Ultrathin and Flexible CNTs/MXene/Cellulose Nanofibrils Composite Paper for Electromagnetic Interference Shielding
Corresponding Author: Feng Chen
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 72
Abstract
As the rapid development of portable and wearable devices, different electromagnetic interference (EMI) shielding materials with high efficiency have been desired to eliminate the resulting radiation pollution. However, limited EMI shielding materials are successfully used in practical applications, due to the heavy thickness and absence of sufficient strength or flexibility. Herein, an ultrathin and flexible carbon nanotubes/MXene/cellulose nanofibrils composite paper with gradient and sandwich structure is constructed for EMI shielding application via a facile alternating vacuum-assisted filtration process. The composite paper exhibits outstanding mechanical properties with a tensile strength of 97.9 ± 5.0 MPa and a fracture strain of 4.6 ± 0.2%. Particularly, the paper shows a high electrical conductivity of 2506.6 S m−1 and EMI shielding effectiveness (EMI SE) of 38.4 dB due to the sandwich structure in improving EMI SE, and the gradient structure on regulating the contributions from reflection and absorption. This strategy is of great significance in fabricating ultrathin and flexible composite paper for highly efficient EMI shielding performance and in broadening the practical applications of MXene-based composite materials.
Highlights:
1 An ultrathin and flexible carbon nanotubes/MXene/cellulose nanofibrils composite paper with gradient and sandwich structure was successfully fabricated via a facile alternating vacuum-assisted filtration process.
2 The composite paper exhibits excellent mechanical property and electromagnetic interference shielding performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao, J. Yuan, 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
- M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao, H.J. Yang, X.Y. Fang, J. Yuan, Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201807398
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29(31), 1701583 (2017). https://doi.org/10.1002/adma.201701583
- S. Lee, I. Jo, S. Kang, B. Jang, J. Moon et al., Smart contact lenses with graphene coating for electromagnetic interference shielding and dehydration protection. ACS Nano 11(6), 5318–5324 (2017). https://doi.org/10.1021/acsnano.7b00370
- L. Huang, J. Li, Y. Li, X. Heb, Y. Yuan, Lightweight and flexible hybrid film based on delicate design of electrospun nanofibers for high-performance electromagnetic interference shielding. Nanoscale 11(17), 8616–8625 (2019). https://doi.org/10.1039/c9nr02102g
- J. Luo, L. Wang, X. Huang, B. Li, Z. Guo et al., Mechanically durable, highly conductive, and anticorrosive composite fabrics with excellent self-cleaning performance for high-efficiency electromagnetic interference shielding. ACS Appl. Mater. Interfaces 11(11), 10883–10894 (2019). https://doi.org/10.1021/acsami.8b22212
- D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015). https://doi.org/10.1002/adfm.201403809
- N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26(31), 5480–5487 (2014). https://doi.org/10.1002/adma.201305293
- Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou, Z. Zhang, Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303–310 (2016). https://doi.org/10.1002/adfm.201503579
- X.X. Wang, J.C. Shu, W.Q. Cao, M. Zhang, J. Yuan, M.S. Cao, Eco-mimetic nanoarchitecture for green EMI shielding. Chem. Eng. J. 369, 1068–1077 (2019). https://doi.org/10.1016/j.cej.2019.03.164
- G.M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28(44), 1803360 (2018). https://doi.org/10.1002/adfm.201803360
- M. Crespo, M. Gonzalez, A.L. Elias, L.P. Rajukumar, J. Baselga, M. Terrones, J. Pozuelo, Ultra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz range. Phys. Status Solidi R 8(8), 698–704 (2014). https://doi.org/10.1002/pssr.201409151
- Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang, W. Zheng, Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv. 5(31), 24342–24351 (2015). https://doi.org/10.1039/c4ra16421k
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman, Y. Gogotsi, A. Sinitskii, Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci. Adv. 4(6), eaat0491 (2018). https://doi.org/10.1126/sciadv.aat0491
