Magnetic Fe3O4-Reduced Graphene Oxide Nanocomposites-Based Electrochemical Biosensing
Corresponding Author: Nengqin Jia
Nano-Micro Letters,
Vol. 6 No. 3 (2014), Article Number: 258-267
Abstract
An electrochemical biosensing platform was developed based on glucose oxidase (GOx)/Fe3O4- reduced graphene oxide (Fe3O4-RGO) nanosheets loaded on the magnetic glassy carbon electrode (MGCE). With the advantages of the magnetism, conductivity and biocompatibility of the Fe3O4-RGO nanosheets, the nanocomposites could be facilely adhered to the electrode surface by magnetically controllable assembling and beneficial to achieve the direct redox reactions and electrocatalytic behaviors of GOx immobilized into the nanocomposites. The biosensor exhibited good electrocatalytic activity, high sensitivity and stability. The current response is linear over glucose concentration ranging from 0.05 to 1.5 mM with a low detection limit of 0.15 μM. Meanwhile, validation of the applicability of the biosensor was carried out by determining glucose in serum samples. The proposed protocol is simple, inexpensive and convenient, which shows great potential in biosensing application.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. P. Nichols, A. Koh, W. L. Storm, J. H. Shin and M. H. Schoenfisch, “Biocompatible materials for continuous glucose monitoring devices”, Chem. Soc. Rev. 113(4), 2528–2549 (2013). http://dx.doi.org/10.1021/cr300387j
- C. Qiu, X. Wang, X. Liu, S. Hou and H. Ma, “Direct electrochemistry of glucose oxidase immobilized on nanostructured gold thin films and its application to bioelectrochemical glucose sensor”, Electrochim. Acta 67, 140–146 (2012). http://dx.doi.org/10.1016/j.electacta.2012.02.011
- C. He, J. Liu, Q. Zhang and C. Wu, “A novel stable amperometric glucose biosensor based on the adsorption of glucose oxidase on poly(methyl methacrylate)- bovine serum albumin core-shell nanoparticles”, Sensor. Actuat. B: Chem. 166–167, 802-808 (2012). http://dx.doi.org/10.1016/j.snb.2012.03.081
- C. Fu, W. Yang, X. Chen and D. G. Evans, “Direct electrochemistry of glucose oxidase on a graphite nanosheet-Nafion composite film modified electrode”, Electrochem. Commun. 11(5), 997–1000 (2009). http://dx.doi.org/10.1016/j.elecom. 2009.02.042
- X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu and Y. Lin, “Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing”, Biosens. Bioelectron. 25(4), 901–905 (2009). http://dx.doi.org/10.1016/j.bios.2009.09.004
- S. Liu and H. Ju, “Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode”, Biosens. Bioelectron. 19(3), 177–183 (2003). http://dx.doi.org/10.1016/S0956-5663(03)00172-6
- Y. Song, K. Qu, C. Zhao, J. Ren and X. Qu, “Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection”, Adv. Mater. 22(19), 2206–2210 (2010). http://dx.doi.org/10.1002/adma.200903783
- S. Su, Y. He, S. Song, D. Li, L. Wang, C. Fan and S. T. Lee, “A silicon nanowire-based electrochemical glucose biosensor with high electrocatalytic activity and sensitivity”, Nanoscale 2(9), 1704–1707 (2010). http://dx.doi.org/10.1039/C0NR00314J
- S. A. Ansari and Q. Husain, “Potential applications of enzymes immobilized on/in nano materials: a review”, Biotechnol. Adv. 30(3), 512–523 (2012). http://dx.doi.org/10.1016/j.biotechadv.2011.09.005
- J. D. Qiu, H. P. Peng R. P. Liang and X. H. Xia, “Facile preparation of magnetic core-shell Fe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry”, Biosens. Bioelectron. 25(6), 1447–1453 (2010). http://dx.doi.org/10.1016/j.bios.2009.10.043
