MoS2 Nanosheet Arrays Rooted on Hollow rGO Spheres as Bifunctional Hydrogen Evolution Catalyst and Supercapacitor Electrode
Corresponding Author: Dachi Yang
Nano-Micro Letters,
Vol. 10 No. 4 (2018), Article Number: 62
Abstract
MoS2 has attracted attention as a promising hydrogen evolution reaction (HER) catalyst and a supercapacitor electrode material. However, its catalytic activity and capacitive performance are still hindered by its aggregation and poor intrinsic conductivity. Here, hollow rGO sphere-supported ultrathin MoS2 nanosheet arrays (h-rGO@MoS2) are constructed via a dual-template approach and employed as bifunctional HER catalyst and supercapacitor electrode material. Because of the expanded interlayer spacing in MoS2 nanosheets and more exposed electroactive S–Mo–S edges, the constructed h-rGO@MoS2 architectures exhibit enhanced HER performance. Furthermore, benefiting from the synergistic effect of the improved conductivity and boosted specific surface areas (144.9 m2 g−1, ca. 4.6-times that of pristine MoS2), the h-rGO@MoS2 architecture shows a high specific capacitance (238 F g−1 at a current density of 0.5 A g−1), excellent rate capacitance, and remarkable cycle stability. Our synthesis method may be extended to construct other vertically aligned hollow architectures, which may serve both as efficient HER catalysts and supercapacitor electrodes.
Highlights:
1 MoS2 nanosheets arrays were vertically rooted on hollow rGO spheres (h-rGO@MoS2) via an optimized dual-template strategy.
2 The bifunctional h-rGO@MoS2 architecture exhibit enhanced hydrogen evolution reaction performance (105 mV, onset potential) and higher specific capacitance (238 F g−1 at 0.5 A g−1) as a supercapacitor electrode than pristine MoS2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, X. Feng, Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017). https://doi.org/10.1038/ncomms15437
- Y.Y. Chen, Y. Zhang, X. Zhang, T. Tang, H. Luo, S. Niu, Z.H. Dai, L.J. Wan, J.S. Hu, Self-templated fabrication of MoNi4/MoO3−x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 29(39), 1703311 (2017). https://doi.org/10.1002/adma.201703311
- M. Kuang, Q. Wang, P. Han, G. Zheng, Cu, Co-embedded N-enriched mesoporous carbon for efficient oxygen reduction and hydrogen evolution reactions. Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201700193
- M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10(4), 313–318 (2015). https://doi.org/10.1038/nnano.2015.40
- X. Li, X. Li, J. Cheng, D. Yuan, W. Ni, Q. Guan, L. Gao, B. Wang, Fiber-shaped solid-state supercapacitors based on molybdenum disulfide nanosheets for a self-powered photodetecting system. Nano Energy 21, 228–237 (2016). https://doi.org/10.1016/j.nanoen.2016.01.011
- K. Peng, L. Fu, J. Ouyang, H. Yang, Emerging parallel dual 2D composites: natural clay mineral hybridizing MoS2 and interfacial structure. Adv. Funct. Mater. 26(16), 2666–2675 (2016). https://doi.org/10.1002/adfm.201504942
- M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135(28), 10274–10277 (2013). https://doi.org/10.1021/ja404523s
- X. Hai, W. Zhou, S. Wang, H. Pang, K. Chang, F. Ichihara, J. Ye, Rational design of freestanding MoS2 monolayers for hydrogen evolution reaction. Nano Energy 39, 409–417 (2017). https://doi.org/10.1016/j.nanoen.2017.07.021