- J. Wang, J. Tang, B. Ding, V. Malgras, Z. Chang et al., Hierarchical porous carbons with layer-by-layer motif architectures from confined soft-template self-assembly in layered materials. Nat. Commun. 8, 15717 (2017). https://doi.org/10.1038/ncomms15717
- Y. Ma, N. Liu, L. Li, X. Hu, Z. Zou, J. Wang, S. Luo, Y. Gao, A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 8, 1207 (2017). https://doi.org/10.1038/s41467-017-01136-9
- L. Ding, Y. Wei, L. Li, T. Zhang, H. Wang et al., MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 9, 155 (2018). https://doi.org/10.1038/s41467-017-02529-6
- C. Zhang, B. Anasori, A. Seral-Ascaso, S.H. Park, N. McEvoy et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29(36), 1702678 (2017). https://doi.org/10.1002/adma.201702678
- D. Xiong, X. Li, Z. Bai, S. Lu, Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14(17), 1703419 (2018). https://doi.org/10.1002/smll.201703419
- V.M.H. Ng, H. Huang, K. Zhou, P.S. Lee, W. Que, J.Z. Xu, L.B. Kong, Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J. Mater. Chem. A 5(7), 3039–3068 (2017). https://doi.org/10.1039/c6ta06772g
- Z. Ling, C.E. Ren, M.Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 111(47), 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
- H. Li, Y. Hou, F. Wang, M.R. Lohe, X. Zhuang, L. Niu, X. Feng, Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv. Energy Mater. 7(4), 1601847 (2017). https://doi.org/10.1002/aenm.201601847
- M.Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang et al., Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27(2), 339–345 (2015). https://doi.org/10.1002/adma.201404140
- J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, Z.-Z. Yu, Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
- S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu, S. Hong, Z.Z. Yu, Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
- M. Han, X. Yin, H. Wu, Z. Hou, C. Song, X. Li, L. Zhang, L. Cheng, Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the x-band. ACS Appl. Mater. Interfaces 8(32), 21011–21019 (2016). https://doi.org/10.1021/acsami.6b06455
- M. Li, M. Han, J. Zhou, Q. Deng, X. Zhou et al., Novel scale-like structures of graphite/TiC/Ti3C2 hybrids for electromagnetic absorption. Adv. Electron. Mater. 4(5), 1700617 (2018). https://doi.org/10.1002/aelm.201700617
- X. Li, X. Yin, M. Han, C. Song, X. Sun, H. Xu, L. Cheng, L. Zhang, A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx MXene. J. Mater. Chem. C 5(30), 7621–7628 (2017). https://doi.org/10.1039/c7tc01991b
- H. Xu, X. Yin, X. Li, M. Li, S. Liang, L. Zhang, L. Cheng, Lightweight Ti3C2Tx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11(10), 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
- Z. Zhou, J. Liu, X. Zhang, D. Tian, Z. Zhan, C. Lu, Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv. Mater. Interfaces 6(6), 1802040 (2019). https://doi.org/10.1002/admi.201802040
- R. Bian, G. He, W. Zhi, S. Xiang, T. Wang, D. Cai, Ultralight MXene-based aerogels with high electromagnetic interference shielding performance. J. Mater. Chem. C 7(3), 474–478 (2019). https://doi.org/10.1039/c8tc04795b
- R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao, X. Feng, Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(51), 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
- G. Zhao, H. Lv, Y. Zhou, X. Zheng, C. Wu, C. Xu, Self-assembled sandwich-like MXene-derived nanocomposites for enhanced electromagnetic wave absorption. ACS Appl. Mater. Interfaces 10(49), 42925–42932 (2018). https://doi.org/10.1021/acsami.8b16727
- M. Vural, A. Pena-Francesch, J. Bars-Pomes, H. Jung, H. Gudapati et al., Inkjet printing of self-assembled 2D titanium carbide and protein electrodes for stimuli-responsive electromagnetic shielding. Adv. Funct. Mater. 28(32), 1801972 (2018). https://doi.org/10.1002/adfm.201801972
- C. Xiang, R. Guo, S. Lin, S. Jiang, J. Lan et al., Lightweight and ultrathin TiO2–Ti3C2Tx/graphene film with electromagnetic interference shielding. Chem. Eng. J. 360, 1158–1166 (2019). https://doi.org/10.1016/j.cej.2018.10.174
- X. Li, X. Yin, S. Liang, M. Li, L. Cheng, L. Zhang, 2D carbide MXene Ti2CTx as a novel high-performance electromagnetic interference shielding material. Carbon 146, 210–217 (2019). https://doi.org/10.1016/j.carbon.2019.02.003