- H. P. Peng, R. P. Liang and J. D. Qiu, “Facile synthesis of Fe3O4@Al2O3 core-shell nanoparticles and their application to the highly specific capture of heme proteins for direct electrochemistry”, Biosens. Bioelectron. 26(6), 3005–3011 (2011). http://dx.doi.org/10.1016/j.bios.2010.12.003
- H. P. Peng, R. P. Liang, L. Zhang and J. D. Qiu, “Sonochemical synthesis of magnetic coreshell Fe3O4@ZrO2 nanoparticles and their application to the highly effective immobilization of myoglobin for direct electrochemistry”, Electrochim. Acta 56(11), 4231–4236 (2011). http://dx.doi.org/10.1016/j.electacta.2011.01.090
- C. Zou, Y. Fu, Q. Xie and S. Yao, “Highperformance glucose amperometric biosensor based on magnetic polymeric bionanocomposites”, Biosens. Bioelectron. 25(6), 1277–1282 (2010). http://dx.doi.org/10.1016/j.bios.2009.10.014
- S. Wu, H. Wang, S. Tao, C. Wang, L. Zhang, Z. Liu and C. Meng, “Magnetic loading of tyrosinase-Fe3O4/mesoporous silica core/shell microspheres for high sensitive electrochemical biosensing”, Anal. Chem. Acta 686(1–2), 81–86 (2011). http://dx.doi.org/10.1016/j.aca.2010.11.053
- D. Chen H. Feng and J. Li, “Graphene oxide: preparation, functionalization, and electrochemical applications”, Chem. Rev. 112(11), 6027–6053 (2012). http://dx.doi.org/10.1021/cr300115g
- I. V. Lightcap T. H. Kosel and P. V. Kamat, “Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide”, Nano Lett. 10(2), 577–583 (2010). http://dx.doi.org/10.1021/nl9035109
- Q. Chang, K. Deng, L. Zhu, G. Jiang, C. Yu and H. Tang, “Determination of hydrogen peroxide with the aid of peroxidase-like Fe3O4 magnetic nanoparticles as the catalyst”, Microchim. Acta 165(3–4), 299–305 (2009). http://dx.doi.org/10.1007/s00604-008-0133-z
- Y. Cheng, Y. Liu, J. Huang, K. Li, Y. Xian, W. Zhang and L. Jin, “Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-coated carbon nanotubes nanocomposite for rapid detection of coliforms”, Electrochim. Acta 54(9), 2588–2594 (2009). http://dx.doi.org/10.1016/j.electacta.2008.10.072
- G. Gao, H. Wu, Y. Zhang, K. Wang, P. Huang, X. Zhang, S. Guo and D. Cui, “One-step synthesis of Fe3O4@C nanotubes for the immobilization of adriamycin”, J. Mater. Chem. 21(33), 12224–12227 (2011). http://dx.doi.org/10.1039/C1JM12535D
- W. Fan, W. Gao, C. Zhang, W. W. Tjiu, J. Pan and T. Liu, “Hybridization of graphene sheets and carbon-coated Fe3O4 nanoparticles as a synergistic adsorbent of organic dyes”, J. Mater. Chem. 22(48), 25108–25115 (2012). http://dx.doi.org/10.1039/C2JM35609K
- J. Liang, Y. Xu, D. Sui, L. Zhang, Y. Huang, Y. Ma, F. Li and Y. Chen, “Flexible, magnetic, and electrically conductive graphene/Fe3O4 paper and its application for magnetic-controlled switches”, J. Phys. Chem. C 114(41), 17465–17471 (2010). http://dx.doi.org/10.1021/jp105629r
- Y. Wang, H. Zhang, D. Yao, J. Pu, Y. Zhang, X. Gao and Y. Sun, “Direct electrochemistry of hemoglobin on graphene/Fe3O4 nanocomposite-modified glass carbon electrode and its sensitive detection for hydrogen peroxide”, J. Solid. State. Electr. 17(3), 881–887 (2013). http://dx.doi.org/10.1007/s10008-012-1939-5
- M. Chen, Y. N. Kim, C. Li and S. O. Cho, “Preparation and characterization of magnetic nanoparticles and their silica egg-yolk-like nanostructures: a prospective multifunctional nanostructure platform”, J. Phys. Chem. C 112(17), 6710–6716 (2008). http://dx.doi.org/10.1021/jp710775j
