apcatb.2016.04.034
M. Faraji, M. Yousefi, S. Yousefzadeh, M. Zirak, N. Naseri et al., Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy Environ. Sci. 12(1), 59–95 (2019). https://doi.org/10.1039/c8ee00886h
G. Gao, Y. Jiao, F. Ma, Y. Jiao, E. Waclawik et al., Carbon nanodot decorated graphitic carbon nitride: new insights into the enhanced photocatalytic water splitting from ab initio studies. Phys. Chem. Chem. Phys. 17(46), 31140–31144 (2015). https://doi.org/10.1039/c5cp05512a
J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang et al., Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347(6225), 970–974 (2015). https://doi.org/10.1126/science.aaa3145
Y. Wei, Z. Wang, J. Su, L. Guo, Metal-free flexible protonated g-C3N4/carbon dots photoanode for photoelectrochemical water splitting. ChemElectroChem 5(19), 2734–2737 (2018). https://doi.org/10.1002/celc.201800550
G. Peng, M. Volokh, J. Tzadikov, J. Sun, M. Shalom, Carbonnitride/reduced graphene oxide film with enhanced electron diffusion length: an efficient photo-electrochemical cell for hydrogen generation. Adv. Energy Mater. 8(23), 1800566 (2018). https://doi.org/10.1002/aenm.201800566
X. Zhao, D. Pan, X. Chen, R. Li, T. Jiang et al., g-C3N4 photoanode for photoelectrocatalytic synergistic pollutant degradation and hydrogen evolution. Appl. Surf. Sci. 467–468, 658–665 (2019). https://doi.org/10.1016/j.apsusc.2018.10.090
Y. Hou, Z. Wen, S. Cui, X. Guo, J. Chen, Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 25(43), 6291–6297 (2013). https://doi.org/10.1002/adma.201303116
X. Gao, Y. Zhu, D. Yi, J. Zhou, S. Zhang et al., Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Sci. Adv. 4(7), eaat6378 (2018). https://doi.org/10.1126/sciadv.aat6378
X. Gao, J. Li, R. Du, J. Zhou, M.Y. Huang et al., Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell. Adv. Mater. 29(9), 1605308 (2017). https://doi.org/10.1002/adma.201605308
J. Li, X. Gao, B. Liu, Q. Feng, X.B. Li et al., Graphdiyne: a metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production. J. Am. Chem. Soc. 138(12), 3954–3957 (2016). https://doi.org/10.1021/jacs.5b12758
Y.Y. Han, X.L. Lu, S.F. Tang, X.P. Yin, Z.W. Wei et al., Metal-free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne for improving the hole mobility of graphitic carbon nitride. Adv. Energy Mater. 8(16), 1702992 (2018). https://doi.org/10.1002/aenm.201702992
Q. Quan, T. Zhang, C. Lei, B. Yang, Z. Li et al., Confined carburization-engineered synthesis of ultrathin nickel oxide/nickel heterostructured nanosheets for enhanced oxygen evolution reaction. Nanoscale 11(46), 22261–22269 (2019). https://doi.org/10.1039/c9nr07986f
Y. Li, Y. Li, C.M. Araujo, W. Luo, R. Ahuja, Single-layer MoS2 as an efficient photocatalyst. Catal. Sci. Technol. 3(9), 2214–2220 (2013). https://doi.org/10.1039/c3cy00207a
Z. Chen, A.J. Forman, T.F. Jaramillo, Bridging the gap between bulk and nanostructured photoelectrodes: the impact of surface states on the electrocatalytic and photoelectrochemical properties of MoS2. J. Phys. Chem. C 117(19), 9713–9722 (2013). https://doi.org/10.1021/jp311375k
K. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouyang et al., MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 8(7), 7078–7087 (2014). https://doi.org/10.1021/nn5019945
C. Guo, X. Tong, X. Guo, Solvothermal synthesis of FeS2 nanoparticles for photoelectrochemical hydrogen generation in neutral water. Mater. Lett. 161, 220–223 (2015). https://doi.org/10.1016/j.matlet.2015.08.112