- P. He, X.X. Wang, Y.Z. Cai, J.C. Shu, Q.L. Zhao, J. Yuan, M.S. Cao, Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale 11(13), 6080–6088 (2019). https://doi.org/10.1039/c8nr10489a
- R. Sun, H.-B. Zhang, J. Liu, X. Xie, R. Yang, Y. Li, S. Hong, Z.-Z. Yu, Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
- X. Li, X. Yin, C. Song, M. Han, H. Xu, W. Duan, L. Cheng, L. Zhang, Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific em absorption performance. Adv. Funct. Mater. 28(41), 1803938 (2018). https://doi.org/10.1002/adfm.201803938
- A. Walther, J.V.I. Timonen, I. Diez, A. Laukkanen, O. Ikkala, Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv. Mater. 23(26), 2924 (2011). https://doi.org/10.1002/adma.201100580
- S. Dai, Y. Chu, D. Liu, F. Cao, X. Wu et al., Intrinsically ionic conductive cellulose nanopapers applied as all solid dielectrics for low voltage organic transistors. Nat. Commun. 9, 2737 (2018). https://doi.org/10.1038/s41467-018-05155-y
- E. Kontturi, P. Laaksonen, M.B. Linder, A.H. Nonappa, O.J. Groechel, O.Ikkala Rojas, Advanced materials through assembly of nanocelluloses. Adv. Mater. 30(24), 1703779 (2018). https://doi.org/10.1002/adma.201703779
- W. Luo, J. Hayden, S.-H. Jang, Y. Wang, Y. Zhang et al., Highly conductive, light weight, robust, corrosion-resistant, scalable, all-fiber based current collectors for aqueous acidic batteries. Adv. Energy Mater. 8(9), 1702615 (2018). https://doi.org/10.1002/aenm.201702615
- N. Mittal, F. Ansari, K.V. Gowda, C. Brouzet, P. Chen et al., Multiscale control of nanocellulose assembly: transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano 12(7), 6378–6388 (2018). https://doi.org/10.1021/acsnano.8b01084
- T. Saito, R. Kuramae, J. Wohlert, L.A. Berglund, A. Isogai, An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromoleculars 14(1), 248–253 (2013). https://doi.org/10.1021/bm301674e
- L.J. Gibson, The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 9(76), 2749–2766 (2012). https://doi.org/10.1098/rsif.2012.0341
- Y. Fujisaki, H. Koga, Y. Nakajima, M. Nakata, H. Tsuji et al., Transparent nanopaper-based flexible organic thin-film transistor array. Adv. Funct. Mater. 24(12), 1657–1663 (2014). https://doi.org/10.1002/adfm.201303024
- J. Huang, H. Zhu, Y. Chen, C. Preston, K. Rohrbach, J. Cumings, L. Hu, Highly transparent and flexible nanopaper transistors. ACS Nano 7(3), 2106–2113 (2013). https://doi.org/10.1021/nn304407r
- M.M. Gonzalez del Campo, M. Darder, P. Aranda, M. Akkari, Y. Huttel, A. Mayoral, J. Bettini, E. Ruiz-Hitzky, Functional hybrid nanopaper by assembling nanofibers of cellulose and sepiolite. Adv. Funct. Mater. 28(27), 1703048 (2018). https://doi.org/10.1002/adfm.201703048
- R. Xiong, H.S. Kim, S. Zhang, S. Kim, V.F. Korolovych et al., Template-guided assembly of silk fibroin on cellulose nanofibers for robust nanostructures with ultrafast water transport. ACS Nano 11(12), 12008–12019 (2017). https://doi.org/10.1021/acsnano.7b04235
- W. Yang, Z. Zhao, K. Wu, R. Huang, T. Liu, H. Jiang, F. Chen, Q. Fu, Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C 5(15), 3748–3756 (2017). https://doi.org/10.1039/c7tc00400a
- H. Zhu, Y. Li, Z. Fang, J. Xu, F. Cao et al., Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano 8(4), 3606–3613 (2014). https://doi.org/10.1021/nn500134m
- W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang, M.G. Ma, F. Chen, Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5), 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
- H. Zhang, X. Sun, Z. Heng, Y. Chen, H. Zou, M. Liang, Robust and flexible cellulose nanofiber/multiwalled carbon nanotube film for high-performance electromagnetic interference shielding. Ind. Eng. Chem. Res. 57(50), 17152–17160 (2018). https://doi.org/10.1021/acs.iecr.8b04573
- J. Chen, J. Xu, K. Wang, X. Qian, R. Sun, Highly thermostable, flexible, and conductive films prepared from cellulose, graphite, and polypyrrole nanoparticles. ACS Appl. Mater. Interfaces 7(28), 15641–15648 (2015). https://doi.org/10.1021/acsami.5b04462
- L.Q. Zhang, S.G. Yang, L. Li, B. Yang, H.D. Huang et al., Ultralight cellulose porous composites with manipulated porous structure and carbon nanotube distribution for promising electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(46), 40156–40167 (2018). https://doi.org/10.1021/acsami.8b14738