- H. Wu, G. Liu, Y. Zhuang, D. Wu, H. Zhang, H. Yang, H. Hu and S. Yang, “The behavior after intravenous injection in mice of multiwalled carbon nanotube/Fe3O4 hybridMRI contrast agents”, Biomaterials 32(21), 4867–4876 (2011). http://dx.doi.org/10.1016/j.biomaterials.2011.03.024
- D. P. Yang, X. Wang, X. Guo, X. Zhi, K. Wang, C. Li, G. Huang, G. Shen, Y. Mei and D. Cui, “UV/O3 generated graphene nanomesh: formation mechanism, properties, and FET studies”, J. Phys. Chem. C 118(1), 725–731 (2013). http://dx.doi.org/10.1021/jp409898d
- Y. Zhang, C. Wu, S. Guo and J. Zhang, “Interactions of graphene and graphene oxide with proteins and peptides”, Nanotechnol. Rev. 2(1), 27–45 (2013). http://dx.doi.org/10.1515/ntrev-2012-0078
- G. Zhao, J. J. Feng, J. J. Xu and H. Y. Chen, “Direct electrochemistry and electrocatalysis of heme proteins immobilized on self-assembled ZrO2 film”, Electrochem. Commun. 7(7), 724–729 (2005). http://dx.doi.org/10.1016/j.elecom.2005.04.026
- I. K. Moon, J. Lee, R. S. Ruoff and H. Lee, “Reduced graphene oxide by chemical graphitization”, Nat. Commun. 1, 73–78 (2010). http://dx.doi.org/10.1038/ncomms1067
- H. He and C. Gao, “Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles”, ACS Appl. Mater. Interfaces 2(11), 3201–3210 (2010). http://dx.doi.org/10.1021/am100673g
- S. Z. Zhao, K. Zhang, Y. Bai, W. Yang and C. Sun, “Glucose oxidase/colloidal gold nanoparticles immobilized in Nafion film on glassy carbon electrode: direct electron transfer and electrocatalysis”, Bioelectrochemistry 69(2), 158–163 (2006). http://dx.doi.org/10.1016/j.bioelechem.2006.01.001
- C. Hu, D. P. Yang, Z. Wang, L. Yu, J. Zhang and N. Jia, “Improved EIS performance of an electrochemical cytosensor using three-dimensional architecture Au@BSA as sensing layer”, Anal. Chem. 85(10), 5200–5206 (2013). http://dx.doi.org/10.1021/ac400556q
- B. Unnikrishnan, S. Palanisamy and S. M. Chen, “A simple electrochemical approach to fabricate a glucose biosensor based on graphene-glucose oxidase biocomposite”, Biosens. Bioelectron. 39(1), 70–75 (2013). http://dx.doi.org/10.1016/j.bios.2012.06.045
- C. Shan, H. Yang, J. Song, D. Han, A. Ivaska and L. Niu, “Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene”, Anal. Chem. 81(6), 2378–2382 (2009). http://dx.doi.org/10.1021/ac802193c
- E. Laviron, “General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems”, J. Electroanal. Chem. Interfacial Electrochem. 101(1), 19–28 (1979). http://dx.doi.org/10.1016/S0022-0728(79)80075-3
- X. Xiao, B. Zhou, L. Zhu, L. Xu, L. Tan, H. Tang, Y. Zhang, Q. Xie and S. Yao, “An reagentless glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on poly(methylene blue) doped silica nanocomposites”, Sensor. Actuat. B: Chem. 165(1), 126–132 (2012). http://dx.doi.org/10.1016/j.snb.2012.02.029
- K. Wang, H. Yang, L. Zhu, Z. Ma, S. Xing, Q. Lv, J. Liao, C. Liu and W. Xing, “Direct electron transfer and electrocatalysis of glucose oxidase immobilized on glassy carbon electrode modified with Nafion and mesoporous carbon FDU-15”, Electrochim. Acta 54(20), 4626–4630 (2009). http://dx.doi.org/10.1016/j.electacta.2009.02.097
- P. Wu, Q. Shao, Y. Hu, J. Jin, Y. Yin, H. Zhang and C. Cai, “Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection”, Electrochim. Acta 55(28), 8606–8614 (2010). http://dx.doi.org/10.1016/j.electacta.2010.07.079
- N. Q. Dung, D. Patil, T. T. Duong, H. Jung, D. Kim and S. G. Yoon, “An amperometric glucose biosensor based on a GOx-entrapped TiO2-SWCNT composite”, Sensor. Actuat. B: Chem. 166–167(0), 103–109 (2012). http://dx.doi.org/10.1016/j.snb.2012.01.008