Y. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu et al., Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 136(44), 15670–15675 (2014). https://doi.org/10.1021/ja5085157
I.H. Kwak, H.S. Im, D.M. Jang, Y.W. Kim, K. Park et al., CoSe2 and NiSe2 nanocrystals as superior bifunctional catalysts for electrochemical and photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 8(8), 5327–5334 (2016). https://doi.org/10.1021/acsami.5b12093
L. Wang, J. Cao, C. Lei, Q. Dai, B. Yang et al., Strongly coupled 3D N-doped MoO2/Ni3S2 hybrid for high current density hydrogen evolution electrocatalysis and biomass upgrading. ACS Appl. Mater. Interfaces. 11(31), 27743–27750 (2019). https://doi.org/10.1021/acsami.9b06502
Y. Hou, M. Qiu, G. Nam, M.G. Kim, T. Zhang et al., Integrated hierarchical cobalt sulfide/nickel selenide hybrid nanosheets as an efficient three-dimensional electrode for electrochemical and photoelectrochemical water splitting. Nano Lett. 17(7), 4202–4209 (2017). https://doi.org/10.1021/acs.nanolett.7b01030
Y. Li, J. Shi, Y. Mi, X. Sui, H. Xu et al., Ultrafast carrier dynamics in two-dimensional transition metal dichalcogenides. J. Mater. Chem. C 7(15), 4304–4319 (2019). https://doi.org/10.1039/c8tc06343e
J. Ke, J. Liu, H. Sun, H. Zhang, X. Duan et al., Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation. Appl. Catal. B: Environ. 200, 47–55 (2017). https://doi.org/10.1016/j.apcatb.2016.06.071
N.N. Rosman, R.M. Yunus, L.J. Minggu, K. Arifin, M.N.I. Salehmin et al., Photocatalytic properties of two-dimensional graphene and layered transition-metal dichalcogenides based photocatalyst for photoelectrochemical hydrogen generation: an overview. Int. J. Hydrogen Energ. 43, 18925–18945 (2018). https://doi.org/10.1016/j.ijhydene.2018.08.126
F. Carraro, L. Calvillo, M. Cattelan, M. Favaro, M. Righetto et al., Fast one-pot synthesis of MoS2/crumpled graphene p-n nanonjunctions for enhanced photoelectrochemical hydrogen production. ACS Appl. Mater. Interfaces 7(46), 25685–25692 (2015). https://doi.org/10.1021/acsami.5b06668
R. Ranjan, M. Kumar, A.S.K. Sinha, Development and characterization of rGO supported CdS/MoS2 photoelectrochemical catalyst for splitting water by visible light. Int. J. Hydrogen Energ. 44(31), 16176–16189 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.126
Y. Jiao, Q. Huang, J. Wang, Z. He, Z. Li, A novel MoS2 quantum dots (QDs) decorated Z-scheme g-C3N4 nanosheet/N doped carbon dots heterostructure photocatalyst for photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 247, 124–132 (2019). https://doi.org/10.1016/j.apcatb.2019.01.073
N. Li, Z. Liu, M. Liu, C. Xue, Q. Chang et al., Facile synthesis of carbon dots@2D MoS2 heterostructure with enhanced photocatalytic properties. Inorg. Chem. 58(9), 5746–5752 (2019). https://doi.org/10.1021/acs.inorgchem.9b00111
J. Zheng, R. Zhang, X. Wang, P. Yu, Importance of carbon quantum dots for improving the electrochemical performance of MoS2@ZnS composite. J. Mater. Sci. 54, 13509–13522 (2019). https://doi.org/10.1007/s10853-019-03860-7
S. Zhao, C. Li, L. Wang, N. Liu, S. Qiao et al., Carbon quantum dots modified MoS2 with visible-light-induced high hydrogen evolution catalytic ability. Carbon 99, 599–606 (2016). https://doi.org/10.1016/j.carbon.2015.12.088
L. Hui, Y. Xue, F. He, D. Jia, Y. Li, Efficient hydrogen generation on graphdiyne-based heterostructure. Nano Energy 55, 135–142 (2019). https://doi.org/10.1016/j.nanoen.2018.10.062
