A Novel Hybrid Point Defect of Oxygen Vacancy and Phosphorus Doping in TiO2 Anode for High-Performance Sodium Ion Capacitor
Corresponding Author: Jian Chen
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 156
Abstract
Although sodium ion capacitors (SICs) are considered as one of the most promising electrochemical energy storage devices (organic electrolyte batteries, aqueous batteries and supercapacitor, etc.) due to the combined merits of battery and capacitor, the slow reaction kinetics and low specific capacity of anode materials are the main challenges. Point defects including vacancies and heteroatoms doping have been widely used to improve the kinetics behavior and capacity of anode materials. However, the interaction between vacancies and heteroatoms doping have been seldomly investigated. In this study, a hybrid point defects (HPD) engineering has been proposed to synthesize TiO2 with both oxygen vacancies (OVs) and P-dopants (TiO2/C-HPD). In comparison with sole OVs or P-doping treatments, the synergistic effects of HPD on its electrical conductivity and sodium storage performance have been clarified through the density functional theory calculation and sodium storage characterization. As expected, the kinetics and electronic conductivity of TiO2/C-HPD3 are significantly improved, resulting in excellent rate performance and outstanding cycle stability. Moreover, the SICs assembled from TiO2/C-HPD3 anode and nitrogen-doped porous carbon cathode show outstanding power/energy density, ultra-long life with good capacity retention. This work provides a novel point defect engineering perspective for the development of high-performance SICs electrode materials.
Highlights:
1 A novel hybrid point defect design (HPD) with oxygen vacancies and P-dopant is proposed to solve the insufficient kinetic and low specific capacity problems of TiO2.
2 Through density functional theory calculation and sodium storage characterization, the synergistic effect of HPD is beneficial to improve the conductivity and sodium storage performance of TiO2.
3 The prepared sodium ion capacitors show outstanding power/energy density, ultra-long life and good capacity retention.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.G. Amatucci, F. Badway, A.D. Pasquier, T. Zheng, An asymmetric hybrid nonaqueous energy storage cell. J. Electrochem. Soc. 148(8), A930 (2001). https://doi.org/10.1149/1.1383553
- C. Chen, H. Zhu, M. Shi, L. Hu, Z. Xue et al., Oxygen vacancies-modulated tungsten oxide anode for ultra-stable and fast aqueous aluminum-ion storage. Energy Storage Mater. 49, 370–379 (2022). https://doi.org/10.1016/j.ensm.2022.04.013
- L. Li, J. Xu, M. Shi, J. He, J. Jiang et al., In-situ raman investigation and application of MXene-stabilized polypyrrole composite for flexible aqueous batteries. Mater. Des. 217, 110606 (2022). https://doi.org/10.1016/j.matdes.2022.110606
- L. Chen, X. Xu, L. Wan, G. Zhu, Y. Li et al., Carbon-incorporated Fe3O4 nanoflakes: high-performance faradaic materials for hybrid capacitive deionization and supercapacitors. Mater. Chem. Front. 5(8), 3480–3488 (2021). https://doi.org/10.1039/d0qm00946f
- X. Xu, J. Tang, H. Qian, S. Hou, Y. Bando et al., Three-dimensional networked metal-organic frameworks with conductive polypyrrole tubes for flexible supercapacitors. ACS Appl. Mater. Interfaces 9(44), 38737–38744 (2017). https://doi.org/10.1021/acsami.7b09944
- Y. Zhang, Y. Huang, V. Srot, P.A. Aken, J. Maier et al., Enhanced pseudo-capacitive contributions to high-performance sodium storage in TiO2/C nanofibers via double effects of sulfur modification. Nano Micro Lett. 12, 165 (2020). https://doi.org/10.1007/s40820-020-00506-1
- S. Guan, Q. Fan, Z. Shen, Y. Zhao, Y. Sun et al., Heterojunction TiO2@TiOF2 nanosheets as superior anode materials for sodium-ion batteries. J. Mater. Chem. A 9(9), 5720–5729 (2021). https://doi.org/10.1039/d0ta12340d