- Z. Wu, B. Fang, Z. Wang, C. Wang, Z. Liu et al., MoS2 nanosheets: a designed structure with high active site density for the hydrogen evolution reaction. ACS Catal. 3(9), 2101–2107 (2013). https://doi.org/10.1021/cs400384h
- J. Guo, C. Liu, Y. Sun, J. Sun, W. Zhang, T. Si, H. Lei, Q. Liu, X. Zhang, N-doped MoS2 nanosheets with exposed edges realizing robust electrochemical hydrogen evolution. J. Solid State Chem. 263, 84–87 (2018). https://doi.org/10.1016/j.jssc.2018.04.023
- X. Zhang, Y. Wu, Y. Sun, P. Ding, Q. Liu, L. Tang, J. Guo, Hybrid of Fe4[Fe(CN)6]3 nanocubes and MoS2 nanosheets on nitrogen-doped graphene realizing improved electrochemical hydrogen production. Electrochim. Acta 263, 140–146 (2018). https://doi.org/10.1016/j.electacta.2018.01.051
- Y. Kim, D.H.K. Jackson, D. Lee, M. Choi, T.W. Kim et al., In situ electrochemical activation of atomic layer deposition coated MoS2 basal planes for efficient hydrogen evolution reaction. Adv. Funct. Mater. 27(34), 1701825 (2017). https://doi.org/10.1002/adfm.201701825
- B. Guo, K. Yu, H. Li, H. Song, Y. Zhang, X. Lei, H. Fu, Y. Tan, Z. Zhu, Hollow structured micro/nano MoS2 spheres for high electrocatalytic activity hydrogen evolution reaction. ACS Appl. Mater. Interfaces 8(8), 5517–5525 (2016). https://doi.org/10.1021/acsami.5b10252
- J. Guo, X. Zhang, Y. Sun, L. Tang, X. Zhang, NiMoS3 nanorods as PH-tolerant electrocatalyst for efficient hydrogen evolution. ACS Sustain. Chem. Eng. 5(10), 9006–9013 (2017). https://doi.org/10.1021/acssuschemeng.7b01802
- X. Li, C. Zhang, S. Xin, Z. Yang, Y. Li, D. Zhang, P. Yao, Facile synthesis of MoS2/reduced graphene oxide@polyaniline for high-performance supercapacitors. ACS Appl. Mater. Interfaces 8(33), 21373–21380 (2016). https://doi.org/10.1021/acsami.6b06762
- E.G. da Silveira Firmiano, A.C. Rabelo, C.J. Dalmaschio, A.N. Pinheiro, E.C. Pereira, W.H. Schreiner, E.R. Leite, Supercapacitor electrodes obtained by directly bonding 2D MoS2 on reduced graphene oxide. Adv. Energy Mater. 4(6), 1301380 (2014). https://doi.org/10.1002/aenm.201301380
- Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133(19), 7296–7299 (2011). https://doi.org/10.1021/ja201269b
- M. Yu, S. Zhao, H. Feng, L. Hu, X. Zhang, Y. Zeng, Y. Tong, X. Lu, Engineering thin MoS2 nanosheets on TiN nanorods: advanced electrochemical capacitor electrode and hydrogen evolution electrocatalyst. ACS Energy Lett. 2(8), 1862–1868 (2017). https://doi.org/10.1021/acsenergylett.7b00602
- J. Cao, J. Zhou, Y. Zhang, X. Liu, A clean and facile synthesis strategy of MoS2 nanosheets grown on multi-wall CNTs for enhanced hydrogen evolution reaction performance. Sci. Rep. 7(1), 8825 (2017). https://doi.org/10.1038/s41598-017-09047-x
- L. Yang, W. Zhou, J. Lu, D. Hou, Y. Ke, G. Li, Z. Tang, X. Kang, S. Chen, Hierarchical spheres constructed by defect-rich MoS2/carbon nanosheets for efficient electrocatalytic hydrogen evolution. Nano Energy 22, 490–498 (2016). https://doi.org/10.1016/j.nanoen.2016.02.056
- W. Zhou, K. Zhou, D. Hou, X. Liu, G. Li, Y. Sang, H. Liu, L. Li, S. Chen, Three-dimensional hierarchical frameworks based on MoS2 nanosheets self-assembled on graphene oxide for efficient electrocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 6(23), 21534–21540 (2014). https://doi.org/10.1021/am506545g