- J. Yu, S. Liu and H. Ju, “Glucose sensor for flow injection analysis of serum glucose based on immobilization of glucose oxidase in titania sol-gel membrane”, Biosens. Bioelectron. 19(4), 401–409 (2003). http://dx.doi.org/10.1016/S0956-5663(03)00199-4
- D. L. Scott and E. F. Bowden, “Enzyme-substrate kinetics of adsorbed cytochrome c peroxidase on pyrolytic graphite electrodes”, Anal. Chem. 66(8), 1217–1223 (1994). http://dx.doi.org/10.1021/ac00080a004
- S. Deng, G. Jian, J. Lei, Z. Hu and H. Ju, “A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes”, Biosens. Bioelectron. 25(2), 373–377 (2009). http://dx.doi.org/10.1016/j.bios.2009.07.016
References
S. P. Nichols, A. Koh, W. L. Storm, J. H. Shin and M. H. Schoenfisch, “Biocompatible materials for continuous glucose monitoring devices”, Chem. Soc. Rev. 113(4), 2528–2549 (2013). http://dx.doi.org/10.1021/cr300387j
C. Qiu, X. Wang, X. Liu, S. Hou and H. Ma, “Direct electrochemistry of glucose oxidase immobilized on nanostructured gold thin films and its application to bioelectrochemical glucose sensor”, Electrochim. Acta 67, 140–146 (2012). http://dx.doi.org/10.1016/j.electacta.2012.02.011
C. He, J. Liu, Q. Zhang and C. Wu, “A novel stable amperometric glucose biosensor based on the adsorption of glucose oxidase on poly(methyl methacrylate)- bovine serum albumin core-shell nanoparticles”, Sensor. Actuat. B: Chem. 166–167, 802-808 (2012). http://dx.doi.org/10.1016/j.snb.2012.03.081
C. Fu, W. Yang, X. Chen and D. G. Evans, “Direct electrochemistry of glucose oxidase on a graphite nanosheet-Nafion composite film modified electrode”, Electrochem. Commun. 11(5), 997–1000 (2009). http://dx.doi.org/10.1016/j.elecom. 2009.02.042
X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu and Y. Lin, “Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing”, Biosens. Bioelectron. 25(4), 901–905 (2009). http://dx.doi.org/10.1016/j.bios.2009.09.004
S. Liu and H. Ju, “Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode”, Biosens. Bioelectron. 19(3), 177–183 (2003). http://dx.doi.org/10.1016/S0956-5663(03)00172-6
Y. Song, K. Qu, C. Zhao, J. Ren and X. Qu, “Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection”, Adv. Mater. 22(19), 2206–2210 (2010). http://dx.doi.org/10.1002/adma.200903783
S. Su, Y. He, S. Song, D. Li, L. Wang, C. Fan and S. T. Lee, “A silicon nanowire-based electrochemical glucose biosensor with high electrocatalytic activity and sensitivity”, Nanoscale 2(9), 1704–1707 (2010). http://dx.doi.org/10.1039/C0NR00314J
S. A. Ansari and Q. Husain, “Potential applications of enzymes immobilized on/in nano materials: a review”, Biotechnol. Adv. 30(3), 512–523 (2012). http://dx.doi.org/10.1016/j.biotechadv.2011.09.005
J. D. Qiu, H. P. Peng R. P. Liang and X. H. Xia, “Facile preparation of magnetic core-shell Fe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry”, Biosens. Bioelectron. 25(6), 1447–1453 (2010). http://dx.doi.org/10.1016/j.bios.2009.10.043
H. P. Peng, R. P. Liang and J. D. Qiu, “Facile synthesis of Fe3O4@Al2O3 core-shell nanoparticles and their application to the highly specific capture of heme proteins for direct electrochemistry”, Biosens. Bioelectron. 26(6), 3005–3011 (2011). http://dx.doi.org/10.1016/j.bios.2010.12.003
H. P. Peng, R. P. Liang, L. Zhang and J. D. Qiu, “Sonochemical synthesis of magnetic coreshell Fe3O4@ZrO2 nanoparticles and their application to the highly effective immobilization of myoglobin for direct electrochemistry”, Electrochim. Acta 56(11), 4231–4236 (2011). http://dx.doi.org/10.1016/j.electacta.2011.01.090