- W.L. Song, C. Gong, H. Li, X.D. Chen, M. Chen et al., Graphene-based sandwich structures for frequency selectable electromagnetic shielding. ACS Appl. Mater. Interfaces 9(41), 36119–36129 (2017). https://doi.org/10.1021/acsami.7b08229
- W.L. Song, L.Z. Fan, M.S. Cao, M.M. Lu, C.Y. Wang et al., Facile fabrication of ultrathin graphene papers for effective electromagnetic shielding. J. Mater. Chem. C 2(25), 5057–5064 (2014). https://doi.org/10.1039/c4tc00517a
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- C. Shao, H. Chang, M. Wang, F. Xu, J. Yang, High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl. Mater. Interfaces 9(34), 28305–28318 (2017). https://doi.org/10.1021/acsami.7b09614
- Z. Chen, C. Xu, C. Ma, W. Ren, H.-M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
- C. Liang, Z. Wang, L. Wu, X. Zhang, H. Wang, Z. Wang, Light and strong hierarchical porous sic foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures. ACS Appl. Mater. Interfaces 9(35), 29950–29957 (2017). https://doi.org/10.1021/acsami.7b07735
- Q. Zhang, J. Teng, G. Zou, Q. Peng, Q. Du, T. Jiao, J. Xiang, Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale 8(13), 7085–7093 (2016). https://doi.org/10.1039/c5nr09303a
- H. Lin, X. Wang, L. Yu, Y. Chen, J. Shi, Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 17(1), 384–391 (2017). https://doi.org/10.1021/acs.nanolett.6b04339
- L.H. Karlsson, J. Birch, J. Halim, M.W. Barsoum, P.O.A. Persson, Atomically resolved structural and chemical investigation of single MXene sheets. Nano Lett. 15(8), 4955–4960 (2015). https://doi.org/10.1021/acs.nanolett.5b00737
- X. Xie, M.-Q. Zhao, B. Anasori, K. Maleski, C.E. Ren et al., Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26, 513–523 (2016). https://doi.org/10.1016/j.nanoen.2016.06.005
- H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. (2018). https://doi.org/10.1002/adma.201706343
- B. Wen, X.X. Wang, W.Q. Cao, H.L. Shi, M.M. Lu et al., Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world. Nanoscale 6(11), 5754–5761 (2014). https://doi.org/10.1039/c3nr06717c
- Y. Li, B. Shen, D. Yi, L. Zhang, W. Zhai, X. Wei, W. Zheng, The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams. Compos. Sci. Technol. 138, 209–216 (2017). https://doi.org/10.1016/j.compscitech.2016.12.002
- M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3), 788–796 (2010). https://doi.org/10.1016/j.carbon.2009.10.028
- W.L. Song, M.S. Cao, Z.L. Hou, X.Y. Fang, X.L. Shi, J. Yuan, High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 k in X-band. Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3152764
- X.Y. Fang, X.X. Yu, H.M. Zheng, H.B. Jin, L. Wang, M.S. Cao, Temperature- and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets. Phys. Lett. A 379(37), 2245–2251 (2015). https://doi.org/10.1016/j.physleta.2015.06.063
- P. He, M.S. Cao, J.C. Shu, Y.Z. Cai, X.X. Wang, Q.L. Zhao, J. Yuan, Atomic layer tailoring titanium carbide MXene to tune transport and polarization for utilization of electromagnetic energy beyond solar and chemical energy. ACS Appl. Mater. Interfaces 11(13), 12535–12543 (2019). https://doi.org/10.1021/acsami.9b00593
- M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, J. Yuan, Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small (2018). https://doi.org/10.1002/smll.201800987
- J. Ma, K. Wang, M. Zhan, A comparative study of structure and electromagnetic interference shielding performance for silver nanostructure hybrid polyimide foams. RSC Adv. 5(80), 65283–65296 (2015). https://doi.org/10.1039/c5ra09507g
- X.P. Shui, D.D.L. Chung, Nickel filament polymer-matrix composites with low surface impedance and high electromagnetic interference shielding effectiveness. J. Electron. Mater. 26(8), 928–934 (1997). https://doi.org/10.1007/s11664-997-0276-4
- W.L. Song, X.T. Guan, L.Z. Fan, W.Q. Cao, C.Y. Wang, Q.L. Zhao, M.S. Cao, Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. J. Mater. Chem. A 3(5), 2097–2107 (2015). https://doi.org/10.1039/c4ta05939e
- K. Ji, H. Zhao, J. Zhang, J. Chen, Z. Dai, Fabrication and electromagnetic interference shielding performance of open-cell foam of a CU–NI alloy integrated with CNTs. Appl. Surf. Sci. 311, 351–356 (2014). https://doi.org/10.1016/j.apsusc.2014.05.067