- Y. Liu, Y. Zhu, X. Fan, S. Wang, Y. Li, F. Zhang, G. Zhang, W. Peng, (0D/3D) MoS2 on porous graphene as catalysts for enhanced electrochemical hydrogen evolution. Carbon 121, 163–169 (2017). https://doi.org/10.1016/j.carbon.2017.05.092
- C. Tang, L. Zhong, B. Zhang, H.F. Wang, Q. Zhang, 3D mesoporous van der Waals heterostructures for trifunctional energy electrocatalysis. Adv. Mater. 30(5), 1705110 (2017). https://doi.org/10.1002/adma.201705110
- G. Wang, J. Zhang, S. Yang, F. Wang, X. Zhuang, K. Müllen, X. Feng, Vertically aligned MoS2 nanosheets patterned on electrochemically exfoliated graphene for high-performance lithium and sodium storage. Adv. Energy Mater. 8(8), 1702254 (2017). https://doi.org/10.1002/aenm.201702254
- Q. Yun, Q. Lu, X. Zhang, C. Tan, H. Zhang, Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion. Angew. Chem. Int. Edit. 57(3), 626–646 (2018). https://doi.org/10.1002/anie.201706426
- Q. Wang, K. Rui, C. Zhang, Z. Ma, J. Xu, W. Sun, W. Zhang, J. Zhu, W. Huang, Interlayer-expanded metal sulfides on graphene triggered by a molecularly self-promoting process for enhanced lithium ion storage. ACS Appl. Mater. Interfaces 9(46), 40317–40323 (2017). https://doi.org/10.1021/acsami.7b13763
- L. Sheng, T. Wei, Y. Liang, L. Jiang, L. Qu, Z. Fan, Vertically oriented graphene nanoribbon fibers for high-volumetric energy density all-solid-state asymmetric supercapacitors. Small 13(22), 1700371 (2017). https://doi.org/10.1002/smll.201700371
- X. Yang, Z. Zhang, Y. Fu, Q. Li, Porous hollow carbon spheres decorated with molybdenum diselenide nanosheets as anodes for highly reversible lithium and sodium storage. Nanoscale 7(22), 10198–10203 (2015). https://doi.org/10.1039/c5nr01909e
- Y. Wang, Z. Chen, T. Lei, Y. Ai, Z. Peng et al., Hollow NiCo2S4 nanospheres hybridized with 3D hierarchical porous rGO/Fe2O3 composites toward high-performance energy storage device. Adv. Energy Mater. 8(16), 1703453 (2018). https://doi.org/10.1002/aenm.201703453
- X. Zhang, Y.P. Zhou, B. Luo, H.C. Zhu, W. Chu, K.M. Huang, Microwave-assisted synthesis of NiCo2O4 double-shelled hollow spheres for high-performance sodium ion batteries. Nano-Micro Lett. 10(1), 13 (2017). https://doi.org/10.1007/s40820-017-0164-2
- R. Xing, T. Zhou, Y. Zhou, R. Ma, Q. Liu, J. Luo, J. Wang, Creation of triple hierarchical micro-meso-macroporous N-doped carbon shells with hollow cores toward the electrocatalytic oxygen reduction reaction. Nano-Micro Lett. 10(1), 3 (2017). https://doi.org/10.1007/s40820-017-0157-1
- T.W. Lin, H.C. Tsai, T.Y. Chen, L.D. Shao, Facile and controllable one-pot synthesis of hierarchical Co9S8 hollow microspheres as high-performance electroactive materials for energy storage and conversion. ChemElectroChem 5(1), 137–143 (2018). https://doi.org/10.1002/celc.201700886
- Z. Li, A. Ottmann, T. Zhang, Q. Sun, H.P. Meyer, Y. Vaynzof, J. Xiang, R. Klingeler, Preparation of hierarchical C@MoS2@C sandwiched hollow spheres for lithium ion batteries. J. Mater. Chem. A 5(8), 3987–3994 (2017). https://doi.org/10.1039/c6ta10439h
- L. Yu, H. Hu, H.B. Wu, X.W. Lou, Complex hollow nanostructures: synthesis and energy-related applications. Adv. Mater. 29(15), 1604563 (2017). https://doi.org/10.1002/adma.201604563