- X. Deng, K. Zou, P. Cai, B. Wang, H. Hou et al., Advanced battery-type anode materials for high-performance sodium-ion capacitors. Small Methods 4(10), 2000401 (2020). https://doi.org/10.1002/smtd.202000401
- Q. Wei, Q. Li, Y. Jiang, Y. Zhao, S. Tan et al., High-energy and high-power pseudocapacitor-battery hybrid sodium-ion capacitor with Na+ intercalation pseudocapacitance anode. Nano Micro Lett. 13, 55 (2021). https://doi.org/10.1007/s40820-020-00567-2
- B. Yang, J. Chen, S. Lei, R. Guo, H. Li et al., Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors. Adv. Energy Mater. 8(10), 1702409 (2018). https://doi.org/10.1002/aenm.201702409
- S. Li, J. Chen, J. Xiong, X. Gong, J. Ciou et al., Encapsulation of mns nanocrystals into N, S-co-doped carbon as anode material for full cell sodium-ion capacitors. Nano Micro Lett. 12, 34 (2020). https://doi.org/10.1007/s40820-020-0367-9
- M. Fan, Z. Lin, P. Zhang, X. Ma, K. Wu et al., Synergistic effect of nitrogen and sulfur dual-doping endows TiO2 with exceptional sodium storage performance. Adv. Energy Mater. 11(6), 2003037 (2020). https://doi.org/10.1002/aenm.202003037
- X. Xu, B. Chen, J. Hu, B. Sun, X. Liang et al., Heterostructured TiO2 spheres with tunable interiors and shells toward improved packing density and pseudocapacitive sodium storage. Adv. Mater. 31(46), e1904589 (2019). https://doi.org/10.1002/adma.201904589
- S. Liu, K. Niu, S. Chen, X. Sun, L. Liu et al., TiO2 bunchy hierarchical structure with effective enhancement in sodium storage behaviors. Carbon Energy (2022). https://doi.org/10.1002/cey2.172
- S. Liang, X. Wang, R. Qi, Y.J. Cheng, Y. Xia et al., Bronze-phase TiO2 as anode materials in lithium and sodium-ion batteries. Adv. Funct. Mater. 32(25), 2201675 (2022). https://doi.org/10.1002/adfm.202201675
- Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32(7), e1905923 (2020). https://doi.org/10.1002/adma.201905923
- S. Sun, D. Chen, M. Shen, L. Qin, Z. Wang et al., Plasma modulated mof-derived TiO2/C for enhanced lithium storage. Chem. Eng. J. 417, 128003 (2021). https://doi.org/10.1016/j.cej.2020.128003
- G. Li, G.R. Blake, T.T. Palstra, Vacancies in functional materials for clean energy storage and harvesting: the perfect imperfection. Chem. Soc. Rev. 46(6), 1693–1706 (2017). https://doi.org/10.1039/c6cs00571c
- Z. Su, J. Liu, M. Li, Y. Zhu, S. Qian et al., Defect engineering in titanium-based oxides for electrochemical energy storage devices. Electrochem. Energy Rev. 3(2), 286–343 (2020). https://doi.org/10.1007/s41918-020-00064-5
- T. Zhai, L. Wan, S. Sun, Q. Chen, J. Sun et al., Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 29(7), 1604167 (2017). https://doi.org/10.1002/adma.201604167
- C. Sotelo-Vazquez, N. Noor, A. Kafizas, R. Quesada-Cabrera, D.O. Scanlon et al., Multifunctional p-doped TiO2 films: a new approach to self-cleaning, transparent conducting oxide materials. Chem. Mater. 27(9), 3234–3242 (2015). https://doi.org/10.1021/cm504734a
- J. Ni, S. Fu, Y. Yuan, L. Ma, Y. Jiang et al., Boosting sodium storage in TiO2 nanotube arrays through surface phosphorylation. Adv. Mater. 30(6), 1704337 (2018). https://doi.org/10.1002/adma.201704337
- M. Zhang, K. Yin, Z.D. Hood, Z. Bi, C.A. Bridges et al., In situ tem observation of the electrochemical lithiation of N-doped anatase TiO2 nanotubes as anodes for lithium-ion batteries. J. Mater. Chem. A 5(39), 20651–20657 (2017). https://doi.org/10.1039/c7ta05877b
- H. Zhang, Y. Jiang, Z. Qi, X. Zhong, Y. Yu, Sulfur doped ultra-thin anatase TiO2 nanosheets/graphene nanocomposite for high-performance pseudocapacitive sodium storage. Energy Storage Mater. 12, 37–43 (2018). https://doi.org/10.1016/j.ensm.2017.11.008
- Q. Gan, H. He, Y. Zhu, Z. Wang, N. Qin et al., Defect-assisted selective surface phosphorus doping to enhance rate capability of titanium dioxide for sodium ion batteries. ACS Nano 13(8), 9247–9258 (2019). https://doi.org/10.1021/acsnano.9b03766