- D.X. Yan, P.G. Ren, H. Pang, Q. Fu, M.B. Yang, Z.M. Li, Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J. Mater. Chem. 22(36), 18772–18774 (2012). https://doi.org/10.1039/c2jm32692b
- N. Agnihotri, K. Chakrabarti, A. De, Highly efficient electromagnetic interference shielding using graphite nanoplatelet/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) composites with enhanced thermal conductivity. RSC Adv. 5(54), 43765–43771 (2015). https://doi.org/10.1039/c4ra15674a
- Y.L. Yang, M.C. Gupta, Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 5(11), 2131–2134 (2005). https://doi.org/10.1021/nl051375r
- P. Ghosh, A. Chakrabarti, Conducting carbon black filled EDPM vulcanizates: assessment of dependence of physical and mechanical properties and conducting character on variation of filler loading. Eur. Polym. J. 36(5), 1043–1054 (2000). https://doi.org/10.1016/s0014-3057(99)00157-3
References
M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao, J. Yuan, 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao, H.J. Yang, X.Y. Fang, J. Yuan, Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201807398
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29(31), 1701583 (2017). https://doi.org/10.1002/adma.201701583
S. Lee, I. Jo, S. Kang, B. Jang, J. Moon et al., Smart contact lenses with graphene coating for electromagnetic interference shielding and dehydration protection. ACS Nano 11(6), 5318–5324 (2017). https://doi.org/10.1021/acsnano.7b00370
L. Huang, J. Li, Y. Li, X. Heb, Y. Yuan, Lightweight and flexible hybrid film based on delicate design of electrospun nanofibers for high-performance electromagnetic interference shielding. Nanoscale 11(17), 8616–8625 (2019). https://doi.org/10.1039/c9nr02102g
J. Luo, L. Wang, X. Huang, B. Li, Z. Guo et al., Mechanically durable, highly conductive, and anticorrosive composite fabrics with excellent self-cleaning performance for high-efficiency electromagnetic interference shielding. ACS Appl. Mater. Interfaces 11(11), 10883–10894 (2019). https://doi.org/10.1021/acsami.8b22212
D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015). https://doi.org/10.1002/adfm.201403809
N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26(31), 5480–5487 (2014). https://doi.org/10.1002/adma.201305293
Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou, Z. Zhang, Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303–310 (2016). https://doi.org/10.1002/adfm.201503579
X.X. Wang, J.C. Shu, W.Q. Cao, M. Zhang, J. Yuan, M.S. Cao, Eco-mimetic nanoarchitecture for green EMI shielding. Chem. Eng. J. 369, 1068–1077 (2019). https://doi.org/10.1016/j.cej.2019.03.164
G.M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28(44), 1803360 (2018). https://doi.org/10.1002/adfm.201803360
M. Crespo, M. Gonzalez, A.L. Elias, L.P. Rajukumar, J. Baselga, M. Terrones, J. Pozuelo, Ultra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz range. Phys. Status Solidi R 8(8), 698–704 (2014). https://doi.org/10.1002/pssr.201409151
Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang, W. Zheng, Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv. 5(31), 24342–24351 (2015). https://doi.org/10.1039/c4ra16421k
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman, Y. Gogotsi, A. Sinitskii, Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci. Adv. 4(6), eaat0491 (2018). https://doi.org/10.1126/sciadv.aat0491
J. Wang, J. Tang, B. Ding, V. Malgras, Z. Chang et al., Hierarchical porous carbons with layer-by-layer motif architectures from confined soft-template self-assembly in layered materials. Nat. Commun. 8, 15717 (2017). https://doi.org/10.1038/ncomms15717
Y. Ma, N. Liu, L. Li, X. Hu, Z. Zou, J. Wang, S. Luo, Y. Gao, A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 8, 1207 (2017). https://doi.org/10.1038/s41467-017-01136-9
L. Ding, Y. Wei, L. Li, T. Zhang, H. Wang et al., MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 9, 155 (2018). https://doi.org/10.1038/s41467-017-02529-6
C. Zhang, B. Anasori, A. Seral-Ascaso, S.H. Park, N. McEvoy et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29(36), 1702678 (2017). https://doi.org/10.1002/adma.201702678