- C. Hu, S. Zheng, C. Lian, Q. Hu, S. Duo, R. Zhang, F. Chen, CTAB-assisted synthesis of S@rGO composite with enhanced photocatalytic activity and photostability. Appl. Surf. Sci. 335, 92–98 (2015). https://doi.org/10.1016/j.apsusc.2015.02.031
- M. Wang, J. Han, H. Xiong, R. Guo, Y. Yin, Nanostructured hybrid shells of r-GO/AuNP/m-TiO2 as highly active photocatalysts. ACS Appl. Mater. Interfaces 7(12), 6909–6918 (2015). https://doi.org/10.1021/acsami.5b00663
- M. Wang, J. Han, H. Xiong, R. Guo, Yolk@shell Nanoarchitecture of Au@r-GO/TiO2 hybrids as powerful visible light photocatalysts. Langmuir 31(22), 6220–6228 (2015). https://doi.org/10.1021/acs.langmuir.5b01099
- B. Xie, Y. Chen, M. Yu, T. Sun, L. Lu, T. Xie, Y. Zhang, Y. Wu, Hydrothermal synthesis of layered molybdenum sulfide/N-doped graphene hybrid with enhanced supercapacitor performance. Carbon 99, 35–42 (2016). https://doi.org/10.1016/j.carbon.2015.11.077
- H. Ji, C. Liu, T. Wang, J. Chen, Z. Mao, J. Zhao, W. Hou, G. Yang, Porous hybrid composites of few-layer MoS2 nanosheets embedded in a carbon matrix with an excellent supercapacitor electrode performance. Small 11(48), 6480–6490 (2015). https://doi.org/10.1002/smll.201502355
- X. Zhang, R. Zhao, Q. Wu, W. Li, C. Shen, L. Ni, H. Yan, G. Diao, M. Chen, Petal-like MoS2 nanosheets space-confined in hollow mesoporous carbon spheres for enhanced lithium storage performance. ACS Nano 11(8), 8429–8436 (2017). https://doi.org/10.1021/acsnano.7b04078
- K.D. Rasamani, F. Alimohammadi, Y. Sun, Interlayer-expanded MoS2. Mater. Today 20(2), 83–91 (2017). https://doi.org/10.1016/j.mattod.2016.10.004
- C. Zhao, C. Yu, M. Zhang, H. Huang, S. Li et al., Ultrafine MoO2-carbon microstructures enable ultralong-life power-type sodium ion storage by enhanced pseudocapacitance. Adv. Energy Mater. 7(15), 1602880 (2017). https://doi.org/10.1002/aenm.201602880
- H. Vrubel, D. Merki, X. Hu, Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ. Sci. 5(3), 6136–6144 (2012). https://doi.org/10.1039/c2ee02835b
- F. Yang, Y. Chen, G. Cheng, S. Chen, W. Luo, Ultrathin nitrogen-doped carbon coated with CoP for efficient hydrogen evolution. ACS Catal. 7(6), 3824–3831 (2017). https://doi.org/10.1021/acscatal.7b00587
- W. Zhou, D. Hou, Y. Sang, S. Yao, J. Zhou, G. Li, L. Li, H. Liu, S. Chen, MoO2 nanobelts@nitrogen self-doped MoS2 nanosheets as effective electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 2(29), 11358–11364 (2014). https://doi.org/10.1039/c4ta01898b
References
J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, X. Feng, Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017). https://doi.org/10.1038/ncomms15437
Y.Y. Chen, Y. Zhang, X. Zhang, T. Tang, H. Luo, S. Niu, Z.H. Dai, L.J. Wan, J.S. Hu, Self-templated fabrication of MoNi4/MoO3−x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 29(39), 1703311 (2017). https://doi.org/10.1002/adma.201703311
M. Kuang, Q. Wang, P. Han, G. Zheng, Cu, Co-embedded N-enriched mesoporous carbon for efficient oxygen reduction and hydrogen evolution reactions. Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201700193
M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10(4), 313–318 (2015). https://doi.org/10.1038/nnano.2015.40