C. Zou, Y. Fu, Q. Xie and S. Yao, “Highperformance glucose amperometric biosensor based on magnetic polymeric bionanocomposites”, Biosens. Bioelectron. 25(6), 1277–1282 (2010). http://dx.doi.org/10.1016/j.bios.2009.10.014
S. Wu, H. Wang, S. Tao, C. Wang, L. Zhang, Z. Liu and C. Meng, “Magnetic loading of tyrosinase-Fe3O4/mesoporous silica core/shell microspheres for high sensitive electrochemical biosensing”, Anal. Chem. Acta 686(1–2), 81–86 (2011). http://dx.doi.org/10.1016/j.aca.2010.11.053
D. Chen H. Feng and J. Li, “Graphene oxide: preparation, functionalization, and electrochemical applications”, Chem. Rev. 112(11), 6027–6053 (2012). http://dx.doi.org/10.1021/cr300115g
I. V. Lightcap T. H. Kosel and P. V. Kamat, “Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide”, Nano Lett. 10(2), 577–583 (2010). http://dx.doi.org/10.1021/nl9035109
Q. Chang, K. Deng, L. Zhu, G. Jiang, C. Yu and H. Tang, “Determination of hydrogen peroxide with the aid of peroxidase-like Fe3O4 magnetic nanoparticles as the catalyst”, Microchim. Acta 165(3–4), 299–305 (2009). http://dx.doi.org/10.1007/s00604-008-0133-z
Y. Cheng, Y. Liu, J. Huang, K. Li, Y. Xian, W. Zhang and L. Jin, “Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-coated carbon nanotubes nanocomposite for rapid detection of coliforms”, Electrochim. Acta 54(9), 2588–2594 (2009). http://dx.doi.org/10.1016/j.electacta.2008.10.072
G. Gao, H. Wu, Y. Zhang, K. Wang, P. Huang, X. Zhang, S. Guo and D. Cui, “One-step synthesis of Fe3O4@C nanotubes for the immobilization of adriamycin”, J. Mater. Chem. 21(33), 12224–12227 (2011). http://dx.doi.org/10.1039/C1JM12535D
W. Fan, W. Gao, C. Zhang, W. W. Tjiu, J. Pan and T. Liu, “Hybridization of graphene sheets and carbon-coated Fe3O4 nanoparticles as a synergistic adsorbent of organic dyes”, J. Mater. Chem. 22(48), 25108–25115 (2012). http://dx.doi.org/10.1039/C2JM35609K
J. Liang, Y. Xu, D. Sui, L. Zhang, Y. Huang, Y. Ma, F. Li and Y. Chen, “Flexible, magnetic, and electrically conductive graphene/Fe3O4 paper and its application for magnetic-controlled switches”, J. Phys. Chem. C 114(41), 17465–17471 (2010). http://dx.doi.org/10.1021/jp105629r
Y. Wang, H. Zhang, D. Yao, J. Pu, Y. Zhang, X. Gao and Y. Sun, “Direct electrochemistry of hemoglobin on graphene/Fe3O4 nanocomposite-modified glass carbon electrode and its sensitive detection for hydrogen peroxide”, J. Solid. State. Electr. 17(3), 881–887 (2013). http://dx.doi.org/10.1007/s10008-012-1939-5
M. Chen, Y. N. Kim, C. Li and S. O. Cho, “Preparation and characterization of magnetic nanoparticles and their silica egg-yolk-like nanostructures: a prospective multifunctional nanostructure platform”, J. Phys. Chem. C 112(17), 6710–6716 (2008). http://dx.doi.org/10.1021/jp710775j
H. Wu, G. Liu, Y. Zhuang, D. Wu, H. Zhang, H. Yang, H. Hu and S. Yang, “The behavior after intravenous injection in mice of multiwalled carbon nanotube/Fe3O4 hybridMRI contrast agents”, Biomaterials 32(21), 4867–4876 (2011). http://dx.doi.org/10.1016/j.biomaterials.2011.03.024
D. P. Yang, X. Wang, X. Guo, X. Zhi, K. Wang, C. Li, G. Huang, G. Shen, Y. Mei and D. Cui, “UV/O3 generated graphene nanomesh: formation mechanism, properties, and FET studies”, J. Phys. Chem. C 118(1), 725–731 (2013). http://dx.doi.org/10.1021/jp409898d
Y. Zhang, C. Wu, S. Guo and J. Zhang, “Interactions of graphene and graphene oxide with proteins and peptides”, Nanotechnol. Rev. 2(1), 27–45 (2013). http://dx.doi.org/10.1515/ntrev-2012-0078