D. Xiong, X. Li, Z. Bai, S. Lu, Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14(17), 1703419 (2018). https://doi.org/10.1002/smll.201703419
V.M.H. Ng, H. Huang, K. Zhou, P.S. Lee, W. Que, J.Z. Xu, L.B. Kong, Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J. Mater. Chem. A 5(7), 3039–3068 (2017). https://doi.org/10.1039/c6ta06772g
Z. Ling, C.E. Ren, M.Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 111(47), 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
H. Li, Y. Hou, F. Wang, M.R. Lohe, X. Zhuang, L. Niu, X. Feng, Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv. Energy Mater. 7(4), 1601847 (2017). https://doi.org/10.1002/aenm.201601847
M.Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang et al., Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27(2), 339–345 (2015). https://doi.org/10.1002/adma.201404140
J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, Z.-Z. Yu, Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu, S. Hong, Z.Z. Yu, Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
M. Han, X. Yin, H. Wu, Z. Hou, C. Song, X. Li, L. Zhang, L. Cheng, Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the x-band. ACS Appl. Mater. Interfaces 8(32), 21011–21019 (2016). https://doi.org/10.1021/acsami.6b06455
M. Li, M. Han, J. Zhou, Q. Deng, X. Zhou et al., Novel scale-like structures of graphite/TiC/Ti3C2 hybrids for electromagnetic absorption. Adv. Electron. Mater. 4(5), 1700617 (2018). https://doi.org/10.1002/aelm.201700617
X. Li, X. Yin, M. Han, C. Song, X. Sun, H. Xu, L. Cheng, L. Zhang, A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx MXene. J. Mater. Chem. C 5(30), 7621–7628 (2017). https://doi.org/10.1039/c7tc01991b
H. Xu, X. Yin, X. Li, M. Li, S. Liang, L. Zhang, L. Cheng, Lightweight Ti3C2Tx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11(10), 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
Z. Zhou, J. Liu, X. Zhang, D. Tian, Z. Zhan, C. Lu, Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv. Mater. Interfaces 6(6), 1802040 (2019). https://doi.org/10.1002/admi.201802040
R. Bian, G. He, W. Zhi, S. Xiang, T. Wang, D. Cai, Ultralight MXene-based aerogels with high electromagnetic interference shielding performance. J. Mater. Chem. C 7(3), 474–478 (2019). https://doi.org/10.1039/c8tc04795b
R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao, X. Feng, Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(51), 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
G. Zhao, H. Lv, Y. Zhou, X. Zheng, C. Wu, C. Xu, Self-assembled sandwich-like MXene-derived nanocomposites for enhanced electromagnetic wave absorption. ACS Appl. Mater. Interfaces 10(49), 42925–42932 (2018). https://doi.org/10.1021/acsami.8b16727
M. Vural, A. Pena-Francesch, J. Bars-Pomes, H. Jung, H. Gudapati et al., Inkjet printing of self-assembled 2D titanium carbide and protein electrodes for stimuli-responsive electromagnetic shielding. Adv. Funct. Mater. 28(32), 1801972 (2018). https://doi.org/10.1002/adfm.201801972
C. Xiang, R. Guo, S. Lin, S. Jiang, J. Lan et al., Lightweight and ultrathin TiO2–Ti3C2Tx/graphene film with electromagnetic interference shielding. Chem. Eng. J. 360, 1158–1166 (2019). https://doi.org/10.1016/j.cej.2018.10.174
X. Li, X. Yin, S. Liang, M. Li, L. Cheng, L. Zhang, 2D carbide MXene Ti2CTx as a novel high-performance electromagnetic interference shielding material. Carbon 146, 210–217 (2019). https://doi.org/10.1016/j.carbon.2019.02.003
P. He, X.X. Wang, Y.Z. Cai, J.C. Shu, Q.L. Zhao, J. Yuan, M.S. Cao, Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale 11(13), 6080–6088 (2019). https://doi.org/10.1039/c8nr10489a
R. Sun, H.-B. Zhang, J. Liu, X. Xie, R. Yang, Y. Li, S. Hong, Z.-Z. Yu, Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
X. Li, X. Yin, C. Song, M. Han, H. Xu, W. Duan, L. Cheng, L. Zhang, Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific em absorption performance. Adv. Funct. Mater. 28(41), 1803938 (2018). https://doi.org/10.1002/adfm.201803938
A. Walther, J.V.I. Timonen, I. Diez, A. Laukkanen, O. Ikkala, Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv. Mater. 23(26), 2924 (2011). https://doi.org/10.1002/adma.201100580
S. Dai, Y. Chu, D. Liu, F. Cao, X. Wu et al., Intrinsically ionic conductive cellulose nanopapers applied as all solid dielectrics for low voltage organic transistors. Nat. Commun. 9, 2737 (2018). https://doi.org/10.1038/s41467-018-05155-y