J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48(1), 72–133 (2019). https://doi.org/10.1039/c8cs00324f
X. Zang, C. Jian, T. Zhu, Z. Fan, W. Wang et al., Laser-sculptured ultrathin transition metal carbide layers for energy storage and energy harvesting applications. Nat. Commun. 10, 3112 (2019). https://doi.org/10.1038/s41467-019-10999-z
H. Wang, Y. Sun, Y. Wu, W. Tu, S. Wu et al., Electrical promotion of spatially photoinduced charge separation via interfacial-built-in quasi-alloying effect in hierarchical Zn2In2S5/Ti3C2(O, OH)x hybrids toward efficient photocatalytic hydrogen evolution and environmental remediation. Appl. Catal. B: Environ. 245, 290–301 (2019). https://doi.org/10.1016/j.apcatb.2018.12.051
J. Peng, X. Chen, W.-J. Ong, X. Zhao, N. Li, Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis. Chem 5(1), 18–50 (2019). https://doi.org/10.1016/j.chempr.2018.08.037
T.A. Le, Q.V. Bui, N.Q. Tran, Y. Cho, Y. Hong et al., Synergistic effects of nitrogen doping on MXene for enhancement of hydrogen evolution reaction. ACS Sustainable Chem. Eng. 7(19), 16879–16888 (2019). https://doi.org/10.1021/acssuschemeng.9b04470
Y. Zhang, H. Jiang, Y. Lin, H. Liu, Q. He et al., In situ growth of cobalt nanoparticles encapsulated nitrogen-doped carbon nanotubes among Ti3C2Tx (MXene) matrix for oxygen reduction and evolution. Adv. Mater. Interfaces 5(16), 1800392 (2018). https://doi.org/10.1002/admi.201800392
S. Zhou, X. Yang, W. Pei, N. Liu, J. Zhao, Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts. Nanoscale 10(23), 10876–10883 (2018). https://doi.org/10.1039/c8nr01090k
X. Wu, Z. Wang, M. Yu, L. Xiu, J. Qiu, Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv. Mater. 29(24), 1607017 (2017). https://doi.org/10.1002/adma.201607017
J. Chen, X. Yuan, F. Lyu, Q. Zhong, H. Hu et al., Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A 7(3), 1281–1286 (2019). https://doi.org/10.1039/c8ta10574j
R. Gao, D. Yan, Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater. 10(11), 1900954 (2019). https://doi.org/10.1002/aenm.201900954
J. Mohammed-Ibrahim, A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction. J. Power Sources 448, 227375 (2020). https://doi.org/10.1016/j.jpowsour.2019.227375
W. Zhang, D. Li, L. Zhang, X. She, D. Yang, NiFe-based nanostructures on nickel foam as highly efficiently electrocatalysts for oxygen and hydrogen evolution reactions. J. Energy Chem. 39, 39–53 (2019). https://doi.org/10.1016/j.jechem.2019.01.017
S. Kment, F. Riboni, S. Pausova, L. Wang, L. Wang et al., Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting-superior role of 1D nanoarchitectures and of combined heterostructures. Chem. Soc. Rev. 46(12), 3716–3769 (2017). https://doi.org/10.1039/c6cs00015k
K. Sivula, F. Le Formal, M. Gratzel, Solar water splitting: progress using hematite alpha-Fe2O3 photoelectrodes. Chemsuschem 4(4), 432–449 (2011). https://doi.org/10.1002/cssc.201000416
J. Ke, H. Zhou, J. Liu, X. Duan, H. Zhang et al., Crystal transformation of 2D tungstic acid H2WO4 to WO3 for enhanced photocatalytic water oxidation. J. Colloid Interf. Sci. 514, 576–583 (2018). https://doi.org/10.1016/j.jcis.2017.12.066
X. Gao, H. Lv, Z. Li, Q. Xu, H. Liu et al., Low-cost and high-performance of a vertically grown 3D Ni-Fe layered double hydroxide/graphene aerogel supercapacitor electrode material. RSC Adv. 6(109), 107278–107285 (2016). https://doi.org/10.1039/c6ra19495h