- Q. Wang, S. Zhang, H. He, C. Xie, Y. Tang et al., Oxygen vacancy engineering in titanium dioxide for sodium storage. Chem. Asian J. 16(1), 3–19 (2021). https://doi.org/10.1002/asia.202001172
- Y. Pan, Z. Luo, Y.C. Chang, K.C. Lau, C.Y. Ng, High-level ab initio predictions for the ionization energies, bond dissociation energies, and heats of formation of titanium oxides and their cations (TiOn/TiOn+, n = 1 and 2). J. Phys. Chem. A 121(3), 669–679 (2017). https://doi.org/10.1021/acs.jpca.6b09491
- J. Chen, B. Luo, Q. Chen, F. Li, Y. Guo et al., Localized electrons enhanced ion transport for ultrafast electrochemical energy storage. Adv. Mater. 32(14), e1905578 (2020). https://doi.org/10.1002/adma.201905578
- J.Y. Shin, J.H. Joo, D. Samuelis, J. Maier, Oxygen-deficient TiO2−δ nanops via hydrogen reduction for high rate capability lithium batteries. Chem. Mater. 24(3), 543–551 (2012). https://doi.org/10.1021/cm2031009
- D. Yan, C. Yu, D. Li, X. Zhang, J. Li et al., Improved sodium-ion storage performance of TiO2 nanotubes by Ni2+ doping. J. Mater. Chem. A 4(28), 11077–11085 (2016). https://doi.org/10.1039/c6ta04906k
- H. He, D. Huang, W. Pang, D. Sun, Q. Wang et al., Plasma-induced amorphous shell and deep cation-site S doping endow TiO2 with extraordinary sodium storage performance. Adv. Mater. 30(26), e1801013 (2018). https://doi.org/10.1002/adma.201801013
- Y. Fang, Y. Zhang, C. Miao, K. Zhu, Y. Chen et al., Mxene-derived defect-rich TiO2@rGo as high-rate anodes for full na ion batteries and capacitors. Nano-Micro Lett. 12, 128 (2020). https://doi.org/10.1007/s40820-020-00471-9
- H. Xu, Y. Liu, T. Qiang, L. Qin, J. Chen et al., Boosting sodium storage properties of titanium dioxide by a multiscale design based on mof-derived strategy. Energy Storage Mater. 17, 126–135 (2019). https://doi.org/10.1016/j.ensm.2018.07.023
- D. Chen, S. Sun, G. Yu, L. Qin, W. Wang et al., In-situ thermally fabricated porous and heterogeneous yolk-shell selenides wrapped in carbon as anode for high-performance hybrid lithium-ion capacitors. Carbon 166, 91–100 (2020). https://doi.org/10.1016/j.carbon.2020.05.008
- M. Kang, Y. Ruan, Y. Lu, L. Luo, J. Huang et al., An interlayer defect promoting the doping of the phosphate group into TiO2(B) nanowires with unusual structure properties towards ultra-fast and ultra-stable sodium storage. J. Mater. Chem. A 7(28), 16937–16946 (2019). https://doi.org/10.1039/c9ta05299b
- J. Chen, Z. Ding, C. Wang, H. Hou, Y. Zhang et al., Black anatase titania with ultrafast sodium-storage performances stimulated by oxygen vacancies. ACS Appl. Mater. Interfaces 8(14), 9142–9151 (2016). https://doi.org/10.1021/acsami.6b01183
- H. He, D. Sun, Q. Zhang, F. Fu, Y. Tang et al., Iron-doped cauliflower-like rutile TiO2 with superior sodium storage properties. ACS Appl. Mater. Interfaces 9(7), 6093–6103 (2017). https://doi.org/10.1021/acsami.6b15516
- B. Babu, S.G. Ullattil, R. Prasannachandran, J. Kavil, P. Periyat et al., Ti3+ induced brown TiO2 nanotubes for high performance sodium-ion hybrid capacitors. ACS Sustain. Chem. Eng. 6(4), 5401–5412 (2018). https://doi.org/10.1021/acssuschemeng.8b00236
- H. He, Q. Zhang, H. Wang, H. Zhang, J. Li et al., Defect-rich TiO2-δ nanocrystals confined in a mooncake-shaped porous carbon matrix as an advanced Na ion battery anode. J. Power Sources 354, 179–188 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.035
- X. Xin, T. Xu, J. Yin, L. Wang, C. Wang, Management on the location and concentration of Ti3+ in anatase TiO2 for defects-induced visible-light photocatalysis. Appl. Catal. B Environ. 176–177, 354–362 (2015). https://doi.org/10.1016/j.apcatb.2015.04.016
- X. Deng, Z. Wei, C. Cui, Q. Liu, C. Wang et al., Oxygen-deficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage. J. Mater. Chem. A 6(9), 4013–4022 (2018). https://doi.org/10.1039/c7ta11301c