E. Kontturi, P. Laaksonen, M.B. Linder, A.H. Nonappa, O.J. Groechel, O.Ikkala Rojas, Advanced materials through assembly of nanocelluloses. Adv. Mater. 30(24), 1703779 (2018). https://doi.org/10.1002/adma.201703779
W. Luo, J. Hayden, S.-H. Jang, Y. Wang, Y. Zhang et al., Highly conductive, light weight, robust, corrosion-resistant, scalable, all-fiber based current collectors for aqueous acidic batteries. Adv. Energy Mater. 8(9), 1702615 (2018). https://doi.org/10.1002/aenm.201702615
N. Mittal, F. Ansari, K.V. Gowda, C. Brouzet, P. Chen et al., Multiscale control of nanocellulose assembly: transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano 12(7), 6378–6388 (2018). https://doi.org/10.1021/acsnano.8b01084
T. Saito, R. Kuramae, J. Wohlert, L.A. Berglund, A. Isogai, An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromoleculars 14(1), 248–253 (2013). https://doi.org/10.1021/bm301674e
L.J. Gibson, The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 9(76), 2749–2766 (2012). https://doi.org/10.1098/rsif.2012.0341
Y. Fujisaki, H. Koga, Y. Nakajima, M. Nakata, H. Tsuji et al., Transparent nanopaper-based flexible organic thin-film transistor array. Adv. Funct. Mater. 24(12), 1657–1663 (2014). https://doi.org/10.1002/adfm.201303024
J. Huang, H. Zhu, Y. Chen, C. Preston, K. Rohrbach, J. Cumings, L. Hu, Highly transparent and flexible nanopaper transistors. ACS Nano 7(3), 2106–2113 (2013). https://doi.org/10.1021/nn304407r
M.M. Gonzalez del Campo, M. Darder, P. Aranda, M. Akkari, Y. Huttel, A. Mayoral, J. Bettini, E. Ruiz-Hitzky, Functional hybrid nanopaper by assembling nanofibers of cellulose and sepiolite. Adv. Funct. Mater. 28(27), 1703048 (2018). https://doi.org/10.1002/adfm.201703048
R. Xiong, H.S. Kim, S. Zhang, S. Kim, V.F. Korolovych et al., Template-guided assembly of silk fibroin on cellulose nanofibers for robust nanostructures with ultrafast water transport. ACS Nano 11(12), 12008–12019 (2017). https://doi.org/10.1021/acsnano.7b04235
W. Yang, Z. Zhao, K. Wu, R. Huang, T. Liu, H. Jiang, F. Chen, Q. Fu, Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C 5(15), 3748–3756 (2017). https://doi.org/10.1039/c7tc00400a
H. Zhu, Y. Li, Z. Fang, J. Xu, F. Cao et al., Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano 8(4), 3606–3613 (2014). https://doi.org/10.1021/nn500134m
W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang, M.G. Ma, F. Chen, Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5), 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
H. Zhang, X. Sun, Z. Heng, Y. Chen, H. Zou, M. Liang, Robust and flexible cellulose nanofiber/multiwalled carbon nanotube film for high-performance electromagnetic interference shielding. Ind. Eng. Chem. Res. 57(50), 17152–17160 (2018). https://doi.org/10.1021/acs.iecr.8b04573
J. Chen, J. Xu, K. Wang, X. Qian, R. Sun, Highly thermostable, flexible, and conductive films prepared from cellulose, graphite, and polypyrrole nanoparticles. ACS Appl. Mater. Interfaces 7(28), 15641–15648 (2015). https://doi.org/10.1021/acsami.5b04462
L.Q. Zhang, S.G. Yang, L. Li, B. Yang, H.D. Huang et al., Ultralight cellulose porous composites with manipulated porous structure and carbon nanotube distribution for promising electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(46), 40156–40167 (2018). https://doi.org/10.1021/acsami.8b14738
W.L. Song, C. Gong, H. Li, X.D. Chen, M. Chen et al., Graphene-based sandwich structures for frequency selectable electromagnetic shielding. ACS Appl. Mater. Interfaces 9(41), 36119–36129 (2017). https://doi.org/10.1021/acsami.7b08229
W.L. Song, L.Z. Fan, M.S. Cao, M.M. Lu, C.Y. Wang et al., Facile fabrication of ultrathin graphene papers for effective electromagnetic shielding. J. Mater. Chem. C 2(25), 5057–5064 (2014). https://doi.org/10.1039/c4tc00517a
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
C. Shao, H. Chang, M. Wang, F. Xu, J. Yang, High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl. Mater. Interfaces 9(34), 28305–28318 (2017). https://doi.org/10.1021/acsami.7b09614
Z. Chen, C. Xu, C. Ma, W. Ren, H.-M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