J. Huang, G. Hu, Y. Ding, M. Pang, B. Ma, Mn-doping and NiFe layered double hydroxide coating: effective approaches to enhancing the performance of α-Fe2O3 in photoelectrochemical water oxidation. J. Catal. 340, 261–269 (2016). https://doi.org/10.1016/j.jcat.2016.05.007
R. Zhang, M. Shao, S. Xu, F. Ning, L. Zhou et al., Photo-assisted synthesis of zinc-iron layered double hydroxides/TiO2 nanoarrays toward highly-efficient photoelectrochemical water splitting. Nano Energy 33, 21–28 (2017). https://doi.org/10.1016/j.nanoen.2017.01.020
S.O. Ganiyu, T.X.H. Le, M. Bechelany, G. Esposito, E.D. van Hullebusch et al., A hierarchical CoFe-layered double hydroxide modified carbon-felt cathode for heterogeneous electro-Fenton process. J. Mater. Chem. A 5(7), 3655–3666 (2017). https://doi.org/10.1039/c6ta09100h
Y. Tang, R. Wang, Y. Yang, D. Yan, X. Xiang, Highly enhanced photoelectrochemical water oxidation efficiency based on triadic quantum dot/layered double hydroxide/BiVO4 photoanodes. ACS Appl. Mater. Interfaces. 8(30), 19446–19455 (2016). https://doi.org/10.1021/acsami.6b04937
Y. Zhao, B. Li, Q. Wang, W. Gao, C.J. Wang et al., NiTi-layered double hydroxides nanosheets as efficient photocatalysts for oxygen evolution from water using visible light. Chem. Sci. 5(3), 951–958 (2014). https://doi.org/10.1039/c3sc52546e
R. Boppella, C.H. Choi, J. Moon, D.H. Kim, Spatial charge separation on strongly coupled 2D-hybrid of rGO/La2Ti2O7/NiFe-LDH heterostructures for highly efficient noble metal free photocatalytic hydrogen generation. Appl. Catal. B: Environ. 239, 178–186 (2018). https://doi.org/10.1016/j.apcatb.2018.07.063
L. Mohapatra, K. Parida, A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts. J. Mater. Chem. A 4(28), 10744–10766 (2016). https://doi.org/10.1039/c6ta01668e
M. Shao, F. Ning, M. Wei, D.G. Evans, X. Duan, Hierarchical nanowire arrays based on ZnO core-layered double hydroxide shell for largely enhanced photoelectrochemical water splitting. Adv. Funct. Mater. 24(5), 580–586 (2014). https://doi.org/10.1002/adfm.201301889
Q. Wang, D. O’Hare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112(7), 4124–4155 (2012). https://doi.org/10.1021/cr200434v
L. Ren, C. Wang, W. Li, R. Dong, H. Sun et al., Heterostructural NiFe-LDH@Ni3S2 nanosheet arrays as an efficient electrocatalyst for overall water splitting. Electrochim. Acta 318, 42–50 (2019). https://doi.org/10.1016/j.electacta.2019.06.060
P.F. Liu, S. Yang, B. Zhang, H.G. Yang, Defect-rich ultrathin cobalt-iron layered double hydroxide for electrochemical overall water splitting. ACS Appl. Mater. Interfaces 8(50), 34474–34481 (2016). https://doi.org/10.1021/acsami.6b12803
Z. Liu, R. Ma, M. Osada, N. Iyi, Y. Ebina et al., Synthesis, anion exchange, and delamination of Co–Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J. Am. Chem. Soc. 128(14), 4872–4880 (2006). https://doi.org/10.1021/ja0584471
H. Chen, Q. Zhao, L. Gao, J. Ran, Y. Hou, Water-plasma assisted synthesis of oxygen-enriched Ni–Fe layered double hydroxide nanosheets for efficient oxygen evolution reaction. ACS Sustainable Chem. Eng. 7(4), 4247–4254 (2019). https://doi.org/10.1021/acssuschemeng.8b05953
L. Lv, Z. Yang, K. Chen, C. Wang, Y. Xiong, 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application. Adv. Energy Mater. 9(17), 1803358 (2019). https://doi.org/10.1002/aenm.201803358
K. He, T. Tadesse Tsega, X. Liu, J. Zai, X.H. Li et al., Utilizing the space-charge region of the FeNi-LDH/CoP p-n junction to promote performance in oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 58(34), 11903–11909 (2019). https://doi.org/10.1002/anie.201905281