- D. Su, Y. Pei, L. Liu, Z. Liu, J. Liu et al., Wire-in-wire TiO2/C nanofibers free-standing anodes for Li-ion and K-ion batteries with long cycling stability and high capacity. Nano Micro Lett. 13, 107 (2021). https://doi.org/10.1007/s40820-021-00632-4
- M. Huang, Y. Chu, B. Xi, N. Shi, B. Duan et al., TiO2-based heterostructures with different mechanism: a general synergistic effect toward high-performance sodium storage. Small 16(42), e2004054 (2020). https://doi.org/10.1002/smll.202004054
- H. Li, J. Lang, S. Lei, J. Chen, K. Wang et al., A high-performance sodium-ion hybrid capacitor constructed by metal-organic framework-derived anode and cathode materials. Adv. Funct. Mater. 28(30), 1800757 (2018). https://doi.org/10.1002/adfm.201800757
- P. Xue, Q. Li, W. Gong, Z. Sun, H. Wang et al., Structure-induced partial phase transformation endows hollow TiO2/TiN heterostructure fibers stacked with nanosheet arrays with extraordinary sodium storage performance. J. Mater. Chem. A 9(20), 12109–12118 (2021). https://doi.org/10.1039/d1ta01729b
- Q. Xia, Y. Huang, J. Xiao, L. Wang, Z. Lin et al., Phosphorus-modulation-triggered surface disorder in titanium dioxide nanocrystals enables exceptional sodium-storage performance. Angew. Chem. Int. Ed. 58(12), 4022–4026 (2019). https://doi.org/10.1002/anie.201813721
- L. Li, X. Feng, Y. Nie, S. Chen, F. Shi et al., Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2. ACS Catal. 5(8), 4825–4832 (2015). https://doi.org/10.1021/acscatal.5b00320
- G. Zou, J. Chen, Y. Zhang, C. Wang, Z. Huang et al., Carbon-coated rutile titanium dioxide derived from titanium-metal organic framework with enhanced sodium storage behavior. J. Power Sources 325, 25–34 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.017
- Y. Zhang, Z. Ding, C.W. Foster, C.E. Banks, X. Qiu et al., Oxygen vacancies evoked blue TiO2(B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv. Funct. Mater. 27(27), 1700856 (2017). https://doi.org/10.1002/adfm.201700856
- J. Feng, Y. Dong, Y. Yan, W. Zhao, T. Yang et al., Extended lattice space of TiO2 hollow nanocubes for improved sodium storage. Chem. Eng. J. 373, 565–571 (2019). https://doi.org/10.1016/j.cej.2019.05.065
- L. Wu, D. Bresser, D. Buchholz, G.A. Giffin, C.R. Castro et al., Unfolding the mechanism of sodium insertion in anatase TiO2 nanops. Adv. Energy Mater. 5(2), 1401142 (2015). https://doi.org/10.1002/aenm.201401142
- Q. Xia, Y. Liang, Z. Lin, S. Wang, W. Lai et al., Confining ultrathin 2D superlattices in mesoporous hollow spheres renders ultrafast and high-capacity Na-ion storage. Adv. Energy Mater. 10(36), 2001033 (2020). https://doi.org/10.1002/aenm.202001033
- E. Lim, C. Jo, J. Lee, A mini review of designed mesoporous materials for energy-storage applications: from electric double-layer capacitors to hybrid supercapacitors. Nanoscale 8(15), 7827–7833 (2016). https://doi.org/10.1039/c6nr00796a
- Y.E. Zhu, L. Yang, J. Sheng, Y. Chen, H. Gu et al., Fast sodium storage in TiO2@CNT@C nanorods for high-performance na-ion capacitors. Adv. Energy Mater. 7(22), 1701222 (2017). https://doi.org/10.1002/aenm.201701222
- Z. Wang, L. Kong, Z. Guo, X. Zhang, X. Wang et al., Bamboo-like SiO/C nanotubes with carbon coating as a durable and high-performance anode for lithium-ion battery. Chem. Eng. J. 428, 131060 (2022). https://doi.org/10.1016/j.cej.2021.131060
- S. Luo, T. Yuan, L. Soule, J. Ruan, Y. Zhao et al., Enhanced ionic/electronic transport in nano-TiO2/sheared cnt composite electrode for Na+ insertion-based hybrid ion-capacitors. Adv. Funct. Mater. 30(5), 1908309 (2019). https://doi.org/10.1002/adfm.201908309
- R. Wang, S. Wang, Y. Zhang, D. Jin, X. Tao et al., Graphene-coupled Ti3C2 MXenes-derived TiO2 mesostructure: promising sodium-ion capacitor anode with fast ion storage and long-term cycling. J. Mater. Chem. A 6(3), 1017–1027 (2018). https://doi.org/10.1039/c7ta09153b