C. Liang, Z. Wang, L. Wu, X. Zhang, H. Wang, Z. Wang, Light and strong hierarchical porous sic foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures. ACS Appl. Mater. Interfaces 9(35), 29950–29957 (2017). https://doi.org/10.1021/acsami.7b07735
Q. Zhang, J. Teng, G. Zou, Q. Peng, Q. Du, T. Jiao, J. Xiang, Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale 8(13), 7085–7093 (2016). https://doi.org/10.1039/c5nr09303a
H. Lin, X. Wang, L. Yu, Y. Chen, J. Shi, Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 17(1), 384–391 (2017). https://doi.org/10.1021/acs.nanolett.6b04339
L.H. Karlsson, J. Birch, J. Halim, M.W. Barsoum, P.O.A. Persson, Atomically resolved structural and chemical investigation of single MXene sheets. Nano Lett. 15(8), 4955–4960 (2015). https://doi.org/10.1021/acs.nanolett.5b00737
X. Xie, M.-Q. Zhao, B. Anasori, K. Maleski, C.E. Ren et al., Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26, 513–523 (2016). https://doi.org/10.1016/j.nanoen.2016.06.005
H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. (2018). https://doi.org/10.1002/adma.201706343
B. Wen, X.X. Wang, W.Q. Cao, H.L. Shi, M.M. Lu et al., Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world. Nanoscale 6(11), 5754–5761 (2014). https://doi.org/10.1039/c3nr06717c
Y. Li, B. Shen, D. Yi, L. Zhang, W. Zhai, X. Wei, W. Zheng, The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams. Compos. Sci. Technol. 138, 209–216 (2017). https://doi.org/10.1016/j.compscitech.2016.12.002
M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3), 788–796 (2010). https://doi.org/10.1016/j.carbon.2009.10.028
W.L. Song, M.S. Cao, Z.L. Hou, X.Y. Fang, X.L. Shi, J. Yuan, High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 k in X-band. Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3152764
X.Y. Fang, X.X. Yu, H.M. Zheng, H.B. Jin, L. Wang, M.S. Cao, Temperature- and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets. Phys. Lett. A 379(37), 2245–2251 (2015). https://doi.org/10.1016/j.physleta.2015.06.063
P. He, M.S. Cao, J.C. Shu, Y.Z. Cai, X.X. Wang, Q.L. Zhao, J. Yuan, Atomic layer tailoring titanium carbide MXene to tune transport and polarization for utilization of electromagnetic energy beyond solar and chemical energy. ACS Appl. Mater. Interfaces 11(13), 12535–12543 (2019). https://doi.org/10.1021/acsami.9b00593
M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, J. Yuan, Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small (2018). https://doi.org/10.1002/smll.201800987
J. Ma, K. Wang, M. Zhan, A comparative study of structure and electromagnetic interference shielding performance for silver nanostructure hybrid polyimide foams. RSC Adv. 5(80), 65283–65296 (2015). https://doi.org/10.1039/c5ra09507g
X.P. Shui, D.D.L. Chung, Nickel filament polymer-matrix composites with low surface impedance and high electromagnetic interference shielding effectiveness. J. Electron. Mater. 26(8), 928–934 (1997). https://doi.org/10.1007/s11664-997-0276-4
W.L. Song, X.T. Guan, L.Z. Fan, W.Q. Cao, C.Y. Wang, Q.L. Zhao, M.S. Cao, Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. J. Mater. Chem. A 3(5), 2097–2107 (2015). https://doi.org/10.1039/c4ta05939e
K. Ji, H. Zhao, J. Zhang, J. Chen, Z. Dai, Fabrication and electromagnetic interference shielding performance of open-cell foam of a CU–NI alloy integrated with CNTs. Appl. Surf. Sci. 311, 351–356 (2014). https://doi.org/10.1016/j.apsusc.2014.05.067
D.X. Yan, P.G. Ren, H. Pang, Q. Fu, M.B. Yang, Z.M. Li, Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J. Mater. Chem. 22(36), 18772–18774 (2012). https://doi.org/10.1039/c2jm32692b
N. Agnihotri, K. Chakrabarti, A. De, Highly efficient electromagnetic interference shielding using graphite nanoplatelet/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) composites with enhanced thermal conductivity. RSC Adv. 5(54), 43765–43771 (2015). https://doi.org/10.1039/c4ra15674a
Y.L. Yang, M.C. Gupta, Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 5(11), 2131–2134 (2005). https://doi.org/10.1021/nl051375r
P. Ghosh, A. Chakrabarti, Conducting carbon black filled EDPM vulcanizates: assessment of dependence of physical and mechanical properties and conducting character on variation of filler loading. Eur. Polym. J. 36(5), 1043–1054 (2000). https://doi.org/10.1016/s0014-3057(99)00157-3