X. Long, J. Li, S. Xiao, K. Yan, Z. Wang et al., A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem. Int. Ed. 53(29), 7584–7588 (2014). https://doi.org/10.1002/anie.201402822
Z. Zhang, D. Zhou, J. Liao, X. Bao, H. Yu, Synthesis of high crystalline nickel-iron hydrotalcite-like compound as an efficient electrocatalyst for oxygen evolution reaction. Int. J. Energ. Res. 43(4), 1460–1467 (2019). https://doi.org/10.1002/er.4359
S. Samuei, Z. Rezvani, B. Habibi, M.S. Oskoui, Synthesis and characterization of oxidized CoMnAl-layered double hydroxide and graphene oxide nanocomposite as a more efficient electrocatalyst for oxygen evolution reaction. Appl. Clay Sci. 169, 31–39 (2019). https://doi.org/10.1016/j.clay.2018.12.008
X. Han, N. Suo, C. Chen, Z. Lin, Z. Dou et al., Graphene oxide guiding the constructing of nickel-iron layered double hydroxides arrays as a desirable bifunctional electrocatalyst for HER and OER. Int. J. Hydrog. Energy 44(57), 29876–29888 (2019). https://doi.org/10.1016/j.ijhydene.2019.09.116
M. Gong, Y. Li, H. Wang, Y. Liang, J.Z. Wu et al., An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135(23), 8452–8455 (2013). https://doi.org/10.1021/ja4027715
D. Tang, Y. Han, W. Ji, S. Qiao, X. Zhou et al., A high-performance reduced graphene oxide/ZnCo layered double hydroxide electrocatalyst for efficient water oxidation. Dalton Trans. 43(40), 15119–15125 (2014). https://doi.org/10.1039/c4dt01924e
D.H. Youn, Y.B. Park, J.Y. Kim, G. Magesh, Y.J. Jang et al., One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation. J. Power Sources 294, 437–443 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.098
Y. Hou, Z. Wen, S. Cui, X. Feng, J. Chen, Strongly coupled ternary hybrid aerogels of N-deficient porous graphitic-C3N4 nanosheets/N-doped graphene/NiFe-layered double hydroxide for solar-driven photoelectrochemical water oxidation. Nano Lett. 16(4), 2268–2277 (2016). https://doi.org/10.1021/acs.nanolett.5b04496
J. Li, X. Gao, Z. Li, J.H. Wang, L. Zhu et al., Superhydrophilic graphdiyne accelerates interfacial mass/electron transportation to boost electrocatalytic and photoelectrocatalytic water oxidation activity. Adv. Funct. Mater. 29(16), 1808079 (2019). https://doi.org/10.1002/adfm.201808079
L. Sun, J. Sun, X. Yang, S. Bai, Y. Feng et al., An integrating photoanode consisting of BiVO4, rGO and LDH for photoelectrochemical water splitting. Dalton Trans. 48(42), 16091–16098 (2019). https://doi.org/10.1039/c9dt01819k
H. Qi, J. Wolfe, D. Fichou, Z. Chen, Cu2O photocathode for low bias photoelectrochemical water splitting enabled by NiFe-layered double hydroxide co-catalyst. Sci. Rep. 6, 30882 (2016). https://doi.org/10.1038/srep30882
Y. Huang, Y. Yu, Y. Xin, N. Meng, Y. Yu et al., Promoting charge carrier utilization by integrating layered double hydroxide nanosheet arrays with porous BiVO4 photoanode for efficient photoelectrochemical water splitting. Sci. China Mater. 60(3), 193–207 (2017). https://doi.org/10.1007/s40843-016-5168-0
J. Liu, J. Ke, Y. Li, B. Liu, L. Wang et al., Co3O4 quantum dots/TiO2 nanobelt hybrids for highly efficient photocatalytic overall water splitting. Appl. Catal. B: Environ. 236, 396–403 (2018). https://doi.org/10.1016/j.apcatb.2018.05.042
F. Ning, M. Shao, S. Xu, Y. Fu, R. Zhang et al., TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting. Energy Environ. Sci. 9(8), 2633–2643 (2016). https://doi.org/10.1039/c6ee01092j