- S. Li, W. He, B. Liu, J. Cui, X. Wang et al., One-step construction of three-dimensional nickel sulfide-embedded carbon matrix for sodium-ion batteries and hybrid capacitors. Energy Storage Mater. 25, 636–643 (2020). https://doi.org/10.1016/j.ensm.2019.09.021
- S.S.M. Bhat, B. Babu, M. Feygenson, J.C. Neuefeind, M.M. Shaijumon, Nanostructured Na2Ti9O19 for hybrid sodium-ion capacitors with excellent rate capability. ACS Appl. Mater. Interfaces 10(1), 437–447 (2018). https://doi.org/10.1021/acsami.7b13300
- R. Thangavel, A.G. Kannan, R. Ponraj, G. Yoon, V. Aravindan et al., Surface enriched graphene hollow spheres towards building ultra-high power sodium-ion capacitor with long durability. Energy Storage Mater. 25, 702–713 (2020). https://doi.org/10.1016/j.ensm.2019.09.016
- X. Ren, Z. Ren, Q. Li, W. Wen, X. Li et al., Tailored plum pudding-like Co2P/Sn encapsulated with carbon nanobox shell as superior anode materials for high-performance sodium-ion capacitors. Adv. Energy Mater. 9(16), 1900091 (2019). https://doi.org/10.1002/aenm.201900091
- M. Shi, P. Xiao, J. Lang, C. Yan, X. Yan, Porous g-C3N4 and mxene dual-confined feooh quantum dots for superior energy storage in an ionic liquid. Adv. Sci. 7(2), 1901975 (2020). https://doi.org/10.1002/advs.201901975
References
G.G. Amatucci, F. Badway, A.D. Pasquier, T. Zheng, An asymmetric hybrid nonaqueous energy storage cell. J. Electrochem. Soc. 148(8), A930 (2001). https://doi.org/10.1149/1.1383553
C. Chen, H. Zhu, M. Shi, L. Hu, Z. Xue et al., Oxygen vacancies-modulated tungsten oxide anode for ultra-stable and fast aqueous aluminum-ion storage. Energy Storage Mater. 49, 370–379 (2022). https://doi.org/10.1016/j.ensm.2022.04.013
L. Li, J. Xu, M. Shi, J. He, J. Jiang et al., In-situ raman investigation and application of MXene-stabilized polypyrrole composite for flexible aqueous batteries. Mater. Des. 217, 110606 (2022). https://doi.org/10.1016/j.matdes.2022.110606
L. Chen, X. Xu, L. Wan, G. Zhu, Y. Li et al., Carbon-incorporated Fe3O4 nanoflakes: high-performance faradaic materials for hybrid capacitive deionization and supercapacitors. Mater. Chem. Front. 5(8), 3480–3488 (2021). https://doi.org/10.1039/d0qm00946f
X. Xu, J. Tang, H. Qian, S. Hou, Y. Bando et al., Three-dimensional networked metal-organic frameworks with conductive polypyrrole tubes for flexible supercapacitors. ACS Appl. Mater. Interfaces 9(44), 38737–38744 (2017). https://doi.org/10.1021/acsami.7b09944
Y. Zhang, Y. Huang, V. Srot, P.A. Aken, J. Maier et al., Enhanced pseudo-capacitive contributions to high-performance sodium storage in TiO2/C nanofibers via double effects of sulfur modification. Nano Micro Lett. 12, 165 (2020). https://doi.org/10.1007/s40820-020-00506-1
S. Guan, Q. Fan, Z. Shen, Y. Zhao, Y. Sun et al., Heterojunction TiO2@TiOF2 nanosheets as superior anode materials for sodium-ion batteries. J. Mater. Chem. A 9(9), 5720–5729 (2021). https://doi.org/10.1039/d0ta12340d
X. Deng, K. Zou, P. Cai, B. Wang, H. Hou et al., Advanced battery-type anode materials for high-performance sodium-ion capacitors. Small Methods 4(10), 2000401 (2020). https://doi.org/10.1002/smtd.202000401
Q. Wei, Q. Li, Y. Jiang, Y. Zhao, S. Tan et al., High-energy and high-power pseudocapacitor-battery hybrid sodium-ion capacitor with Na+ intercalation pseudocapacitance anode. Nano Micro Lett. 13, 55 (2021). https://doi.org/10.1007/s40820-020-00567-2
B. Yang, J. Chen, S. Lei, R. Guo, H. Li et al., Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors. Adv. Energy Mater. 8(10), 1702409 (2018). https://doi.org/10.1002/aenm.201702409
S. Li, J. Chen, J. Xiong, X. Gong, J. Ciou et al., Encapsulation of mns nanocrystals into N, S-co-doped carbon as anode material for full cell sodium-ion capacitors. Nano Micro Lett. 12, 34 (2020). https://doi.org/10.1007/s40820-020-0367-9
M. Fan, Z. Lin, P. Zhang, X. Ma, K. Wu et al., Synergistic effect of nitrogen and sulfur dual-doping endows TiO2 with exceptional sodium storage performance. Adv. Energy Mater. 11(6), 2003037 (2020). https://doi.org/10.1002/aenm.202003037