G. Zhao, J. J. Feng, J. J. Xu and H. Y. Chen, “Direct electrochemistry and electrocatalysis of heme proteins immobilized on self-assembled ZrO2 film”, Electrochem. Commun. 7(7), 724–729 (2005). http://dx.doi.org/10.1016/j.elecom.2005.04.026
I. K. Moon, J. Lee, R. S. Ruoff and H. Lee, “Reduced graphene oxide by chemical graphitization”, Nat. Commun. 1, 73–78 (2010). http://dx.doi.org/10.1038/ncomms1067
H. He and C. Gao, “Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles”, ACS Appl. Mater. Interfaces 2(11), 3201–3210 (2010). http://dx.doi.org/10.1021/am100673g
S. Z. Zhao, K. Zhang, Y. Bai, W. Yang and C. Sun, “Glucose oxidase/colloidal gold nanoparticles immobilized in Nafion film on glassy carbon electrode: direct electron transfer and electrocatalysis”, Bioelectrochemistry 69(2), 158–163 (2006). http://dx.doi.org/10.1016/j.bioelechem.2006.01.001
C. Hu, D. P. Yang, Z. Wang, L. Yu, J. Zhang and N. Jia, “Improved EIS performance of an electrochemical cytosensor using three-dimensional architecture Au@BSA as sensing layer”, Anal. Chem. 85(10), 5200–5206 (2013). http://dx.doi.org/10.1021/ac400556q
B. Unnikrishnan, S. Palanisamy and S. M. Chen, “A simple electrochemical approach to fabricate a glucose biosensor based on graphene-glucose oxidase biocomposite”, Biosens. Bioelectron. 39(1), 70–75 (2013). http://dx.doi.org/10.1016/j.bios.2012.06.045
C. Shan, H. Yang, J. Song, D. Han, A. Ivaska and L. Niu, “Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene”, Anal. Chem. 81(6), 2378–2382 (2009). http://dx.doi.org/10.1021/ac802193c
E. Laviron, “General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems”, J. Electroanal. Chem. Interfacial Electrochem. 101(1), 19–28 (1979). http://dx.doi.org/10.1016/S0022-0728(79)80075-3
X. Xiao, B. Zhou, L. Zhu, L. Xu, L. Tan, H. Tang, Y. Zhang, Q. Xie and S. Yao, “An reagentless glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on poly(methylene blue) doped silica nanocomposites”, Sensor. Actuat. B: Chem. 165(1), 126–132 (2012). http://dx.doi.org/10.1016/j.snb.2012.02.029
K. Wang, H. Yang, L. Zhu, Z. Ma, S. Xing, Q. Lv, J. Liao, C. Liu and W. Xing, “Direct electron transfer and electrocatalysis of glucose oxidase immobilized on glassy carbon electrode modified with Nafion and mesoporous carbon FDU-15”, Electrochim. Acta 54(20), 4626–4630 (2009). http://dx.doi.org/10.1016/j.electacta.2009.02.097
P. Wu, Q. Shao, Y. Hu, J. Jin, Y. Yin, H. Zhang and C. Cai, “Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection”, Electrochim. Acta 55(28), 8606–8614 (2010). http://dx.doi.org/10.1016/j.electacta.2010.07.079
N. Q. Dung, D. Patil, T. T. Duong, H. Jung, D. Kim and S. G. Yoon, “An amperometric glucose biosensor based on a GOx-entrapped TiO2-SWCNT composite”, Sensor. Actuat. B: Chem. 166–167(0), 103–109 (2012). http://dx.doi.org/10.1016/j.snb.2012.01.008
J. Yu, S. Liu and H. Ju, “Glucose sensor for flow injection analysis of serum glucose based on immobilization of glucose oxidase in titania sol-gel membrane”, Biosens. Bioelectron. 19(4), 401–409 (2003). http://dx.doi.org/10.1016/S0956-5663(03)00199-4
D. L. Scott and E. F. Bowden, “Enzyme-substrate kinetics of adsorbed cytochrome c peroxidase on pyrolytic graphite electrodes”, Anal. Chem. 66(8), 1217–1223 (1994). http://dx.doi.org/10.1021/ac00080a004
S. Deng, G. Jian, J. Lei, Z. Hu and H. Ju, “A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes”, Biosens. Bioelectron. 25(2), 373–377 (2009). http://dx.doi.org/10.1016/j.bios.2009.07.016