X. Zhang, R. Wang, F. Li, Z. An, M. Pu et al., Enhancing photoelectrochemical water oxidation efficiency of BiVO4 photoanodes by a hybrid structure of layered double hydroxide and graphene. Ind. Eng. Chem. Res. 56(38), 10711–10719 (2017). https://doi.org/10.1021/acs.iecr.7b02960
X. Lv, X. Xiao, M. Cao, Y. Bu, C. Wang et al., Efficient carbon dots/NiFe-layered double hydroxide/BiVO4 photoanodes for photoelectrochemical water splitting. Appl. Surf. Sci. 439, 1065–1071 (2018). https://doi.org/10.1016/j.apsusc.2017.12.182
Y. Hou, F. Zuo, A. Dagg, P. Feng, Visible light-driven α-Fe2O3 nanorod/graphene/BiV1−xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting. Nano Lett. 12(12), 6464–6473 (2012). https://doi.org/10.1021/nl303961c
D. Li, Z. Xing, X. Yu, X. Cheng, One-step hydrothermal synthesis of C-N-S-tridoped TiO2-based nanosheets photoelectrode for enhanced photoelectrocatalytic performance and mechanism. Electrochim. Acta 170, 182–190 (2015). https://doi.org/10.1016/j.electacta.2015.04.148
Z. Kang, H. Si, S. Zhang, J. Wu, Y. Sun et al., Interface engineering for modulation of charge carrier behavior in ZnO photoelectrochemical water splitting. Adv. Funct. Mater. 29(15), 1808032 (2019). https://doi.org/10.1002/adfm.201808032
J. Ke, H. Zhou, J. Liu, Z. Zhang, X. Duan et al., Enhanced light-driven water splitting by fast electron transfer in 2D/2D reduced graphene oxide/tungsten trioxide heterojunction with preferential facets. J. Colloid Interf. Sci. 555, 413–422 (2019). https://doi.org/10.1016/j.jcis.2019.08.008
Y. Hou, F. Zuo, A.P. Dagg, J. Liu, P. Feng, Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Adv. Mater. 26(29), 5043–5049 (2014). https://doi.org/10.1002/adma.201401032
A. Saad, H. Shen, Z. Cheng, R. Arbi, B. Guo et al., Mesoporous ternary nitrides of earth-abundant metals as oxygen evolution electrocatalyst. Nano-Micro Lett. 12, 79 (2020). https://doi.org/10.1007/s40820-020-0412-8
J. Liu, J. Zhang, D. Wang, D. Li, J. Ke et al., Highly dispersed NiCo2O4 nanodots decorated three-dimensional g-C3N4 for enhanced photocatalytic H2 generation. ACS Sustainable Chem. Eng. 7(14), 12428–12438 (2019). https://doi.org/10.1021/acssuschemeng.9b01965
J.H. Kim, J.S. Lee, Elaborately modified BiVO4 photoanodes for solar water splitting. Adv. Mater. 31(20), 1806938 (2019). https://doi.org/10.1002/adma.201806938
M. García-Tecedor, D. Cardenas-Morcoso, R. Fernández-Climent, S. Giménez, The role of underlayers and overlayers in thin film BiVO4 photoanodes for solar water splitting. Adv. Mater. Interfaces 6(15), 1900299 (2019). https://doi.org/10.1002/admi.201900299
M. Tayebi, B.-K. Lee, Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting. Renew. Sust. Energ. Rev. 111, 332–343 (2019). https://doi.org/10.1016/j.rser.2019.05.030
K. Sharma, V. Dutta, S. Sharma, P. Raizada, A. Hosseini-Bandegharaei et al., Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: a review. J. Ind. Eng. Chem. 78, 1–20 (2019). https://doi.org/10.1016/j.jiec.2019.06.022
X. Jin, L. Ye, H. Xie, G. Chen, Bismuth-rich bismuth oxyhalides for environmental and energy photocatalysis. Coordin. Chem. Rev. 349, 84–101 (2017). https://doi.org/10.1016/j.ccr.2017.08.010
Y. Long, Q. Han, Z. Yang, Y. Ai, S. Sun et al., A novel solvent-free strategy for the synthesis of bismuth oxyhalides. J. Mater. Chem. A 6(27), 13005–13011 (2018). https://doi.org/10.1039/c8ta04529a