X. Xu, B. Chen, J. Hu, B. Sun, X. Liang et al., Heterostructured TiO2 spheres with tunable interiors and shells toward improved packing density and pseudocapacitive sodium storage. Adv. Mater. 31(46), e1904589 (2019). https://doi.org/10.1002/adma.201904589
S. Liu, K. Niu, S. Chen, X. Sun, L. Liu et al., TiO2 bunchy hierarchical structure with effective enhancement in sodium storage behaviors. Carbon Energy (2022). https://doi.org/10.1002/cey2.172
S. Liang, X. Wang, R. Qi, Y.J. Cheng, Y. Xia et al., Bronze-phase TiO2 as anode materials in lithium and sodium-ion batteries. Adv. Funct. Mater. 32(25), 2201675 (2022). https://doi.org/10.1002/adfm.202201675
Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32(7), e1905923 (2020). https://doi.org/10.1002/adma.201905923
S. Sun, D. Chen, M. Shen, L. Qin, Z. Wang et al., Plasma modulated mof-derived TiO2/C for enhanced lithium storage. Chem. Eng. J. 417, 128003 (2021). https://doi.org/10.1016/j.cej.2020.128003
G. Li, G.R. Blake, T.T. Palstra, Vacancies in functional materials for clean energy storage and harvesting: the perfect imperfection. Chem. Soc. Rev. 46(6), 1693–1706 (2017). https://doi.org/10.1039/c6cs00571c
Z. Su, J. Liu, M. Li, Y. Zhu, S. Qian et al., Defect engineering in titanium-based oxides for electrochemical energy storage devices. Electrochem. Energy Rev. 3(2), 286–343 (2020). https://doi.org/10.1007/s41918-020-00064-5
T. Zhai, L. Wan, S. Sun, Q. Chen, J. Sun et al., Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 29(7), 1604167 (2017). https://doi.org/10.1002/adma.201604167
C. Sotelo-Vazquez, N. Noor, A. Kafizas, R. Quesada-Cabrera, D.O. Scanlon et al., Multifunctional p-doped TiO2 films: a new approach to self-cleaning, transparent conducting oxide materials. Chem. Mater. 27(9), 3234–3242 (2015). https://doi.org/10.1021/cm504734a
J. Ni, S. Fu, Y. Yuan, L. Ma, Y. Jiang et al., Boosting sodium storage in TiO2 nanotube arrays through surface phosphorylation. Adv. Mater. 30(6), 1704337 (2018). https://doi.org/10.1002/adma.201704337
M. Zhang, K. Yin, Z.D. Hood, Z. Bi, C.A. Bridges et al., In situ tem observation of the electrochemical lithiation of N-doped anatase TiO2 nanotubes as anodes for lithium-ion batteries. J. Mater. Chem. A 5(39), 20651–20657 (2017). https://doi.org/10.1039/c7ta05877b
H. Zhang, Y. Jiang, Z. Qi, X. Zhong, Y. Yu, Sulfur doped ultra-thin anatase TiO2 nanosheets/graphene nanocomposite for high-performance pseudocapacitive sodium storage. Energy Storage Mater. 12, 37–43 (2018). https://doi.org/10.1016/j.ensm.2017.11.008
Q. Gan, H. He, Y. Zhu, Z. Wang, N. Qin et al., Defect-assisted selective surface phosphorus doping to enhance rate capability of titanium dioxide for sodium ion batteries. ACS Nano 13(8), 9247–9258 (2019). https://doi.org/10.1021/acsnano.9b03766
Q. Wang, S. Zhang, H. He, C. Xie, Y. Tang et al., Oxygen vacancy engineering in titanium dioxide for sodium storage. Chem. Asian J. 16(1), 3–19 (2021). https://doi.org/10.1002/asia.202001172
Y. Pan, Z. Luo, Y.C. Chang, K.C. Lau, C.Y. Ng, High-level ab initio predictions for the ionization energies, bond dissociation energies, and heats of formation of titanium oxides and their cations (TiOn/TiOn+, n = 1 and 2). J. Phys. Chem. A 121(3), 669–679 (2017). https://doi.org/10.1021/acs.jpca.6b09491
J. Chen, B. Luo, Q. Chen, F. Li, Y. Guo et al., Localized electrons enhanced ion transport for ultrafast electrochemical energy storage. Adv. Mater. 32(14), e1905578 (2020). https://doi.org/10.1002/adma.201905578
J.Y. Shin, J.H. Joo, D. Samuelis, J. Maier, Oxygen-deficient TiO2−δ nanops via hydrogen reduction for high rate capability lithium batteries. Chem. Mater. 24(3), 543–551 (2012). https://doi.org/10.1021/cm2031009
D. Yan, C. Yu, D. Li, X. Zhang, J. Li et al., Improved sodium-ion storage performance of TiO2 nanotubes by Ni2+ doping. J. Mater. Chem. A 4(28), 11077–11085 (2016). https://doi.org/10.1039/c6ta04906k