X. Li, X. Li, J. Cheng, D. Yuan, W. Ni, Q. Guan, L. Gao, B. Wang, Fiber-shaped solid-state supercapacitors based on molybdenum disulfide nanosheets for a self-powered photodetecting system. Nano Energy 21, 228–237 (2016). https://doi.org/10.1016/j.nanoen.2016.01.011
K. Peng, L. Fu, J. Ouyang, H. Yang, Emerging parallel dual 2D composites: natural clay mineral hybridizing MoS2 and interfacial structure. Adv. Funct. Mater. 26(16), 2666–2675 (2016). https://doi.org/10.1002/adfm.201504942
M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135(28), 10274–10277 (2013). https://doi.org/10.1021/ja404523s
X. Hai, W. Zhou, S. Wang, H. Pang, K. Chang, F. Ichihara, J. Ye, Rational design of freestanding MoS2 monolayers for hydrogen evolution reaction. Nano Energy 39, 409–417 (2017). https://doi.org/10.1016/j.nanoen.2017.07.021
Z. Wu, B. Fang, Z. Wang, C. Wang, Z. Liu et al., MoS2 nanosheets: a designed structure with high active site density for the hydrogen evolution reaction. ACS Catal. 3(9), 2101–2107 (2013). https://doi.org/10.1021/cs400384h
J. Guo, C. Liu, Y. Sun, J. Sun, W. Zhang, T. Si, H. Lei, Q. Liu, X. Zhang, N-doped MoS2 nanosheets with exposed edges realizing robust electrochemical hydrogen evolution. J. Solid State Chem. 263, 84–87 (2018). https://doi.org/10.1016/j.jssc.2018.04.023
X. Zhang, Y. Wu, Y. Sun, P. Ding, Q. Liu, L. Tang, J. Guo, Hybrid of Fe4[Fe(CN)6]3 nanocubes and MoS2 nanosheets on nitrogen-doped graphene realizing improved electrochemical hydrogen production. Electrochim. Acta 263, 140–146 (2018). https://doi.org/10.1016/j.electacta.2018.01.051
Y. Kim, D.H.K. Jackson, D. Lee, M. Choi, T.W. Kim et al., In situ electrochemical activation of atomic layer deposition coated MoS2 basal planes for efficient hydrogen evolution reaction. Adv. Funct. Mater. 27(34), 1701825 (2017). https://doi.org/10.1002/adfm.201701825
B. Guo, K. Yu, H. Li, H. Song, Y. Zhang, X. Lei, H. Fu, Y. Tan, Z. Zhu, Hollow structured micro/nano MoS2 spheres for high electrocatalytic activity hydrogen evolution reaction. ACS Appl. Mater. Interfaces 8(8), 5517–5525 (2016). https://doi.org/10.1021/acsami.5b10252
J. Guo, X. Zhang, Y. Sun, L. Tang, X. Zhang, NiMoS3 nanorods as PH-tolerant electrocatalyst for efficient hydrogen evolution. ACS Sustain. Chem. Eng. 5(10), 9006–9013 (2017). https://doi.org/10.1021/acssuschemeng.7b01802
X. Li, C. Zhang, S. Xin, Z. Yang, Y. Li, D. Zhang, P. Yao, Facile synthesis of MoS2/reduced graphene oxide@polyaniline for high-performance supercapacitors. ACS Appl. Mater. Interfaces 8(33), 21373–21380 (2016). https://doi.org/10.1021/acsami.6b06762
E.G. da Silveira Firmiano, A.C. Rabelo, C.J. Dalmaschio, A.N. Pinheiro, E.C. Pereira, W.H. Schreiner, E.R. Leite, Supercapacitor electrodes obtained by directly bonding 2D MoS2 on reduced graphene oxide. Adv. Energy Mater. 4(6), 1301380 (2014). https://doi.org/10.1002/aenm.201301380
Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133(19), 7296–7299 (2011). https://doi.org/10.1021/ja201269b
M. Yu, S. Zhao, H. Feng, L. Hu, X. Zhang, Y. Zeng, Y. Tong, X. Lu, Engineering thin MoS2 nanosheets on TiN nanorods: advanced electrochemical capacitor electrode and hydrogen evolution electrocatalyst. ACS Energy Lett. 2(8), 1862–1868 (2017). https://doi.org/10.1021/acsenergylett.7b00602