J. Li, H. Li, G. Zhan, L. Zhang, Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Acc. Chem. Res. 50(1), 112–121 (2017). https://doi.org/10.1021/acs.accounts.6b00523
D.S. Bhachu, S.J.A. Moniz, S. Sathasivam, D.O. Scanlon, A. Walsh et al., Bismuth oxyhalides: synthesis, structure and photoelectrochemical activity. Chem. Sci. 7(8), 4832–4841 (2016). https://doi.org/10.1039/c6sc00389c
X. Wu, Y.H. Ng, L. Wang, Y. Du, S.X. Dou et al., Improving the photo-oxidative capability of BiOBr via crystal facet engineering. J. Mater. Chem. A 5(17), 8117–8124 (2017). https://doi.org/10.1039/c6ta10964k
K. Zhao, X. Zhang, L. Zhang, The first BiOI-based solar cells. Electrochem. Commun. 11(3), 612–615 (2009). https://doi.org/10.1016/j.elecom.2008.12.041
Y. Ye, G. Gu, X. Wang, T. Ouyang, Y. Chen et al., 3D cross-linked BiOI decorated ZnO/CdS nanorod arrays: a cost-effective hydrogen evolution photoanode with high photoelectrocatalytic activity. Int. J. Hydrogen Energ. 44(39), 21865–21872 (2019). https://doi.org/10.1016/j.ijhydene.2019.06.059
P.J. Mafa, A.T. Kuvarega, B.B. Mamba, B. Ntsendwana, Photoelectrocatalytic degradation of sulfamethoxazole on g-C3N4/BiOI/EG p–n heterojunction photoanode under visible light irradiation. Appl. Surf. Sci. 483, 506–520 (2019). https://doi.org/10.1016/j.apsusc.2019.03.281
Y. Bai, T. Chen, P. Wang, L. Wang, L. Ye, Bismuth-rich Bi4O5X2 (X = Br, and I) nanosheets with dominant 1 0 1 facets exposure for photocatalytic H2 evolution. Chem. Eng. J. 304, 454–460 (2016). https://doi.org/10.1016/j.cej.2016.06.100
M. Wang, Q. Wang, J. Li, H. Zhang, W. Zhang et al., Assembly of large-area reduced graphene oxide films for the construction of Z-scheme over single-crystal porous Bi5O7I nanosheets. J. Colloid Interf. Sci. 552, 651–658 (2019). https://doi.org/10.1016/j.jcis.2019.05.107
Q. Wang, Z. Liu, D. Liu, G. Liu, M. Yang et al., Ultrathin two-dimensional BiOBrxI1−x solid solution with rich oxygen vacancies for enhanced visible-light-driven photoactivity in environmental remediation. Appl. Catal. B: Environ. 236, 222–232 (2018). https://doi.org/10.1016/j.apcatb.2018.05.029
T. Li, X. Zhang, C. Zhang, R. Li, J. Liu et al., Theoretical insights into photo-induced electron transfer at BiOX (X = F, Cl, Br, I) (001) surfaces and interfaces. Phys. Chem. Chem. Phys. 21(2), 868–875 (2019). https://doi.org/10.1039/c8cp05671d
J. Di, J. Xia, M. Ji, B. Wang, S. Yin et al., Carbon quantum dots induced ultrasmall BiOI nanosheets with assembled hollow structures for broad spectrum photocatalytic activity and mechanism insight. Langmuir 32(8), 2075–2084 (2016). https://doi.org/10.1021/acs.langmuir.5b04308
W. Sun, X. Wang, J. Feng, T. Li, Y. Huan et al., Controlled synthesis of 2D Mo2Cgraphene heterostructure on liquid Au substrates as enhanced electrocatalytic electrodes. Nanotechnology 30(38), 385601 (2019). https://doi.org/10.1088/1361-6528/ab2c0d
W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability. Chem. Rev. 116(12), 7159–7329 (2016). https://doi.org/10.1021/acs.chemrev.6b00075
T. Li, H. Miras, Y. Song, Polyoxometalate (POM)-layered double hydroxides (LDH) composite materials: design and catalytic applications. Catalysts 7(9), 260 (2017). https://doi.org/10.3390/catal7090260
Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8(3), 702–730 (2015). https://doi.org/10.1039/c4ee03229b
H. Terrones, F. Lopez-Urias, M. Terrones, Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci. Rep. 3, 1549 (2013). https://doi.org/10.1038/srep01549