H. He, D. Huang, W. Pang, D. Sun, Q. Wang et al., Plasma-induced amorphous shell and deep cation-site S doping endow TiO2 with extraordinary sodium storage performance. Adv. Mater. 30(26), e1801013 (2018). https://doi.org/10.1002/adma.201801013
Y. Fang, Y. Zhang, C. Miao, K. Zhu, Y. Chen et al., Mxene-derived defect-rich TiO2@rGo as high-rate anodes for full na ion batteries and capacitors. Nano-Micro Lett. 12, 128 (2020). https://doi.org/10.1007/s40820-020-00471-9
H. Xu, Y. Liu, T. Qiang, L. Qin, J. Chen et al., Boosting sodium storage properties of titanium dioxide by a multiscale design based on mof-derived strategy. Energy Storage Mater. 17, 126–135 (2019). https://doi.org/10.1016/j.ensm.2018.07.023
D. Chen, S. Sun, G. Yu, L. Qin, W. Wang et al., In-situ thermally fabricated porous and heterogeneous yolk-shell selenides wrapped in carbon as anode for high-performance hybrid lithium-ion capacitors. Carbon 166, 91–100 (2020). https://doi.org/10.1016/j.carbon.2020.05.008
M. Kang, Y. Ruan, Y. Lu, L. Luo, J. Huang et al., An interlayer defect promoting the doping of the phosphate group into TiO2(B) nanowires with unusual structure properties towards ultra-fast and ultra-stable sodium storage. J. Mater. Chem. A 7(28), 16937–16946 (2019). https://doi.org/10.1039/c9ta05299b
J. Chen, Z. Ding, C. Wang, H. Hou, Y. Zhang et al., Black anatase titania with ultrafast sodium-storage performances stimulated by oxygen vacancies. ACS Appl. Mater. Interfaces 8(14), 9142–9151 (2016). https://doi.org/10.1021/acsami.6b01183
H. He, D. Sun, Q. Zhang, F. Fu, Y. Tang et al., Iron-doped cauliflower-like rutile TiO2 with superior sodium storage properties. ACS Appl. Mater. Interfaces 9(7), 6093–6103 (2017). https://doi.org/10.1021/acsami.6b15516
B. Babu, S.G. Ullattil, R. Prasannachandran, J. Kavil, P. Periyat et al., Ti3+ induced brown TiO2 nanotubes for high performance sodium-ion hybrid capacitors. ACS Sustain. Chem. Eng. 6(4), 5401–5412 (2018). https://doi.org/10.1021/acssuschemeng.8b00236
H. He, Q. Zhang, H. Wang, H. Zhang, J. Li et al., Defect-rich TiO2-δ nanocrystals confined in a mooncake-shaped porous carbon matrix as an advanced Na ion battery anode. J. Power Sources 354, 179–188 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.035
X. Xin, T. Xu, J. Yin, L. Wang, C. Wang, Management on the location and concentration of Ti3+ in anatase TiO2 for defects-induced visible-light photocatalysis. Appl. Catal. B Environ. 176–177, 354–362 (2015). https://doi.org/10.1016/j.apcatb.2015.04.016
X. Deng, Z. Wei, C. Cui, Q. Liu, C. Wang et al., Oxygen-deficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage. J. Mater. Chem. A 6(9), 4013–4022 (2018). https://doi.org/10.1039/c7ta11301c
D. Su, Y. Pei, L. Liu, Z. Liu, J. Liu et al., Wire-in-wire TiO2/C nanofibers free-standing anodes for Li-ion and K-ion batteries with long cycling stability and high capacity. Nano Micro Lett. 13, 107 (2021). https://doi.org/10.1007/s40820-021-00632-4
M. Huang, Y. Chu, B. Xi, N. Shi, B. Duan et al., TiO2-based heterostructures with different mechanism: a general synergistic effect toward high-performance sodium storage. Small 16(42), e2004054 (2020). https://doi.org/10.1002/smll.202004054
H. Li, J. Lang, S. Lei, J. Chen, K. Wang et al., A high-performance sodium-ion hybrid capacitor constructed by metal-organic framework-derived anode and cathode materials. Adv. Funct. Mater. 28(30), 1800757 (2018). https://doi.org/10.1002/adfm.201800757
P. Xue, Q. Li, W. Gong, Z. Sun, H. Wang et al., Structure-induced partial phase transformation endows hollow TiO2/TiN heterostructure fibers stacked with nanosheet arrays with extraordinary sodium storage performance. J. Mater. Chem. A 9(20), 12109–12118 (2021). https://doi.org/10.1039/d1ta01729b
Q. Xia, Y. Huang, J. Xiao, L. Wang, Z. Lin et al., Phosphorus-modulation-triggered surface disorder in titanium dioxide nanocrystals enables exceptional sodium-storage performance. Angew. Chem. Int. Ed. 58(12), 4022–4026 (2019). https://doi.org/10.1002/anie.201813721