J. Cao, J. Zhou, Y. Zhang, X. Liu, A clean and facile synthesis strategy of MoS2 nanosheets grown on multi-wall CNTs for enhanced hydrogen evolution reaction performance. Sci. Rep. 7(1), 8825 (2017). https://doi.org/10.1038/s41598-017-09047-x
L. Yang, W. Zhou, J. Lu, D. Hou, Y. Ke, G. Li, Z. Tang, X. Kang, S. Chen, Hierarchical spheres constructed by defect-rich MoS2/carbon nanosheets for efficient electrocatalytic hydrogen evolution. Nano Energy 22, 490–498 (2016). https://doi.org/10.1016/j.nanoen.2016.02.056
W. Zhou, K. Zhou, D. Hou, X. Liu, G. Li, Y. Sang, H. Liu, L. Li, S. Chen, Three-dimensional hierarchical frameworks based on MoS2 nanosheets self-assembled on graphene oxide for efficient electrocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 6(23), 21534–21540 (2014). https://doi.org/10.1021/am506545g
Y. Liu, Y. Zhu, X. Fan, S. Wang, Y. Li, F. Zhang, G. Zhang, W. Peng, (0D/3D) MoS2 on porous graphene as catalysts for enhanced electrochemical hydrogen evolution. Carbon 121, 163–169 (2017). https://doi.org/10.1016/j.carbon.2017.05.092
C. Tang, L. Zhong, B. Zhang, H.F. Wang, Q. Zhang, 3D mesoporous van der Waals heterostructures for trifunctional energy electrocatalysis. Adv. Mater. 30(5), 1705110 (2017). https://doi.org/10.1002/adma.201705110
G. Wang, J. Zhang, S. Yang, F. Wang, X. Zhuang, K. Müllen, X. Feng, Vertically aligned MoS2 nanosheets patterned on electrochemically exfoliated graphene for high-performance lithium and sodium storage. Adv. Energy Mater. 8(8), 1702254 (2017). https://doi.org/10.1002/aenm.201702254
Q. Yun, Q. Lu, X. Zhang, C. Tan, H. Zhang, Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion. Angew. Chem. Int. Edit. 57(3), 626–646 (2018). https://doi.org/10.1002/anie.201706426
Q. Wang, K. Rui, C. Zhang, Z. Ma, J. Xu, W. Sun, W. Zhang, J. Zhu, W. Huang, Interlayer-expanded metal sulfides on graphene triggered by a molecularly self-promoting process for enhanced lithium ion storage. ACS Appl. Mater. Interfaces 9(46), 40317–40323 (2017). https://doi.org/10.1021/acsami.7b13763
L. Sheng, T. Wei, Y. Liang, L. Jiang, L. Qu, Z. Fan, Vertically oriented graphene nanoribbon fibers for high-volumetric energy density all-solid-state asymmetric supercapacitors. Small 13(22), 1700371 (2017). https://doi.org/10.1002/smll.201700371
X. Yang, Z. Zhang, Y. Fu, Q. Li, Porous hollow carbon spheres decorated with molybdenum diselenide nanosheets as anodes for highly reversible lithium and sodium storage. Nanoscale 7(22), 10198–10203 (2015). https://doi.org/10.1039/c5nr01909e
Y. Wang, Z. Chen, T. Lei, Y. Ai, Z. Peng et al., Hollow NiCo2S4 nanospheres hybridized with 3D hierarchical porous rGO/Fe2O3 composites toward high-performance energy storage device. Adv. Energy Mater. 8(16), 1703453 (2018). https://doi.org/10.1002/aenm.201703453
X. Zhang, Y.P. Zhou, B. Luo, H.C. Zhu, W. Chu, K.M. Huang, Microwave-assisted synthesis of NiCo2O4 double-shelled hollow spheres for high-performance sodium ion batteries. Nano-Micro Lett. 10(1), 13 (2017). https://doi.org/10.1007/s40820-017-0164-2
R. Xing, T. Zhou, Y. Zhou, R. Ma, Q. Liu, J. Luo, J. Wang, Creation of triple hierarchical micro-meso-macroporous N-doped carbon shells with hollow cores toward the electrocatalytic oxygen reduction reaction. Nano-Micro Lett. 10(1), 3 (2017). https://doi.org/10.1007/s40820-017-0157-1
T.W. Lin, H.C. Tsai, T.Y. Chen, L.D. Shao, Facile and controllable one-pot synthesis of hierarchical Co9S8 hollow microspheres as high-performance electroactive materials for energy storage and conversion. ChemElectroChem 5(1), 137–143 (2018). https://doi.org/10.1002/celc.201700886
Z. Li, A. Ottmann, T. Zhang, Q. Sun, H.P. Meyer, Y. Vaynzof, J. Xiang, R. Klingeler, Preparation of hierarchical C@MoS2@C sandwiched hollow spheres for lithium ion batteries. J. Mater. Chem. A 5(8), 3987–3994 (2017). https://doi.org/10.1039/c6ta10439h
L. Yu, H. Hu, H.B. Wu, X.W. Lou, Complex hollow nanostructures: synthesis and energy-related applications. Adv. Mater. 29(15), 1604563 (2017). https://doi.org/10.1002/adma.201604563
C. Hu, S. Zheng, C. Lian, Q. Hu, S. Duo, R. Zhang, F. Chen, CTAB-assisted synthesis of S@rGO composite with enhanced photocatalytic activity and photostability. Appl. Surf. Sci. 335, 92–98 (2015). https://doi.org/10.1016/j.apsusc.2015.02.031
M. Wang, J. Han, H. Xiong, R. Guo, Y. Yin, Nanostructured hybrid shells of r-GO/AuNP/m-TiO2 as highly active photocatalysts. ACS Appl. Mater. Interfaces 7(12), 6909–6918 (2015). https://doi.org/10.1021/acsami.5b00663
M. Wang, J. Han, H. Xiong, R. Guo, Yolk@shell Nanoarchitecture of Au@r-GO/TiO2 hybrids as powerful visible light photocatalysts. Langmuir 31(22), 6220–6228 (2015). https://doi.org/10.1021/acs.langmuir.5b01099
B. Xie, Y. Chen, M. Yu, T. Sun, L. Lu, T. Xie, Y. Zhang, Y. Wu, Hydrothermal synthesis of layered molybdenum sulfide/N-doped graphene hybrid with enhanced supercapacitor performance. Carbon 99, 35–42 (2016). https://doi.org/10.1016/j.carbon.2015.11.077
H. Ji, C. Liu, T. Wang, J. Chen, Z. Mao, J. Zhao, W. Hou, G. Yang, Porous hybrid composites of few-layer MoS2 nanosheets embedded in a carbon matrix with an excellent supercapacitor electrode performance. Small 11(48), 6480–6490 (2015). https://doi.org/10.1002/smll.201502355
X. Zhang, R. Zhao, Q. Wu, W. Li, C. Shen, L. Ni, H. Yan, G. Diao, M. Chen, Petal-like MoS2 nanosheets space-confined in hollow mesoporous carbon spheres for enhanced lithium storage performance. ACS Nano 11(8), 8429–8436 (2017). https://doi.org/10.1021/acsnano.7b04078
K.D. Rasamani, F. Alimohammadi, Y. Sun, Interlayer-expanded MoS2. Mater. Today 20(2), 83–91 (2017). https://doi.org/10.1016/j.mattod.2016.10.004
C. Zhao, C. Yu, M. Zhang, H. Huang, S. Li et al., Ultrafine MoO2-carbon microstructures enable ultralong-life power-type sodium ion storage by enhanced pseudocapacitance. Adv. Energy Mater. 7(15), 1602880 (2017). https://doi.org/10.1002/aenm.201602880
H. Vrubel, D. Merki, X. Hu, Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ. Sci. 5(3), 6136–6144 (2012). https://doi.org/10.1039/c2ee02835b
F. Yang, Y. Chen, G. Cheng, S. Chen, W. Luo, Ultrathin nitrogen-doped carbon coated with CoP for efficient hydrogen evolution. ACS Catal. 7(6), 3824–3831 (2017). https://doi.org/10.1021/acscatal.7b00587
W. Zhou, D. Hou, Y. Sang, S. Yao, J. Zhou, G. Li, L. Li, H. Liu, S. Chen, MoO2 nanobelts@nitrogen self-doped MoS2 nanosheets as effective electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 2(29), 11358–11364 (2014). https://doi.org/10.1039/c4ta01898b