L. Li, X. Feng, Y. Nie, S. Chen, F. Shi et al., Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2. ACS Catal. 5(8), 4825–4832 (2015). https://doi.org/10.1021/acscatal.5b00320
G. Zou, J. Chen, Y. Zhang, C. Wang, Z. Huang et al., Carbon-coated rutile titanium dioxide derived from titanium-metal organic framework with enhanced sodium storage behavior. J. Power Sources 325, 25–34 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.017
Y. Zhang, Z. Ding, C.W. Foster, C.E. Banks, X. Qiu et al., Oxygen vacancies evoked blue TiO2(B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv. Funct. Mater. 27(27), 1700856 (2017). https://doi.org/10.1002/adfm.201700856
J. Feng, Y. Dong, Y. Yan, W. Zhao, T. Yang et al., Extended lattice space of TiO2 hollow nanocubes for improved sodium storage. Chem. Eng. J. 373, 565–571 (2019). https://doi.org/10.1016/j.cej.2019.05.065
L. Wu, D. Bresser, D. Buchholz, G.A. Giffin, C.R. Castro et al., Unfolding the mechanism of sodium insertion in anatase TiO2 nanops. Adv. Energy Mater. 5(2), 1401142 (2015). https://doi.org/10.1002/aenm.201401142
Q. Xia, Y. Liang, Z. Lin, S. Wang, W. Lai et al., Confining ultrathin 2D superlattices in mesoporous hollow spheres renders ultrafast and high-capacity Na-ion storage. Adv. Energy Mater. 10(36), 2001033 (2020). https://doi.org/10.1002/aenm.202001033
E. Lim, C. Jo, J. Lee, A mini review of designed mesoporous materials for energy-storage applications: from electric double-layer capacitors to hybrid supercapacitors. Nanoscale 8(15), 7827–7833 (2016). https://doi.org/10.1039/c6nr00796a
Y.E. Zhu, L. Yang, J. Sheng, Y. Chen, H. Gu et al., Fast sodium storage in TiO2@CNT@C nanorods for high-performance na-ion capacitors. Adv. Energy Mater. 7(22), 1701222 (2017). https://doi.org/10.1002/aenm.201701222
Z. Wang, L. Kong, Z. Guo, X. Zhang, X. Wang et al., Bamboo-like SiO/C nanotubes with carbon coating as a durable and high-performance anode for lithium-ion battery. Chem. Eng. J. 428, 131060 (2022). https://doi.org/10.1016/j.cej.2021.131060
S. Luo, T. Yuan, L. Soule, J. Ruan, Y. Zhao et al., Enhanced ionic/electronic transport in nano-TiO2/sheared cnt composite electrode for Na+ insertion-based hybrid ion-capacitors. Adv. Funct. Mater. 30(5), 1908309 (2019). https://doi.org/10.1002/adfm.201908309
R. Wang, S. Wang, Y. Zhang, D. Jin, X. Tao et al., Graphene-coupled Ti3C2 MXenes-derived TiO2 mesostructure: promising sodium-ion capacitor anode with fast ion storage and long-term cycling. J. Mater. Chem. A 6(3), 1017–1027 (2018). https://doi.org/10.1039/c7ta09153b
S. Li, W. He, B. Liu, J. Cui, X. Wang et al., One-step construction of three-dimensional nickel sulfide-embedded carbon matrix for sodium-ion batteries and hybrid capacitors. Energy Storage Mater. 25, 636–643 (2020). https://doi.org/10.1016/j.ensm.2019.09.021
S.S.M. Bhat, B. Babu, M. Feygenson, J.C. Neuefeind, M.M. Shaijumon, Nanostructured Na2Ti9O19 for hybrid sodium-ion capacitors with excellent rate capability. ACS Appl. Mater. Interfaces 10(1), 437–447 (2018). https://doi.org/10.1021/acsami.7b13300
R. Thangavel, A.G. Kannan, R. Ponraj, G. Yoon, V. Aravindan et al., Surface enriched graphene hollow spheres towards building ultra-high power sodium-ion capacitor with long durability. Energy Storage Mater. 25, 702–713 (2020). https://doi.org/10.1016/j.ensm.2019.09.016
X. Ren, Z. Ren, Q. Li, W. Wen, X. Li et al., Tailored plum pudding-like Co2P/Sn encapsulated with carbon nanobox shell as superior anode materials for high-performance sodium-ion capacitors. Adv. Energy Mater. 9(16), 1900091 (2019). https://doi.org/10.1002/aenm.201900091
M. Shi, P. Xiao, J. Lang, C. Yan, X. Yan, Porous g-C3N4 and mxene dual-confined feooh quantum dots for superior energy storage in an ionic liquid. Adv. Sci. 7(2), 1901975 (2020). https://doi.org/10.1002/advs.201901975